

金字塔網路於一個點或邊損壞時的泛迴路性質

Pancycles of the Pyramid Network with One Node or One Edge Fault

Yi-Ching Chen

National Chi Nan University
Department of Computer Science and

Information Engineering

s0321511@ncnu.edu.tw

Dyi-Rong Duh

National Chi Nan University
Department of Computer Science and

Information Engineering

drduh@ncnu.edu.tw

摘要

本篇論文在金字塔網路損壞一個點或邊

時，提出一對演算法來改進先前的演算法，除

了壞點是在一層金字塔網路的峯點外，其餘皆

能建構出任意長度的迴路。換句話說，在某種

限制下，金字塔網路於損壞一個點或邊的情形

之下，仍然能夠嵌入所有可能長度的迴路。

關鍵詞：金字塔網路、互連網路、泛迴路、容

錯性。

Abstract

In this paper, we derive a pair of algorithms
to improve the algorithm proposed by Wu in
2001 such that cycles of all possible lengths in
the pyramid network with one faulty node or
edge can be constructed except the apex is the
faulty node in the one-layer pyramid network. In
other words, under some constraint, pyramid
networks with one node or edge fault can still
embed cycles of all possible lengths.

Keywords: Pyramid networks, interconnection
networks, pancycles, fault tolerance.

1. Introduction

The topological structure of an
interconnection network can be modeled by a
graph [20]. The vertices and edges in graphs
correspond to components and links in
interconnection networks, respectively.
Throughout this paper, we use network and
graph, processor (node) and vertex, and link and
edge, interchangeably. In the design and
implementation of communication networks,
parallel computing and VLSI, network
topologies are always used to analysis the

performance of networks.

Various performance measures can be used
to evaluate a network topology such as degree,
transmission delay, diameter, fault tolerance,
routing function, embeddability, symmetry,
extendability, and layout of VLSI, etc. Ideally,
we want to design a symmetrical, regular,
scalable and reliable network, which has lower
degree, lower transmission delay, small diameter,
easy routing function, and an efficient layout of
VLSI, etc. Unfortunately, there are a lot of
mutually conflicting requirements in designing
the topology of an interconnection network. For
example, a lower degree network usually has a
larger diameter and longer transmission delay.
Therefore, it is not easy to design an optimum
topology with all good properties.

Pyramid networks, suggested by Dyer and
Rosenfeld [9], are well-known networks in
image processing, parallel and network
computing [5], [8], [13], [15], [19]. Up to now,
some pyramid networks have been built such as
Cray T3D and T3E. In image processing [8],
[13], both software structures and hardware
architectures use the pyramid network. In
parallel and network computing [5], [15], [19],
there are many efficient algorithms that are
developed in pyramid computers.

With some special mapping functions, some
networks can be embedded to others [2], [6],
[10], [11], [12], [14], [16]. Therefore, all
algorithms developed in the former also can be
used in the latter. In other words, the latter
network can emulate the former network. The
cycle and path are simplest networks often used
in parallel computing and local area networks.
Cycles and paths are suitable for the
development of simple algorithms. Constructing
cycles of lengths ranging from three to the size
of a graph is the pancyclic problem. This

problem of pyramid networks has been studied
in [21].

Since node or link faults may happen when
a network is put in use, it is very meaningfully to
consider the faulty network. Topological
properties of the faulty networks were
investigated by literatures [2], [7], [11], [12],
[14], [21]. These researches related to the faulty
networks include computing diameter, fault
diameter, and wide diameter, providing routing,
multicasting, broadcasting, and embedding rules,
and so on. We concentrate our attention on the
fault-tolerant embedding cycles in pyramid
networks.

The rest of this paper is organized as
follows: In Section 2, some notations and
definitions of this paper and some theorems
about pancyclic properties of a graph G are
given. The pyramid networks are introduced in
Section 3. In Section 4, we first derive a pair of
algorithms to construct cycles of lengths ranging
from three to 5×4k–1 in two consecutive layers
k-1 and k of the n-layer pyramid network where
2≤k≤n. Then, we combine the algorithms and the
original method proposed in [21] to construct
cycles of all possible lengths of the pyramid
networks with one faulty node. Furthermore, in
Section 5, we show that the pyramid networks
with one faulty edge are still pancyclic. Finally,
this paper is concluded in Section 6.

2. Preliminaries

In this section, we present those basic
definitions in graphs that used in the paper. Also,
some theorems about pancyclic properties of a
graph G are given. We list all fundamental
notations refer to [4], [20].

Definition 2.1. The vertex connectivity (edge
connectivity) of a connected graph G is denoted
by κ(G) (κ'(G)) means that to make the graph G
become disconnected at least κ(G) vertices
((κ'(G)) edges) should be removed.

Definition 2.2. A graph G is bipartite if its
vertex set can be partitioned into two nonempty
subsets X and Y such that each edge of G has one
end in X and the other in Y. A complete bipartite
graph is a bipartite graph such that two vertices
are adjacent if and only if they are in different
subsets. When the complete bipartite graph with
|X| = p and |Y| = q, we denote it by Kp, q.

Definition 2.3. A cycle that contains every
vertex of G exactly once is called Hamiltonian
cycle. A graph is Hamiltonian if it contains a
Hamiltonian cycle.

Definition 2.4. A graph G is pancyclic if it
contains cycles of lengths l for 3≤l≤|V(G)|.

In the following, we list some theorems
about pancyclic properties of a graph G.

Theorem 2.1 [3]. If G is a Hamiltonian graph of
order p and size q ≥ p2/4, then either G is
pancyclic or p is even and G is Kp/2, p/2.

Let deg(v) denote the degree of a vertex v in
graph G, another two theorems related to pan
cyclic problem are state below.

Theorem 2.2 [17]. Let G be a graph of order
n≥3 with a Hamiltonian cycle (v1, v2, …, vn, v1)
where vi.

(1) If deg(v1)+deg(vn) ≥ n, then G is either
pancyclic, bipartite, or missing only an
(n–1)-cycle.

(2) If deg(v1)+deg(vn) > n, then G is pancyclic.

Theorem 2.3 [22]. Let G be a graph of order n
containing a Hamiltonian cycle C. If x, y, and z
are three consecutive vertices on C with
deg(x)+deg(z) > n, then G is pancyclic.

3. Pyramid Networks

The pyramid network is a hierarchy
structure based on mesh networks. So before
introducing the pyramid network, we first
describe the structure of the mesh network. The
mesh network is defined as the Cartesian product
Pm×Pn [20], denoted by M(m, n), where Pm and
Pn are undirected paths with m and n vertices,
respectively. The vertex set of mesh is V(M(m, n))
= {(x, y) | 1≤x≤m, 1≤y≤n}. And the edge set of
mesh is E(M(m, n)) = {(x1, y1)(x2, y2) | |x1–x2| +
|y1–y2| =1}. The maximum degree and minimum
degree of a mesh are four and two, respectively.

We denote the n-layer pyramid network by
PM[n]. Every ith layer of PM[n] is an M(2i, 2i),
for 0≤i≤n. The vertex set of PM[n] is V(PM[n])
= {(k; x, y) | 0≤k≤n, 1≤x≤2k, 1≤y≤2k}. The edge
(k1; x1, y1)(k2; x2, y2) of PM[n] satisfy one of the
following statements:

(1) k1 = k2, |x1 – x2| + |y1 – y2| =1,
(2) k2 = k1 + 1, x1 = x2/2, y1= y2/2.

We call the edge satisfies (1) a mesh-link
and satisfies (2) a layer-link. Let (k1; x1, y1) and
(k1+1; x2, y2) be the two end nodes of a layer-link
in PM[n]. Then, (k1; x1, y1) is the parent of (k1+1;
x2, y2). An internal mesh-link uv represents that
nodes u and v have a common parent. Otherwise,
the rest of the mesh-links are external
mesh-links.

Furthermore, PM[n] can be considered as a

4-ary rooted tree and every node in the same
layer are connected as a mesh [1]. Thus, we have
following properties.

(1) The apex (0; 1, 1) is connected to its four
children. The degree of apex is four.

(2) Every node at a layer 1 to layer n–1 is
connected to one link with the parent, at
most four links with its siblings, and four
links with its children. In this case, the
maximum degree and minimum degree are
nine and seven, respectively.

(3) Every node at layer n is connected to one
link with its parent and at most four links
with its siblings. In this case, the maximum
degree and minimum degree are five and
three, respectively.

(4) |V(PM[n])|=
n
Σ

i=0
4i and |E(PM[n])|=4n+1–2n+2

[21].

With all of theorems described in Section 2,
we cannot examine whether the pyramid
network is a pancyclic graph or not. [18] and [21]
have shown that the pyramid network is a
Hamiltonian graph by constructing a spanning
cycle in it. In [21], Wu also show that PM[n] is
Hamiltonian-connected and pancyclic. By [7],
we know that the vertex connectivity and edge
connectivity of PM[n] is three. And the vertex
connectivity and edge connectivity of cycles
equal to two. Therefore, only one node or one
edge could be failure or the faulty pyramid
network is not a pancyclic network. We will
show that PM[n] with one node or one edge fault
is almost pancyclic in Section 4 and Section 5.

4. Pancycles of Pyramid Networks
with One Node Fault

In the following, any two consecutive
layers k and k–1 of a pyramid network is denoted
by PM[k; k–1], where k≥2. In Subsection 4.1,
we propose a pair of algorithms to construct all
cycles in PM[k; k–1] whose lengths are from
three to the number of its nodes. In Subsection
4.2, we show that PM[k; k–1] with a faulty node
is pancyclic. In Subsection 4.3, we construct all
cycles whose lengths are at most |V(PM[n])|–1 in
PM[n] with a faulty node.

4.1 Pancycles of PM[k; k–1]

We derive a pair of algorithms to construct
all cycles in PM[k; k–1] whose lengths are from
three to the number of its nodes. We name the
pair of algorithms PLPM1 and PLPM2 since
they can construct Pancycles in two consecutive
Layers of PM[n]. Both PLPM1 and PLPM2
input a layer k and a cycle length l, and then can

return a cycle Cl whose length is l for
3≤l≤4k+4k–1= 5×4k–1, where 2≤k≤n. Note that in
the rest of this subsection we use symbol ∪ to
denote union operation of ordering sets.

Algorithm PLPM1(k, l){
Initialization:

Three ordering sets U1(x, y) = {(k; 2x–1, 2y–1),
(k; 2x–1, 2y), (k; 2x, 2y), (k; 2x, 2y–1)}, U2(x, y)
= {(k; 2x, 2y), (k; 2x, 2y–1), (k; 2x–1, 2y–1), (k;
2x–1, 2y)}, and U3(x, y) = {(k; 2x–1, 2y–1), (k;
2x, 2y–1), (k; 2x, 2y), (k; 2x–1, 2y)}.

Two ordering sets U = U1(1, 1) and V = {(k–1;
1, 1)}.
1. l′ = Mul5(l);
2. Let the first element in V be (k–1; x, y).

FOR (|U|+|V| < l′){
2.1 IF (y is odd){

IF (x < 2k-1–1) x = x + 1; U = U ∪ U1(x, y);
IF (x = 2k-1–1) x = x + 1; U = U ∪ U3(x, y);
IF (x = 2k-1) y = y + 1; U = U ∪ U3(x, y);
}// End of IF (y is odd)

2.2 IF (y is even){
IF (x = 1) y = y + 1; U = U ∪ U1(x, y);
IF (1<x≤2k-1) x = x – 1; U = U ∪ U2(x, y);
}// End of IF (y is even)

2.3 V = (k–1; x, y) ∪ V;
}//End of FOR (|U|+|V| < l′).

3. Cl = Output(U, V, l);
}//End of PLPM1

Algorithm PLPM2(k, l){
Initialization:

Three ordering sets U'1(x, y) = {(k; 2x–1, 2y),
(k; 2x–1, 2y–1), (k; 2x, 2y–1), (k; 2x, 2y)}, U'2(x,
y) = {(k; 2x, 2y–1), (k; 2x, 2y), (k; 2x–1, 2y), (k;
2x–1, 2y–1)}, and U'3(x, y) = {(k; 2x, 2y–1), (k;
2x–1, 2y–1), (k; 2x–1, 2y), (k; 2x, 2y)}.

Two ordering sets U = U'3(1, 1) and V = {(k–1;
1, 1)}.
1. l′ = Mul5(l);
2. Let the first element in V be (k–1; x, y).

FOR (|U|+|V| < l′){
2.1 IF (y is odd){

IF (x < 2k-1) x = x + 1; U = U ∪ U'1(x, y);
IF (x = 2k-1) y = y + 1; U = U ∪ U'2(x, y);
}//End of IF (y is odd)

2.2 IF (y is even){
IF (x = 1) y = y + 1; U = U ∪ U'3(x, y);
IF (x = 2) x = x – 1; U = U ∪ U'3(x, y);
IF (2<x≤2k-1) x = x – 1; U = U ∪ U '2(x, y);
}//End of IF (y is even)

2.3 V = (k–1; x, y) ∪ V;
}//End of FOR (|U|+|V| < l′)

3. Cl = Output(U, V, l);
}//End of PLPM2

Function Mul5(l){//normalize l to l′ = 5k, k is a

positive integer.
SWITCH(l mod 5){

Case 0: return l;
Case 1: return l + 4;
Case 2: return l + 3;
Case 3: return l + 2;
Case 4: return l + 1;
}//End of SWITCH(l mod 5)

}//End of Procedure Mul5(l)

Procedure Output(U, V, l){
SWITCH(l mod 5){

Case 0: Do nothing.
Case 1: Delete the first and last three elements

of U.
Case 2: Delete the last three elements of U.
Case 3: Delete the last two elements of U.
Case 4: Delete the last element of U.
}//End of SWITCH(l mod 5)

Output all elements of U and V orderly.
}//End of Procedure Output(U, V, l)

In PLPM1 and PLPM2, two ordering sets U
and V are used to store all nodes whose elements
are needed to form a cycle with length l′.
Initially, U and V have four elements and one
element, respectively. First, we use Function
Mul5 to modify l to l′ such that l′ is a multiple of
5. Then, in each iteration, four elements are
inserted into the rear of U and one element are
inserted into the front of V. Note that the
elements of U and V are in layer k and layer k–1
of PM[n], respectively. The loop doesn't stop
until |U|+|V| = l′. Finally, Procedure Output is
used to output those elements in U and V that are
necessary to form Cl.

By PLPM1 or PLPM2, we can easily obtain
cycles of lengths ranging from 3 to the number
of nodes in the two consecutive layers of
pyramid networks. We have the following
lemma.

Lemma 4.1 . PM[k; k–1], k≥2, of PM[n] is a
pancyclic network.

4.2 Pancycles of PM[k; k–1] with a Faulty Node

In Subsection 4.1, we have already
developed a pair of algorithms PLPM1 and
PLPM2 to construct all cycles of lengths ranging
from 3 to 5×4k–1 in PM[k; k–1]. These two
algorithms are very similar except the rules they
add the nodes that Cl needs. For example,
PLPM1 appends U1(x, y) and PLPM2 appends
U '1(x, y) to the rear of U in the same condition.
In this subsection, we'd like to show that the
faulty node at layer k of PM[k; k–1] could be
avoided by combining PLPM1 with PLPM2. In
order to avoid the faulty node, we propose a new

algorithm to construct Pancycles on two
consecutive Layers k and k+1 of PM[n] with one
Faulty node at layer k (PLPMF for short). The
proposed algorithm PLPMF is also shown how
to combine PLPM1 with PLPM2 to establish a
cycle in PM[k; k–1].

As shown in [21], the coordinate of every
node in PM[n] can be clockwise rotated with 90°,
180°, or 270°. If we clockwise rotate the node (k;
x, y) with 90°, 180°, or 270°, then (k; x, y)
becomes (k; 2k–y+1, x), (k; 2k–x+1, 2k–y+1), or
(k; y, 2k–x+1), respectively. Conversely, the node
(k; x, y) can stand for nodes (k; 2k–y+1, x), (k;
2k–x+1, 2k–y+1), and (k; y, 2k–x+1). Let f=(k; x, y)
be the faulty node and p=(k–1; u, v) its parent
where 1≤x, y≤2k and 1≤u, v≤2k–1. Then five cases
should be discussed according to the coordinate
of f. There are four cases for 1 ≤ x, y ≤ 2 and one
case for 3 ≤ x ≤ 2k–2 and 1 ≤ y ≤ 2k. We do not
care the nodes of 1 ≤ x ≤ 2 and 1 ≤ y ≤ 2k or the
nodes of 2k–1 ≤ x ≤2k and 1 ≤ y ≤ 2k since they
can be mapped to the nodes that must be cared.
Algorithm PLPMF is given below.

Algorithm PLPMF(k, f, l){
/* Input: a layer k where 2≤k≤n, a faulty node f

= (k; x, y), and a length l of a cycle.
 Output: a cycle Cl. */
1. Apply PLPM1(k, l) but the elements of U and

V are not outputted. If f ∉ U then output all
elements of U and then all elements of V, and
exit the procedure.

2. Apply PLPM2(k, l) but the elements of U and
V are not outputted. If f ∉ U then output all
elements of U and then all elements of V, and
exit the procedure.

3. Case 1. (x=1 and y=1): Apply PLPM1(k, l+1)
but the elements of U and V are not
outputted. Remove f from U and then output
all elements of U and then all elements of V.

Case 2. (x=2 and y=2): Apply PLPM1(k, l+1)
but the elements of U and V are not
outputted. Let U=U–U1(1, 1) and then let
U={(k; 1, 1), (k; 2, 1)}∪U. If l mod 5 ≠ 0
then let U={(k; 1, 2)}∪U. Output all
elements of U and then all elements of V.

Case 3. (x=2 and y=1): Apply PLPM2(k, l+1)
but the elements of U and V are not
outputted. Remove f from U and then output
all elements of U and then all elements of V.

Case 4. (x=1 and y=2): Apply PLPM2(k, l+1)
but the elements of U and V are not
outputted. Let U=U–U '3(1, 1) and then let
U={(k; 2, 1), (k; 2, 2)}∪U. IF l mod 5 ≠ 0
then let U={(k; 1, 1)}∪U. Output all
elements of U and then all elements of V.

Case 5. (3≤x≤2k–2 and 1≤y≤2k): Apply
PLPM1(k, 5×4k–1) but the elements of U and

V are not outputted and let U'=U and V'=V.
Apply PLPM2(k, 5×4k–1) but the elements of
U and then all elements of V are not
outputted.
Subcase 5.1. (x=2u–1 and y=2v–1, or x=2u

and y=2v): Remove f and all elements
after f from U and remove all elements
before p from V. Remove f and all
elements before f from U' and remove p
and all elements after p from V'. Let
U=U∪U' and V=V∪V'. Output all
elements of U and then all elements of V.

Subcase 5.2. (x=2u and y=2v–1, or x=2u–1
and y=2v): Remove f and all elements
after f from U' and remove p and all
elements before p from V'. Remove f and
all elements before f from U and remove
all elements after p from V. Let U=U'∪U
and V=V'∪V. Output all elements of U
and then all elements of V.

}//End of PLPMF

The first two steps of Algorithm PLPMF
are used to form Cls that do not contain f in
PM[k; k–1] without any faulty node. In the third
step of Algorithm PLPMF, five cases are
discussed. Cases 1 and 3 apply PLPM1 and
PLPM2 with length l+1, respectively. Since f is
the first element of U. Therefore, after removing
f from U, the cycle of length l can be easily
established. In Case 2 (Case 4), after applying
PLPM1 (PLPM2) with length l+1, we first
remove four nodes from U and then insert two
nodes into the front of U for reconstructing the
cycle to avoid the faulty node f. If the length l is
not a multiple of 5, one more node has to be
inserted into the front of U for matching |U|+|V|
= l. Case 5 is divided into two subcases and both
of them apply PLPM1 and PLPM2 with l=5×4k–1
first. Two ordering sets U' and V' (U and V) are
generated by PLPM1 (PLPM2). Base on the
coordinates of the faulty node f and its parent p,
we delete all nodes in U', V', U, and V that are
not necessary to construct the desired cycle.
After combining U (V) with U' (V'), Cl can be
formed by outputting the all elements of U and V.
With the add of PLPMF, we can constructed all
cycles of lengths range from three to 5×4k–1–1 in
PM[k; k–1] with one faulty node f = (k; x, y). By
Algorithm PLPMF, we have the following
Lemma.

Lemma 4.2. PM[k; k–1] of PM[n], where 2≤k≤n,
with one faulty node is pancyclic.

4.3 Pancycles of PM[n] with One Faulty Node

For convenience, let PMf[n] or PM(k; x, y)[n]
denote PM[n] with one faulty node f=(k; x, y). In
this subsection, we will show PM(k; x, y)[n] is

pancyclic, where 0 ≤ k ≤ n, except PM(1; 0, 0)[1].
Due to PM(1; 0, 0)[1] does not contain C4. Thus
PM(1; 0, 0)[1] is not pancyclic. Obviously, PM[1]
with f ≠ (1; 0, 0) contains C3 and C4 , and is
pancyclic. Therefore, we only need to construct
all cycles of lengths ranging from three to
|V(PM(n))|–1 in PMf[n] for n ≥ 2. We first
provide an algorithm to construct Cl in PM(k; x,

y)[n] for k ≥ 3 and 3 ≤ l ≤ |V(PM(n))|–1. Since the
algorithm can construct Pancycles in PM[n]
with one node Fault, so it can be named PPMF.
For 0 ≤ k ≤ 2 ≤ n, we also propose an algorithm
PPMF1 to construct Cl in PM(k; x, y)[n] where
3≤l≤|V(PM(n))|–1.

By the result in Subsection 4.2, cycles of
lengths ranging from 3 to 5×4k–1–1 can be
constructed in PM[k; k–1] with one faulty node.
Wu’s algorithm can construct all cycles of
lengths ranging from 3 to |V(PM(n))| in PM[n]
without fault [21]. According to lengths of
cycles, four cases are discussed in Algorithm
PPMF. Algorithm PPMF is now given.

Algorithm PPMF(l, f, n){// PM(k; x, y)[n] for k ≥
3
/* Input: The cycle length l, where 3 ≤ l ≤

|V(PM[n])|–1, the faulty node f = (k; x,
y), the layer n, 3 ≤ k ≤ n.

 Output: The cycle Cl. */

Case 1. (3 ≤ l ≤
k-1
Σ

i=0
4i = 4k−1

3): Apply Wu’s

algorithm to form Cl.

Case 2. (
k-1
Σ

i=0
4i < l ≤

k
Σ

i=0
4i–1): Construct a

Hamiltonian cycle of length
k-2
Σ

i=0
4i in PM[k–2]

by applying Wu’s algorithm. Apply PLPMF(k, f,

l–
k-2
Σ

i=0
4i) to construct a cycle of length l–

k-2
Σ

i=0
4i.

Merge these two cycles to form Cl by removing
edges (k–1; 2, 1)(k–1; 3, 1) and (k–2; 1, 1)(k–2;
2, 1), and then adding edges (k–2; 1, 1)(k–1; 2,
1) and (k–2; 2, 1)(k–1; 3, 1).

Case 3. (l =
k
Σ

i=0
4i): Construct a cycle of length

k
Σ

i=0
4i–1 by the steps of Case 2. Remove the

apex (0; 1, 1) from the cycle by removing
edges (0; 1, 1)(1; 1, 2) and (0; 1, 1)(1; 2, 1),
and then adding the edge (1; 1, 2)(1; 2, 1).
Construct a path with 2 nodes between (k+1;
2k+1, 2) and (k+1; 2k+1, 3) by applying Wu’s
algorithm. Merge the cycle and the path to
form Cl by removing the edge (k; 2k, 1)(k; 2k, 2),
and then adding edges (k; 2k, 1)(k+1; 2k+1, 2)
and (k; 2k, 2)(k+1; 2k+1, 3).

Case 4. (
k
Σ

i=0
4i < l ≤ 4n): Construct a cycle of

length
k
Σ

i=0
4i–1 by the steps of Case 2. Construct

a path with l–
k
Σ

i=0
4i+1 nodes between nodes (k+1;

2k+1, 1) and (k+1; 2k+1, 3) ((k+1; 2k+1, 2) and
(k+1; 2k+1, 3)) by applying Wu’s algorithm for

l–
k
Σ

i=0
4i+1 is odd (even). Merge the cycle and

the path to form Cl by removing the edge (k; 2k,
1)(k; 2k, 2), and then adding edges (k; 2k,
1)(k+1; 2k+1, 1) and (k; 2k, 2)(k+1; 2k+1, 3) or (k;
2k, 1)(k+1; 2k+1, 2) and (k; 2k, 2)(k+1; 2k+1, 3)

for l–
k
Σ

i=0
4i+1 is odd (even).

}//End of PPMF

In Algorithm PPMF, the cycle of length

l<
k-1
Σ

i=0
4i can be constructed by applying Wu’s

algorithm as shown in Case 1. In Case 2, we
construct two cycles by applying two different

algorithms. Since l–
k-2
Σ

i=0
4i > 15 and the layer k of

PM(k; x, y)[n] contains the edge (k–1; 2, 1)(k–1; 3,
1) for k ≥ 3, so these two cycles can be merged
to form Cl. Case 3 and Case 4 are very similar
except Case 3 need to remove the apex such that
Cl can be constructed. Also the cycles
constructed by PLPM1 and PLPM2 contain the
edge (k; 2k, 1)(k; 2k, 2). Therefore, the
constructed cycles and path can be merged to
form Cl.

Next, we explain how to construct Cl in
PM(k; x, y)[n] where 3≤l≤|V(PM(n))|–1 for 0 ≤ k ≤
2 ≤ n. Base on the value of k, three cases are
considered in Algorithm PPMF1. Due to the
node (k; x, y) can represent nodes (k; 2k–y+1, x),
(k; 2k–x+1, 2k–y+1), and (k; y, 2k–x+1). Without
loss of generality, assume that the faulty node f is
(1; 1, 1) for k=1 and f is (2; x, y), 1 ≤ x, y ≤ 2, for
k=2. We give Algorithm PPMF1 as follows.

Algorithm PPMF1(l, f, n){// PM(k; x, y)[n] for 0 ≤
k ≤ 2≤ n
/* Input: The cycle length l, where 3 ≤ l ≤

|V(PM[n])|–1, the faulty node f = (k; x,
y), the layer n, 2 ≤ k ≤ n.

 Output: The cycle Cl. */

Case 1. (k = 0): Construct a cycle of length l (
2
Σ

i=1

4i) in PM(0; 1, 1)[2] by applying PLPM1 for l≤
2
Σ

i=1

4i (l>
2
Σ

i=1
4i). If l is at most

2
Σ

i=1
4i then let Cl be

the constructed cycle and exit the procedure. If

l=
2
Σ

i=1
4i+1 then let l = l+1 and delete the node (2;

1, 1) from Cl by removing edges (1; 1, 1)(2; 1,
1) and (2; 1, 1)(2; 1, 2), and adding the edge (1;

1, 1)(2; 1, 2). Construct a path with l–
2
Σ

i=1
4i

nodes between (3; 23, 1) and (3; 23, 3) ((3; 23, 2)
and (3; 23, 3)) by applying Wu’s algorithm for

l–
2
Σ

i=1
4i is odd (even). Merge the cycle and the

path to form the desired cycle by removing the
edge (2; 22, 1)(2; 22, 2), and then adding edges
(2; 22, 1)(3; 23, 1) and (2; 22, 2)(3; 23, 3) ((2; 22,

1)(3; 23, 2) and (2; 22, 2)(3; 23, 3)) for l–
2
Σ

i=1
4i is

odd (even).
Case 2. (k = 1): Construct C3 (C4) which contains

the node (1; 2, 1) in PM(1; 1, 1)[1] for l is odd
(even). If l is at most 4 then let Cl be the
constructed cycle and exit the procedure. If l=5
then let l = l+1 and delete the node (1; 1, 2)
from C4 by removing edges (0; 1, 1)(1; 1, 2)
and (1; 1, 2)(1; 2, 2), and adding the edge (0; 1,
1)(2; 1, 2). Construct a path with l–4 nodes
between (2; 22, 1) and (2; 22, 3) ((2; 22, 2) and
(2; 22, 3)) by applying Wu’s algorithm for l–4
is odd (even). Merge the cycle and the path to
form the desired cycle by removing the edge (1;
2, 1)(1; 2, 2), and then adding edges (1; 2, 1)(2;
22, 1) and (1; 2, 2)(2; 22, 3) ((1; 2, 1)(2; 22, 2)
and (1; 2, 2)(2; 22, 3)) for l–4 is odd (even).

Case 3. (k = 2): Construct a cycle of length l–1

(
2
Σ

i=1
4i–1) in PM[2; 1] with f=(0; 1, 1) by

applying PLPMF for l≤
2
Σ

i=1
4i (l>

2
Σ

i=1
4i). If l≠

2
Σ

i=1
4i+1 then add the apex (0; 1, 1) into the cycle
by removing the edge (1; 1, 1)(1; 1, 2) and then
adding edges (0; 1, 1)(1; 1, 1) and (0; 1, 1)(1; 1,

2). If l is at most
2
Σ

i=1
4i then let Cl be the

constructed cycle and exit the procedure. If

l=
2
Σ

i=1
4i+1 then let l = l+1. Construct a path with

l–
2
Σ

i=1
4i nodes between (3; 23, 1) and (3; 23, 3)

((3; 23, 2) and (3; 23, 3)) by applying Wu’s

algorithm for l–
2
Σ

i=1
4i is odd (even). Merge the

cycle and the path to form the desired cycle by
removing the edge (2; 22, 1)(2; 22, 2), and then
adding edges (2; 22, 1)(3; 23, 1) and (2; 22, 2)(3;
23, 3) ((2; 22, 1)(3; 23, 2) and (2; 22, 2)(3; 23, 3))

for l–
2
Σ

i=1
4i is odd (even).

}//End of PPMF1

Note that we cannot merge a node in layer
k+1 of PM(k; x, y)[n] with a cycle whose nodes are
all in layer at most k. Thus we have to take care

l=5 (l=
2
Σ

i=1
4i+1) for k=1 (k=0, 2) in Algorithm

PPMF1. With the aid of Algorithm PPMF and
Algorithm PPMF1, we know that PM(k; x, y)[n]
contains all cycles of lengths ranging from 3 to
|V(PM[n])|–1 where n ≥ 2. According to the
discussion above, we have the following
theorem.

Theorem 4.1. PM(k; x, y)[n] is pancyclic except
PM(1; 0, 0)[1] where 0 ≤ k ≤ n.

5. Pancycles of the Pyramid Networks
with One Edge Fault

In this section, we use the result in
Subsection 4.2 to show how to construct all
cycles of lengths ranging from three to
|V(PM[n])| in PM[n] with one edge fault. Let
PMe[n] or PM(k; x1, y1)(k; x2, y2)[n] denote PM[n]
with a faulty edge e = (k; x1, y1) (k; x2, y2). And
now we discuss the pancyclic problem of PMe[n].
As described in Section 3, all links in pyramid
networks are divided into three parts: external
mesh-links, internal mesh-links, and layer-links.
External mesh-links are used in [21] to construct
all cycles ranging from three to |V(PM(n))| are
called used external mesh-link. Clearly, if the
faulty edge e = (k; x1, y1) (k; x2, y2) is an external
mesh-link where 2 ≤ k ≤ n, we can mark them as
follows.
1. Column (x1= x2): (k; 2k–1, 1)(k; 2k–1, 2), (k; 2k,

1)(k; 2k, 2), (k; 1, 4i)(k; 1, 4i+1), (k; 2, 4i)(k; 2,
4i+1), and (k; 2k–1, 4i+2)(k; 2k–1, 4i+3), (k; 2k,
4i+2)(k; 2k, 4i+3) for i = 1..k–2. Note that only
two external mesh-links (2; 3, 1)(2; 3, 2) and
(2; 4, 1)(2; 4, 2) in columns are used if k = 2.

2. Row (y1= y2): All external mesh-links in rows
are used but (k; 2, 1)(k; 3, 1). Note that the
edge (k; 1, 1)(k; 1, 2) may be or may not be
used depending on the length of the desired
cycle.

The used external mesh-links in layer 3 of
PM[n] are marked as follows:
1. Column edges: (7, 2)(7, 3), (8, 2)(8, 3), (1,

4)(1, 5), (2, 4)(2, 5), (7, 6)(7, 7), (8, 6)(8, 7).
2. Row edges: All external mesh-links in rows

are used but (3; 2, 1)(3; 3, 1). The gray line is
the edge (3; 1, 1)(3; 1, 2).

Since the node (k; x, y) of PM[n] can
represent nodes (k; 2k–y+1, x), (k; 2k–x+1,
2k–y+1), and (k; y, 2k–x+1) by clockwise rotating
it with 90°, 180°, and 270°, respectively.
Therefore, we can define a mapping function τ
to map a used external mesh-link, which is the
faulty edge, into an unused external mesh-link.
Without loss of generality, we assume that the

used external mesh-link is e = (k; x1, y1)(k; x2, y2)
in layer k of PMe[n]. The mapping function τ is
defined according to the location of e as follows:
Case 1. (e is in a column): τ((k; x1, y1)(k; x2, y2))

= (k; 2k–x1+1, 2k–y1+1)(k; 2k–x2+1, 2k–y2+1)
Case 2. (e is in a row and x1 = 4i–2, x2 = 4i–1 for

i=1..k–1): τ((k; x1, y1)(k; x2, y2)) = (k; y1,
2k–x1+1)(k; y2, 2k–x2+1)

Case 3. (e is in a row and x1 = 4i, x2 = 4i+1 for
i=1..k–2): τ((k; x1, y1)(k; x2, y2)) = (k; 2k–y1+1,
x1)(k; 2k–y2+1, x2)

In Case 1, the faulty edge e is in a column
and can be mapped to an unused edge by
clockwise rotating it with 180°. Case 2 and Case
3 are concerned about the faulty edge e in a row.
If x1 is not a multiple of 4 the mapping function
do the clockwise rotation with 270° in Case 2.
Otherwise, x1 is a multiple of 4; the faulty edge e
is clockwise rotated with 90° in Case 3. Next, we
show that the pyramid network with one faulty
edge is a pancyclic network.

Theorem 5.1. PMe[n] is pancyclic.

Proof: Those links in pyramid networks are
divided into three parts: layer links, external
mesh-links, and internal mesh-links. In case of
the faulty edge e is one of the used edges for
constructing cycles in PM[n], then we prove this
theorem as follows:
Case 1. (e is a layer-link): By the algorithm in

[21], we know that just two layer-links of two
consecutive layers need to be used to construct
cycles in PM[n]. Clearly, we can clockwise
rotate the coordinate with 90, 180°, or 270 to
avoid the faulty edge.

Case 2. (e is an external mesh-link): The faulty
edge can be mapped to an unused external
mesh-link by the mapping function τ.

Case 3. (e is an internal mesh-link): Let node f =
(k–1; u, v) be the common parent of the two
endnodes of e. If k is 1 then the faulty edge e
can be easily mapped to one of the three
unused mesh-links. Otherwise, reconstruct the
cycles to avoid e by removing e, adding edges
(k; x1, y1)(k–1; u, v) and (k–1; u, v)(k; x2, y2),
and then consider a faulty node f at layer k–1. □

6. Concluding Remarks

In this Paper, we developed a pair of
algorithms to construct all cycles of length l,
3≤l≤5×4k–1 in any two consecutive layer k and
layer k–1 of the n-layer pyramid network where
2≤k≤n. By combining these two algorithms, we
prove that the pyramid networks with one node
or one edge fault still hold the pancyclic
property unless the one-layer pyramid network
with the apex fault. In other words, we can

embed all cycles into pyramid networks
regardless of whether there is one faulty node
(edge) or not.

Acknowledgements

This work was supported in part by the
National Science Council under grant
NSC-91-2213-E-260-003-, Taiwan, Republic of
China.

References

[1] C.C. Aggarwal, N. Jain and P. Gupta, “An
efficient selection algorithm on the
pyramid,” Information Processing Letters,
vol. 53, pp. 37-37, 1995.

[2] D.R. Avresky, “Embedding and
reconfiguration of spanning trees in faulty
hypercubes,” IEEE Transactions on Parallel
and Distributed Systems, vol. 10, no. 3, pp.
211-222, 1999.

[3] J.A. Bondy, “Pancyclic graphs,” Journal of
Combinatorial Theory, vol. 11B, pp. 80-84,
1971.

[4] R. Balakrishnan and K. Ranganathan, A
Textbook of Graph Theory, Springer, 1999.

[5] L. Cinque and G. Bongiovanni, “ Parallel
prefix computation on a pyramid computer,”
Pattern Recognition Letter, vol. 16, pp.
19-22, 1995.

[6] Y.W. Chen and K.L. Chung, “A parallel
approach for embedding large pyramids into
smaller hypercubes with load balancing,”
Journal of Information Science and
Engineering, vol. 16, pp. 117-126, 2000.

[7] F. Cao, D.Z. Du, D.F. Hsu, and S.H. Teng.
“Fault tolerance properties of pyramid
networks,” IEEE Transactions on
Computers, vol. 48, no. 1, 1999.

[8] R. Cipher and H.L.G. Sanz, “SIMD
architectures and algorithms for image
processing and computer vision,” IEEE
Transactions on Acoustic, Speech, and
Signal processing, vol. 37, pp. 2158-2174,
1989.

[9] Dyer , C.R., and Rosenfeld, A., “Triangle
cellular automata,” Information and Control,
vol.48, pp.54-69, 1981.

[10] Z. Guo and R.G. Melhem, “Embedding
binary X-trees and pyramids in processor
array with spanning buses,” IEEE

Transaction on Parallel and Distributed
System, vol. 5, no. 6, pp. 664-672, 1994.

[11] S.Y. Hsieh, G.H. Chen, and C.W. Ho,
“Longest fault-free paths in star graphs with
vertex faults,” Theoretical Computer
Science, vol. 262, no. 1-2, pp. 215-227,
2001.

[12] S.Y. Hsieh, C.W. Ho, and G.H. Chen,
“Longest fault-free paths in star graphs with
edge faults,” IEEE Transactions on
Computers, vol. 50, no. 9, pp. 960-971,
2001.

[13] J.F. Jenq and S. Sahni, “Image shrinking
and expanding on a pyramid,” IEEE
Transactions on Parallel and Distributed
System, vol. 4, no. 4, 1993.

[14] R.S. Lo and G.H. Chen, “Embedding
longest fault-free paths in arrangement
graphs with faulty vertices,” Networks, vol.
37, no. 2, pp. 84-93, 2001.

[15] M.J. Quinn, Design Efficient Algorithms for
parallel Computers, New York,
McGraw-Hill, 1987.

[16] C.K.Y. Ng, L.K.L. Pun, D.M.C. Ip, M.
Hamdi, and I. Ahmad, “Embedding
pyramids into 3D meshes,” Journal of
Parallel and Distributed Computing, vol. 36,
pp. 173-184, 1996.

[17] E. Schmeichel and S.L. Hakimi, “A cycle
structure theorem for hamiltonian graphs,”
Journal of Combinatorial Theory, vol. 45,
pp. 99-107, 1988.

[18] H. Sarbazi-Azad, M. Ould-Khaoua and L.M.
Mackenzie, “Algorithmic construction of
hamiltonians in pyramids,” Information
Processing Letters, vol. 80, pp. 75-79, 2001.

[19] H. Senoussi and A. Saoudi, “A quadtree
algorithm for template matching on a
pyramid computer,” Theoretical Computer
Science, vol. 136, pp. 387-417, 1994.

[20] D.B. West, Introduction to Graph Theory,
Second Edition, Prentice-Hall, 2001.

[21] R.Y. Wu, Hamiltonianicity of pyramid
networks, Master Thesis, National Chi Nan
University, 2001.

[22] S.M. ZHANG, “Pancyclism and
bipancyclism of hamiltonian graphs,”
Journal of Combinatorial Theory, vol. 60,
pp. 159-168, 1994.

