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摘要 

本篇論文在金字塔網路損壞一個點或邊

時，提出一對演算法來改進先前的演算法，除

了壞點是在一層金字塔網路的峯點外，其餘皆

能建構出任意長度的迴路。換句話說，在某種

限制下，金字塔網路於損壞一個點或邊的情形

之下，仍然能夠嵌入所有可能長度的迴路。 

關鍵詞：金字塔網路、互連網路、泛迴路、容

錯性。 

Abstract 

In this paper, we derive a pair of algorithms 
to improve the algorithm proposed by Wu in 
2001 such that cycles of all possible lengths in 
the pyramid network with one faulty node or 
edge can be constructed except the apex is the 
faulty node in the one-layer pyramid network. In 
other words, under some constraint, pyramid 
networks with one node or edge fault can still 
embed cycles of all possible lengths. 

Keywords: Pyramid networks, interconnection 
networks, pancycles, fault tolerance. 

1. Introduction 

The topological structure of an 
interconnection network can be modeled by a 
graph [20]. The vertices and edges in graphs 
correspond to components and links in 
interconnection networks, respectively. 
Throughout this paper, we use network and 
graph, processor (node) and vertex, and link and 
edge, interchangeably. In the design and 
implementation of communication networks, 
parallel computing and VLSI, network 
topologies are always used to analysis the 

performance of networks.  

Various performance measures can be used 
to evaluate a network topology such as degree, 
transmission delay, diameter, fault tolerance, 
routing function, embeddability, symmetry, 
extendability, and layout of VLSI, etc. Ideally, 
we want to design a symmetrical, regular, 
scalable and reliable network, which has lower 
degree, lower transmission delay, small diameter, 
easy routing function, and an efficient layout of 
VLSI, etc. Unfortunately, there are a lot of 
mutually conflicting requirements in designing 
the topology of an interconnection network. For 
example, a lower degree network usually has a 
larger diameter and longer transmission delay. 
Therefore, it is not easy to design an optimum 
topology with all good properties. 

Pyramid networks, suggested by Dyer and 
Rosenfeld [9], are well-known networks in 
image processing, parallel and network 
computing [5], [8], [13], [15], [19]. Up to now, 
some pyramid networks have been built such as 
Cray T3D and T3E. In image processing [8], 
[13], both software structures and hardware 
architectures use the pyramid network. In 
parallel and network computing [5], [15], [19], 
there are many efficient algorithms that are 
developed in pyramid computers. 

With some special mapping functions, some 
networks can be embedded to others [2], [6], 
[10], [11], [12], [14], [16]. Therefore, all 
algorithms developed in the former also can be 
used in the latter. In other words, the latter 
network can emulate the former network. The 
cycle and path are simplest networks often used 
in parallel computing and local area networks. 
Cycles and paths are suitable for the 
development of simple algorithms. Constructing 
cycles of lengths ranging from three to the size 
of a graph is the pancyclic problem. This 



 

problem of pyramid networks has been studied 
in [21]. 

Since node or link faults may happen when 
a network is put in use, it is very meaningfully to 
consider the faulty network. Topological 
properties of the faulty networks were 
investigated by literatures [2], [7], [11], [12], 
[14], [21]. These researches related to the faulty 
networks include computing diameter, fault 
diameter, and wide diameter, providing routing, 
multicasting, broadcasting, and embedding rules, 
and so on. We concentrate our attention on the 
fault-tolerant embedding cycles in pyramid 
networks. 

The rest of this paper is organized as 
follows: In Section 2, some notations and 
definitions of this paper and some theorems 
about pancyclic properties of a graph G are 
given. The pyramid networks are introduced in 
Section 3. In Section 4, we first derive a pair of 
algorithms to construct cycles of lengths ranging 
from three to 5×4k–1 in two consecutive layers 
k-1 and k of the n-layer pyramid network where 
2≤k≤n. Then, we combine the algorithms and the 
original method proposed in [21] to construct 
cycles of all possible lengths of the pyramid 
networks with one faulty node. Furthermore, in 
Section 5, we show that the pyramid networks 
with one faulty edge are still pancyclic. Finally, 
this paper is concluded in Section 6. 

2. Preliminaries 

In this section, we present those basic 
definitions in graphs that used in the paper. Also, 
some theorems about pancyclic properties of a 
graph G are given. We list all fundamental 
notations refer to [4], [20]. 

Definition 2.1. The vertex connectivity (edge 
connectivity) of a connected graph G is denoted 
by κ(G) (κ'(G)) means that to make the graph G 
become disconnected at least κ(G) vertices 
((κ'(G)) edges) should be removed. 

Definition 2.2. A graph G is bipartite if its 
vertex set can be partitioned into two nonempty 
subsets X and Y such that each edge of G has one 
end in X and the other in Y. A complete bipartite 
graph is a bipartite graph such that two vertices 
are adjacent if and only if they are in different 
subsets. When the complete bipartite graph with 
|X| = p and |Y| = q, we denote it by Kp, q. 

Definition 2.3. A cycle that contains every 
vertex of G exactly once is called Hamiltonian 
cycle. A graph is Hamiltonian if it contains a 
Hamiltonian cycle.  

Definition 2.4. A graph G is pancyclic if it 
contains cycles of lengths l for 3≤l≤|V(G)|. 

In the following, we list some theorems 
about pancyclic properties of a graph G. 

Theorem 2.1 [3]. If G is a Hamiltonian graph of 
order p and size q ≥ p2/4, then either G is 
pancyclic or p is even and G is Kp/2, p/2. 

Let deg(v) denote the degree of a vertex v in 
graph G, another two theorems related to pan 
cyclic problem are state below. 

Theorem 2.2 [17]. Let G be a graph of order 
n≥3 with a Hamiltonian cycle (v1, v2, …, vn, v1) 
where vi. 

(1) If deg(v1)+deg(vn) ≥ n, then G is either 
pancyclic, bipartite, or missing only an 
(n–1)-cycle. 

(2) If deg(v1)+deg(vn) > n, then G is pancyclic. 

Theorem 2.3 [22]. Let G be a graph of order n 
containing a Hamiltonian cycle C. If x, y, and z 
are three consecutive vertices on C with 
deg(x)+deg(z) > n, then G is pancyclic. 

3. Pyramid Networks 

The pyramid network is a hierarchy 
structure based on mesh networks. So before 
introducing the pyramid network, we first 
describe the structure of the mesh network. The 
mesh network is defined as the Cartesian product 
Pm×Pn [20], denoted by M(m, n), where Pm and 
Pn are undirected paths with m and n vertices, 
respectively. The vertex set of mesh is V(M(m, n)) 
= {(x, y) | 1≤x≤m, 1≤y≤n}. And the edge set of 
mesh is E(M(m, n)) = {(x1, y1)(x2, y2) | |x1–x2| + 
|y1–y2| =1}. The maximum degree and minimum 
degree of a mesh are four and two, respectively. 

We denote the n-layer pyramid network by 
PM[n]. Every ith layer of PM[n] is an M(2i, 2i), 
for 0≤i≤n. The vertex set of PM[n] is V(PM[n]) 
= {(k; x, y) | 0≤k≤n, 1≤x≤2k, 1≤y≤2k}. The edge 
(k1; x1, y1)(k2; x2, y2) of PM[n] satisfy one of the 
following statements: 

(1) k1 = k2, |x1 – x2| + |y1 – y2| =1, 
(2) k2 = k1 + 1, x1 = x2/2, y1= y2/2. 

We call the edge satisfies (1) a mesh-link 
and satisfies (2) a layer-link. Let (k1; x1, y1) and 
(k1+1; x2, y2) be the two end nodes of a layer-link 
in PM[n]. Then, (k1; x1, y1) is the parent of (k1+1; 
x2, y2). An internal mesh-link uv represents that 
nodes u and v have a common parent. Otherwise, 
the rest of the mesh-links are external 
mesh-links. 

Furthermore, PM[n] can be considered as a 



 

4-ary rooted tree and every node in the same 
layer are connected as a mesh [1]. Thus, we have 
following properties. 

(1) The apex (0; 1, 1) is connected to its four 
children. The degree of apex is four. 

(2) Every node at a layer 1 to layer n–1 is 
connected to one link with the parent, at 
most four links with its siblings, and four 
links with its children. In this case, the 
maximum degree and minimum degree are 
nine and seven, respectively. 

(3) Every node at layer n is connected to one 
link with its parent and at most four links 
with its siblings. In this case, the maximum 
degree and minimum degree are five and 
three, respectively. 

(4) |V(PM[n])|=
n
Σ

i=0
4i and |E(PM[n])|=4n+1–2n+2 

[21]. 

With all of theorems described in Section 2, 
we cannot examine whether the pyramid 
network is a pancyclic graph or not. [18] and [21] 
have shown that the pyramid network is a 
Hamiltonian graph by constructing a spanning 
cycle in it. In [21], Wu also show that PM[n] is 
Hamiltonian-connected and pancyclic. By [7], 
we know that the vertex connectivity and edge 
connectivity of PM[n] is three. And the vertex 
connectivity and edge connectivity of cycles 
equal to two. Therefore, only one node or one 
edge could be failure or the faulty pyramid 
network is not a pancyclic network. We will 
show that PM[n] with one node or one edge fault 
is almost pancyclic in Section 4 and Section 5. 

4. Pancycles of Pyramid Networks 
with One Node Fault 

In the following, any two consecutive 
layers k and k–1 of a pyramid network is denoted 
by PM[k; k–1], where k≥2. In Subsection 4.1, 
we propose a pair of algorithms to construct all 
cycles in PM[k; k–1] whose lengths are from 
three to the number of its nodes. In Subsection 
4.2, we show that PM[k; k–1] with a faulty node 
is pancyclic. In Subsection 4.3, we construct all 
cycles whose lengths are at most |V(PM[n])|–1 in 
PM[n] with a faulty node. 

4.1 Pancycles of PM[k; k–1] 

We derive a pair of algorithms to construct 
all cycles in PM[k; k–1] whose lengths are from 
three to the number of its nodes. We name the 
pair of algorithms PLPM1 and PLPM2 since 
they can construct Pancycles in two consecutive 
Layers of PM[n]. Both PLPM1 and PLPM2 
input a layer k and a cycle length l, and then can 

return a cycle Cl whose length is l for 
3≤l≤4k+4k–1= 5×4k–1, where 2≤k≤n. Note that in 
the rest of this subsection we use symbol ∪ to 
denote union operation of ordering sets. 

Algorithm PLPM1(k, l){ 
Initialization: 

Three ordering sets U1(x, y) = {(k; 2x–1, 2y–1), 
(k; 2x–1, 2y), (k; 2x, 2y), (k; 2x, 2y–1)}, U2(x, y) 
= {(k; 2x, 2y), (k; 2x, 2y–1), (k; 2x–1, 2y–1), (k; 
2x–1, 2y)}, and U3(x, y) = {(k; 2x–1, 2y–1), (k; 
2x, 2y–1), (k; 2x, 2y), (k; 2x–1, 2y)}. 

Two ordering sets U = U1(1, 1) and V = {(k–1; 
1, 1)}. 
1. l′ = Mul5(l); 
2. Let the first element in V be (k–1; x, y). 

FOR (|U|+|V| < l′){ 
2.1 IF (y is odd){ 

IF (x < 2k-1–1) x = x + 1; U = U ∪ U1(x, y); 
IF (x = 2k-1–1) x = x + 1; U = U ∪ U3(x, y); 
IF (x = 2k-1) y = y + 1; U = U ∪ U3(x, y); 
}// End of IF (y is odd)  

2.2 IF (y is even){ 
IF (x = 1) y = y + 1; U = U ∪ U1(x, y); 
IF (1<x≤2k-1) x = x – 1; U = U ∪ U2(x, y); 
}// End of IF (y is even) 

2.3 V = (k–1; x, y) ∪ V; 
}//End of FOR (|U|+|V| < l′). 

3. Cl = Output(U, V, l); 
}//End of PLPM1 

Algorithm PLPM2(k, l){ 
Initialization: 

Three ordering sets U'1(x, y) = {(k; 2x–1, 2y), 
(k; 2x–1, 2y–1), (k; 2x, 2y–1), (k; 2x, 2y)}, U'2(x, 
y) = {(k; 2x, 2y–1), (k; 2x, 2y), (k; 2x–1, 2y), (k; 
2x–1, 2y–1)}, and U'3(x, y) = {(k; 2x, 2y–1), (k; 
2x–1, 2y–1), (k; 2x–1, 2y), (k; 2x, 2y)}. 

Two ordering sets U = U'3(1, 1) and V = {(k–1; 
1, 1)}. 
1. l′ = Mul5(l); 
2. Let the first element in V be (k–1; x, y). 

FOR (|U|+|V| < l′){ 
2.1 IF (y is odd){  

IF (x < 2k-1) x = x + 1; U = U ∪ U'1(x, y); 
IF (x = 2k-1) y = y + 1; U = U ∪ U'2(x, y); 
}//End of IF (y is odd)  

2.2 IF (y is even){ 
IF (x = 1) y = y + 1; U = U ∪ U'3(x, y); 
IF (x = 2) x = x – 1; U = U ∪ U'3(x, y); 
IF (2<x≤2k-1) x = x – 1; U = U ∪ U '2(x, y); 
}//End of IF (y is even) 

2.3 V = (k–1; x, y) ∪ V;  
}//End of FOR (|U|+|V| < l′) 

3. Cl = Output(U, V, l); 
}//End of PLPM2 

Function Mul5(l){//normalize l to l′ = 5k, k is a 



 

positive integer. 
SWITCH( l mod 5){ 

Case 0: return l; 
Case 1: return l + 4; 
Case 2: return l + 3; 
Case 3: return l + 2; 
Case 4: return l + 1; 
}//End of SWITCH( l mod 5) 

}//End of Procedure Mul5(l) 

Procedure Output(U, V, l){ 
SWITCH(l mod 5){ 

Case 0: Do nothing. 
Case 1: Delete the first and last three elements 

of U.  
Case 2: Delete the last three elements of U. 
Case 3: Delete the last two elements of U. 
Case 4: Delete the last element of U. 
}//End of SWITCH( l mod 5) 

Output all elements of U and V orderly. 
}//End of Procedure Output(U, V, l) 

In PLPM1 and PLPM2, two ordering sets U 
and V are used to store all nodes whose elements 
are needed to form a cycle with length l′. 
Initially, U and V have four elements and one 
element, respectively. First, we use Function 
Mul5 to modify l to l′ such that l′ is a multiple of 
5. Then, in each iteration, four elements are 
inserted into the rear of U and one element are 
inserted into the front of V. Note that the 
elements of U and V are in layer k and layer k–1 
of PM[n], respectively. The loop doesn't stop 
until |U|+|V| = l′. Finally, Procedure Output is 
used to output those elements in U and V that are 
necessary to form Cl. 

By PLPM1 or PLPM2, we can easily obtain 
cycles of lengths ranging from 3 to the number 
of nodes in the two consecutive layers of 
pyramid networks. We have the following 
lemma. 

Lemma 4.1 . PM[k; k–1], k≥2, of PM[n] is a 
pancyclic network. 

4.2 Pancycles of PM[k; k–1] with a Faulty Node 

In Subsection 4.1, we have already 
developed a pair of algorithms PLPM1 and 
PLPM2 to construct all cycles of lengths ranging 
from 3 to 5×4k–1 in PM[k; k–1]. These two 
algorithms are very similar except the rules they 
add the nodes that Cl needs. For example, 
PLPM1 appends U1(x, y) and PLPM2 appends 
U '1(x, y) to the rear of U in the same condition. 
In this subsection, we'd like to show that the 
faulty node at layer k of PM[k; k–1] could be 
avoided by combining PLPM1 with PLPM2. In 
order to avoid the faulty node, we propose a new 

algorithm to construct Pancycles on two 
consecutive Layers k and k+1 of PM[n] with one 
Faulty node at layer k (PLPMF for short). The 
proposed algorithm PLPMF is also shown how 
to combine PLPM1 with PLPM2 to establish a 
cycle in PM[k; k–1]. 

As shown in [21], the coordinate of every 
node in PM[n] can be clockwise rotated with 90°, 
180°, or 270°. If we clockwise rotate the node (k; 
x, y) with 90°, 180°, or 270°, then (k; x, y) 
becomes (k; 2k–y+1, x), (k; 2k–x+1, 2k–y+1), or 
(k; y, 2k–x+1), respectively. Conversely, the node 
(k; x, y) can stand for nodes (k; 2k–y+1, x), (k; 
2k–x+1, 2k–y+1), and (k; y, 2k–x+1). Let f=(k; x, y) 
be the faulty node and p=(k–1; u, v) its parent 
where 1≤x, y≤2k and 1≤u, v≤2k–1. Then five cases 
should be discussed according to the coordinate 
of f. There are four cases for 1 ≤ x, y ≤ 2 and one 
case for 3 ≤ x ≤ 2k–2 and 1 ≤ y ≤ 2k. We do not 
care the nodes of 1 ≤ x ≤ 2 and 1 ≤ y ≤ 2k or the 
nodes of 2k–1 ≤ x ≤2k and 1 ≤ y ≤ 2k since they 
can be mapped to the nodes that must be cared. 
Algorithm PLPMF is given below. 

Algorithm PLPMF(k, f, l){ 
/* Input: a layer k where 2≤k≤n, a faulty node f 

= (k; x, y), and a length l of a cycle.  
 Output: a cycle Cl. */ 
1. Apply PLPM1(k, l) but the elements of U and 

V are not outputted. If f ∉ U then output all 
elements of U and then all elements of V, and 
exit the procedure. 

2. Apply PLPM2(k, l) but the elements of U and 
V are not outputted. If f ∉ U then output all 
elements of U and then all elements of V, and 
exit the procedure. 

3. Case 1. (x=1 and y=1): Apply PLPM1(k, l+1) 
but the elements of U and V are not 
outputted. Remove f from U and then output 
all elements of U and then all elements of V. 

Case 2. (x=2 and y=2): Apply PLPM1(k, l+1) 
but the elements of U and V are not 
outputted. Let U=U–U1(1, 1) and then let 
U={(k; 1, 1), (k; 2, 1)}∪U. If l mod 5 ≠ 0 
then let U={(k; 1, 2)}∪U. Output all 
elements of U and then all elements of V. 

Case 3. (x=2 and y=1): Apply PLPM2(k, l+1) 
but the elements of U and V are not 
outputted. Remove f from U and then output 
all elements of U and then all elements of V. 

Case 4. (x=1 and y=2): Apply PLPM2(k, l+1) 
but the elements of U and V are not 
outputted. Let U=U–U '3(1, 1) and then let 
U={(k; 2, 1), (k; 2, 2)}∪U. IF l mod 5 ≠ 0 
then let U={(k; 1, 1)}∪U. Output all 
elements of U and then all elements of V. 

Case 5. (3≤x≤2k–2 and 1≤y≤2k): Apply 
PLPM1(k, 5×4k–1) but the elements of U and 



 

V are not outputted and let U'=U and V'=V. 
Apply PLPM2(k, 5×4k–1) but the elements of 
U and then all elements of V are not 
outputted.  
Subcase 5.1. (x=2u–1 and y=2v–1, or x=2u 

and y=2v): Remove f and all elements 
after f from U and remove all elements 
before p from V. Remove f and all 
elements before f from U' and remove p 
and all elements after p from V'. Let 
U=U∪U' and V=V∪V'. Output all 
elements of U and then all elements of V. 

Subcase 5.2. (x=2u and y=2v–1, or x=2u–1 
and y=2v): Remove f and all elements 
after f from U' and remove p and all 
elements before p from V'. Remove f and 
all elements before f from U and remove 
all elements after p from V. Let U=U'∪U 
and V=V'∪V. Output all elements of U 
and then all elements of V. 

}//End of PLPMF 

The first two steps of Algorithm PLPMF 
are used to form Cls that do not contain f in 
PM[k; k–1] without any faulty node. In the third 
step of Algorithm PLPMF, five cases are 
discussed. Cases 1 and 3 apply PLPM1 and 
PLPM2 with length l+1, respectively. Since f is 
the first element of U. Therefore, after removing 
f from U, the cycle of length l can be easily 
established. In Case 2 (Case 4), after applying 
PLPM1 (PLPM2) with length l+1, we first 
remove four nodes from U and then insert two 
nodes into the front of U for reconstructing the 
cycle to avoid the faulty node f. If the length l is 
not a multiple of 5, one more node has to be 
inserted into the front of U for matching |U|+|V| 
= l. Case 5 is divided into two subcases and both 
of them apply PLPM1 and PLPM2 with l=5×4k–1 
first. Two ordering sets U' and V' (U and V) are 
generated by PLPM1 (PLPM2). Base on the 
coordinates of the faulty node f and its parent p, 
we delete all nodes in U', V', U, and V that are 
not necessary to construct the desired cycle. 
After combining U (V) with U' (V'), Cl can be 
formed by outputting the all elements of U and V. 
With the add of PLPMF, we can constructed all 
cycles of lengths range from three to 5×4k–1–1 in 
PM[k; k–1] with one faulty node f = (k; x, y). By 
Algorithm PLPMF, we have the following 
Lemma. 

Lemma 4.2. PM[k; k–1] of PM[n], where 2≤k≤n, 
with one faulty node is pancyclic. 

4.3 Pancycles of PM[n] with One Faulty Node 

For convenience, let PMf[n] or PM(k; x, y)[n] 
denote PM[n] with one faulty node f=(k; x, y). In 
this subsection, we will show PM(k; x, y)[n] is 

pancyclic, where 0 ≤ k ≤ n, except PM(1; 0, 0)[1]. 
Due to PM(1; 0, 0)[1] does not contain C4. Thus 
PM(1; 0, 0)[1] is not pancyclic. Obviously, PM[1] 
with f ≠ (1; 0, 0) contains C3 and C4 , and is 
pancyclic. Therefore, we only need to construct 
all cycles of lengths ranging from three to 
|V(PM(n))|–1 in PMf[n] for n ≥ 2. We first 
provide an algorithm to construct Cl in PM(k; x, 

y)[n] for k ≥ 3 and 3 ≤ l ≤ |V(PM(n))|–1. Since the 
algorithm can construct Pancycles in PM[n] 
with one node Fault, so it can be named PPMF. 
For 0 ≤ k ≤ 2 ≤ n, we also propose an algorithm 
PPMF1 to construct Cl in PM(k; x, y)[n] where 
3≤l≤|V(PM(n))|–1. 

By the result in Subsection 4.2, cycles of 
lengths ranging from 3 to 5×4k–1–1 can be 
constructed in PM[k; k–1] with one faulty node. 
Wu’s algorithm can construct all cycles of 
lengths ranging from 3 to |V(PM(n))| in PM[n] 
without fault [21]. According to lengths of 
cycles, four cases are discussed in Algorithm 
PPMF. Algorithm PPMF is now given. 

Algorithm PPMF(l, f, n){// PM(k; x, y)[n] for k ≥ 
3 
/* Input: The cycle length l, where 3 ≤ l ≤ 

|V(PM[n])|–1, the faulty node f = (k; x, 
y), the layer n, 3 ≤ k ≤ n. 

 Output: The cycle Cl. */ 

Case 1. (3 ≤ l ≤ 
k-1
Σ

i=0
4i = 4k−1

3 ): Apply Wu’s 

algorithm to form Cl. 

Case 2. (
k-1
Σ

i=0
4i < l ≤ 

k
Σ

i=0
4i–1): Construct a 

Hamiltonian cycle of length 
k-2
Σ

i=0
4i in PM[k–2] 

by applying Wu’s algorithm. Apply PLPMF(k, f, 

l–
k-2
Σ

i=0
4i) to construct a cycle of length l–

k-2
Σ

i=0
4i. 

Merge these two cycles to form Cl by removing 
edges (k–1; 2, 1)(k–1; 3, 1) and (k–2; 1, 1)(k–2; 
2, 1), and then adding edges (k–2; 1, 1)(k–1; 2, 
1) and (k–2; 2, 1)(k–1; 3, 1).  

Case 3. (l = 
k
Σ

i=0
4i): Construct a cycle of length 

k
Σ

i=0
4i–1 by the steps of Case 2. Remove the 

apex (0; 1, 1) from the cycle by removing 
edges (0; 1, 1)(1; 1, 2) and (0; 1, 1)(1; 2, 1), 
and then adding the edge (1; 1, 2)(1; 2, 1). 
Construct a path with 2 nodes between (k+1; 
2k+1, 2) and (k+1; 2k+1, 3) by applying Wu’s 
algorithm. Merge the cycle and the path to 
form Cl by removing the edge (k; 2k, 1)(k; 2k, 2), 
and then adding edges (k; 2k, 1)(k+1; 2k+1, 2) 
and (k; 2k, 2)(k+1; 2k+1, 3).  

Case 4. (
k
Σ

i=0
4i < l ≤ 4n): Construct a cycle of 



 

length 
k
Σ

i=0
4i–1 by the steps of Case 2. Construct 

a path with l–
k
Σ

i=0
4i+1 nodes between nodes (k+1; 

2k+1, 1) and (k+1; 2k+1, 3) ((k+1; 2k+1, 2) and 
(k+1; 2k+1, 3)) by applying Wu’s algorithm for 

l–
k
Σ

i=0
4i+1 is odd (even). Merge the cycle and 

the path to form Cl by removing the edge (k; 2k, 
1)(k; 2k, 2), and then adding edges (k; 2k, 
1)(k+1; 2k+1, 1) and (k; 2k, 2)(k+1; 2k+1, 3) or (k; 
2k, 1)(k+1; 2k+1, 2) and (k; 2k, 2)(k+1; 2k+1, 3) 

for l–
k
Σ

i=0
4i+1 is odd (even).  

}//End of PPMF 

In Algorithm PPMF, the cycle of length 

l<
k-1
Σ

i=0
4i can be constructed by applying Wu’s 

algorithm as shown in Case 1. In Case 2, we 
construct two cycles by applying two different 

algorithms. Since l–
k-2
Σ

i=0
4i > 15 and the layer k of 

PM(k; x, y)[n] contains the edge (k–1; 2, 1)(k–1; 3, 
1) for k ≥ 3, so these two cycles can be merged 
to form Cl. Case 3 and Case 4 are very similar 
except Case 3 need to remove the apex such that 
Cl can be constructed. Also the cycles 
constructed by PLPM1 and PLPM2 contain the 
edge (k; 2k, 1)(k; 2k, 2). Therefore, the 
constructed cycles and path can be merged to 
form Cl. 

Next, we explain how to construct Cl in 
PM(k; x, y)[n] where 3≤l≤|V(PM(n))|–1 for 0 ≤ k ≤ 
2 ≤ n. Base on the value of k, three cases are 
considered in Algorithm PPMF1. Due to the 
node (k; x, y) can represent nodes (k; 2k–y+1, x), 
(k; 2k–x+1, 2k–y+1), and (k; y, 2k–x+1). Without 
loss of generality, assume that the faulty node f is 
(1; 1, 1) for k=1 and f is (2; x, y), 1 ≤ x, y ≤ 2, for 
k=2. We give Algorithm PPMF1 as follows. 

Algorithm PPMF1(l, f, n){// PM(k; x, y)[n] for 0 ≤ 
k ≤ 2≤ n 
/* Input: The cycle length l, where 3 ≤ l ≤ 

|V(PM[n])|–1, the faulty node f = (k; x, 
y), the layer n, 2 ≤ k ≤ n.  

 Output: The cycle Cl. */ 

Case 1. (k = 0): Construct a cycle of length l (
2
Σ

i=1

4i) in PM(0; 1, 1)[2] by applying PLPM1 for l≤
2
Σ

i=1

4i (l>
2
Σ

i=1
4i). If l is at most 

2
Σ

i=1
4i then let Cl be 

the constructed cycle and exit the procedure. If 

l=
2
Σ

i=1
4i+1 then let l = l+1 and delete the node (2; 

1, 1) from Cl by removing edges (1; 1, 1)(2; 1, 
1) and (2; 1, 1)(2; 1, 2), and adding the edge (1; 

1, 1)(2; 1, 2). Construct a path with l–
2
Σ

i=1
4i 

nodes between (3; 23, 1) and (3; 23, 3) ((3; 23, 2) 
and (3; 23, 3)) by applying Wu’s algorithm for 

l–
2
Σ

i=1
4i is odd (even). Merge the cycle and the 

path to form the desired cycle by removing the 
edge (2; 22, 1)(2; 22, 2), and then adding edges 
(2; 22, 1)(3; 23, 1) and (2; 22, 2)(3; 23, 3) ((2; 22, 

1)(3; 23, 2) and (2; 22, 2)(3; 23, 3)) for l–
2
Σ

i=1
4i is 

odd (even).  
Case 2. (k = 1): Construct C3 (C4) which contains 

the node (1; 2, 1) in PM(1; 1, 1)[1] for l is odd 
(even). If l is at most 4 then let Cl be the 
constructed cycle and exit the procedure. If l=5 
then let l = l+1 and delete the node (1; 1, 2) 
from C4 by removing edges (0; 1, 1)(1; 1, 2) 
and (1; 1, 2)(1; 2, 2), and adding the edge (0; 1, 
1)(2; 1, 2). Construct a path with l–4 nodes 
between (2; 22, 1) and (2; 22, 3) ((2; 22, 2) and 
(2; 22, 3)) by applying Wu’s algorithm for l–4 
is odd (even). Merge the cycle and the path to 
form the desired cycle by removing the edge (1; 
2, 1)(1; 2, 2), and then adding edges (1; 2, 1)(2; 
22, 1) and (1; 2, 2)(2; 22, 3) ((1; 2, 1)(2; 22, 2) 
and (1; 2, 2)(2; 22, 3)) for l–4 is odd (even).  

Case 3. (k = 2): Construct a cycle of length l–1 

(
2
Σ

i=1
4i–1) in PM[2; 1] with f=(0; 1, 1) by 

applying PLPMF for l≤
2
Σ

i=1
4i (l>

2
Σ

i=1
4i). If l≠

2
Σ

i=1
4i+1 then add the apex (0; 1, 1) into the cycle 
by removing the edge (1; 1, 1)(1; 1, 2) and then 
adding edges (0; 1, 1)(1; 1, 1) and (0; 1, 1)(1; 1, 

2). If l is at most 
2
Σ

i=1
4i then let Cl be the 

constructed cycle and exit the procedure. If 

l=
2
Σ

i=1
4i+1 then let l = l+1. Construct a path with 

l–
2
Σ

i=1
4i nodes between (3; 23, 1) and (3; 23, 3) 

((3; 23, 2) and (3; 23, 3)) by applying Wu’s 

algorithm for l–
2
Σ

i=1
4i is odd (even). Merge the 

cycle and the path to form the desired cycle by 
removing the edge (2; 22, 1)(2; 22, 2), and then 
adding edges (2; 22, 1)(3; 23, 1) and (2; 22, 2)(3; 
23, 3) ((2; 22, 1)(3; 23, 2) and (2; 22, 2)(3; 23, 3)) 

for l–
2
Σ

i=1
4i is odd (even). 

}//End of PPMF1 

Note that we cannot merge a node in layer 
k+1 of PM(k; x, y)[n] with a cycle whose nodes are 
all in layer at most k. Thus we have to take care 



 

l=5 (l=
2
Σ

i=1
4i+1) for k=1 (k=0, 2) in Algorithm 

PPMF1. With the aid of Algorithm PPMF and 
Algorithm PPMF1, we know that PM(k; x, y)[n] 
contains all cycles of lengths ranging from 3 to 
|V(PM[n])|–1 where n ≥ 2. According to the 
discussion above, we have the following 
theorem. 

Theorem 4.1. PM(k; x, y)[n] is pancyclic except 
PM(1; 0, 0)[1] where 0 ≤ k ≤ n. 

5. Pancycles of the Pyramid Networks 
with One Edge Fault 

In this section, we use the result in 
Subsection 4.2 to show how to construct all 
cycles of lengths ranging from three to 
|V(PM[n])| in PM[n] with one edge fault. Let 
PMe[n] or PM(k; x1, y1)(k; x2, y2)[n] denote PM[n] 
with a faulty edge e = (k; x1, y1) (k; x2, y2). And 
now we discuss the pancyclic problem of PMe[n]. 
As described in Section 3, all links in pyramid 
networks are divided into three parts: external 
mesh-links, internal mesh-links, and layer-links. 
External mesh-links are used in [21] to construct 
all cycles ranging from three to |V(PM(n))| are 
called used external mesh-link. Clearly, if the 
faulty edge e = (k; x1, y1) (k; x2, y2) is an external 
mesh-link where 2 ≤ k ≤ n, we can mark them as 
follows. 
1. Column (x1= x2): (k; 2k–1, 1)(k; 2k–1, 2), (k; 2k, 

1)(k; 2k, 2), (k; 1, 4i )(k; 1, 4i+1), (k; 2, 4i )(k; 2, 
4i+1), and (k; 2k–1, 4i+2)(k; 2k–1, 4i+3), (k; 2k, 
4i+2)(k; 2k, 4i+3) for i = 1..k–2. Note that only 
two external mesh-links (2; 3, 1)(2; 3, 2) and 
(2; 4, 1)(2; 4, 2) in columns are used if k = 2. 

2. Row (y1= y2): All external mesh-links in rows 
are used but (k; 2, 1)(k; 3, 1). Note that the 
edge (k; 1, 1)(k; 1, 2) may be or may not be 
used depending on the length of the desired 
cycle. 

The used external mesh-links in layer 3 of 
PM[n] are marked as follows: 
1. Column edges: (7, 2)(7, 3), (8, 2)(8, 3), (1, 

4)(1, 5), (2, 4)(2, 5), (7, 6)(7, 7), (8, 6)(8, 7). 
2. Row edges: All external mesh-links in rows 

are used but (3; 2, 1)(3; 3, 1). The gray line is 
the edge (3; 1, 1)(3; 1, 2). 

Since the node (k; x, y) of PM[n] can 
represent nodes (k; 2k–y+1, x), (k; 2k–x+1, 
2k–y+1), and (k; y, 2k–x+1) by clockwise rotating 
it with 90°, 180°, and 270°, respectively. 
Therefore, we can define a mapping function τ 
to map a used external mesh-link, which is the 
faulty edge, into an unused external mesh-link. 
Without loss of generality, we assume that the 

used external mesh-link is e = (k; x1, y1)(k; x2, y2) 
in layer k of PMe[n]. The mapping function τ is 
defined according to the location of e as follows: 
Case 1. (e is in a column): τ((k; x1, y1)(k; x2, y2)) 

= (k; 2k–x1+1, 2k–y1+1)(k; 2k–x2+1, 2k–y2+1) 
Case 2. (e is in a row and x1 = 4i–2, x2 = 4i–1 for 

i=1..k–1): τ((k; x1, y1)(k; x2, y2)) = (k; y1, 
2k–x1+1)(k; y2, 2k–x2+1) 

Case 3. (e is in a row and x1 = 4i, x2 = 4i+1 for 
i=1..k–2): τ((k; x1, y1)(k; x2, y2)) = (k; 2k–y1+1, 
x1)(k; 2k–y2+1, x2) 

In Case 1, the faulty edge e is in a column 
and can be mapped to an unused edge by 
clockwise rotating it with 180°. Case 2 and Case 
3 are concerned about the faulty edge e in a row. 
If x1 is not a multiple of 4 the mapping function 
do the clockwise rotation with 270° in Case 2. 
Otherwise, x1 is a multiple of 4; the faulty edge e 
is clockwise rotated with 90° in Case 3. Next, we 
show that the pyramid network with one faulty 
edge is a pancyclic network. 

Theorem 5.1. PMe[n] is pancyclic. 

Proof: Those links in pyramid networks are 
divided into three parts: layer links, external 
mesh-links, and internal mesh-links. In case of 
the faulty edge e is one of the used edges for 
constructing cycles in PM[n], then we prove this 
theorem as follows: 
Case 1. (e is a layer-link): By the algorithm in 

[21], we know that just two layer-links of two 
consecutive layers need to be used to construct 
cycles in PM[n]. Clearly, we can clockwise 
rotate the coordinate with 90, 180°, or 270 to 
avoid the faulty edge.  

Case 2. (e is an external mesh-link): The faulty 
edge can be mapped to an unused external 
mesh-link by the mapping function τ. 

Case 3. (e is an internal mesh-link): Let node f = 
(k–1; u, v) be the common parent of the two 
endnodes of e. If k is 1 then the faulty edge e 
can be easily mapped to one of the three 
unused mesh-links. Otherwise, reconstruct the 
cycles to avoid e by removing e, adding edges 
(k; x1, y1)(k–1; u, v) and (k–1; u, v)(k; x2, y2), 
and then consider a faulty node f at layer k–1. □ 

6. Concluding Remarks 

In this Paper, we developed a pair of 
algorithms to construct all cycles of length l, 
3≤l≤5×4k–1 in any two consecutive layer k and 
layer k–1 of the n-layer pyramid network where 
2≤k≤n. By combining these two algorithms, we 
prove that the pyramid networks with one node 
or one edge fault still hold the pancyclic 
property unless the one-layer pyramid network 
with the apex fault. In other words, we can 



 

embed all cycles into pyramid networks 
regardless of whether there is one faulty node 
(edge) or not. 
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