

Design of an Integrated Development Environment for the
Voice Browsing System

Liang-Teh Lee

Department of Computer Science and
Engineering

Tatung University
ltlee@cse.ttu.edu.tw

Ying-Chieh Huang
Chunghwa Telecom Co., Ltd. Data
Communication Business Group

jackyhua@cht.com.tw

Abstract

To the designer of the voice service
applications, an appropriate integrated
development environment (IDE) for testing,
debugging and simulation is a very important
tool. For instance, to the interactive voice
response (IVR) related services, the IDE will
make the development of the voice web pages
as simple as the development of the Internet
web pages. By applying the IDE of the
VoiceViewer, either a veteran or a novice can
develop the VoiceXML easily, the development
efficiency can thus be improved significantly.
The core of the IDE is a mechanism of the
voice browsing, which is the pivot of the entire
voice flow. In this paper, we propose a
framework and mechanism of the IDE for
constructing a voice web browsing system.
Many operating systems are collocated with PC,
however, most of them lack of an appropriate
voice web page browsing system. In order to
solve the problem, a voice web browsing
system framework for operating system is
proposed. The proposed framework is portable
and expandable, it can be applied to various
operation system platforms easily.
Keyword: Voice Service Environment, IDE,

 IVR

1. Introduction

The Internet is becoming more popular and
convenient. Most people can acquire abundant
information from the Internet through the
browser of the Desktop PC (Personal
Computer). Thus, to provide an IVR
(Interactive Voice Response) mechanism of the
telephone for user to browse the Internet is
quite important. The purpose of the VoiceXML
(Voice eXtensible Markup Language) is to
bring the Internet architecture to the telephone.
By using the VoiceXML, user can develop web
pages of voice framework as simple as coding
the HTML

web pages[1]. Currently, however, most
computer systems lack of on-line simulation
tools for Chinese IVR. Though the voice
browsing system can access web pages directly,
the Chinese development tools with on-line
simulation options have not been included yet
[2]. Thus, it is worth to develop a Chinese voice
browsing system and Debug/Test Tools for
improving development and browsing
interfaces of the VoiceXML.

The rest of the paper is organized as
follows. We will introduce the properties and
comparisons of the voice web browsing
systems, and then probe into theory, foundation
and development of voice web browsing
systems in Section 2. Based on the observed
and analyzed results in Section 2, Section 3
defines the required modules of the proposed
system framework, and describes the properties
of each module. In this Section, we also analyze
each function of the proposed voice browsing
system, and build the components of the
browsing system according to the previous
foundation, so as to construct the voice web
browsing system framework. Using PC as the
implement platform, in Section 4, a PC-Based
voice web browsing system framework is
presented. The comparisons of the proposed
system with other system are also made in this
Section. Section 5 addresses the conclusions of
this paper and the possible future works in this
area.

2. Background

2.1 The Core of Speech Application
 Technique

The Voice Application Technology is an
application technique that enables the use of
telephone or mobile phone, PC, PDA and other
intellectual machines through the ASR, speech
synpaper interactive techniques, voice browsing,
and intellectual message processing techniques
to visit the Internet for implementing personal
services and commercial services. The voice
application technique which consists of speech

(ASR and TTS), voice browsing, and
intellectual text message processing techniques,
has become a complete application technique,
and is built in accordance with existing
standards of related techniques. The voice
application technique is a bridge that links
Public Switched Telephone Network (PSTN),
with speech as the principal core, and the
Internet, with data as the principal core. The
telephone and mobile have become information
processing terminals for users to communicate
in natural language. The speech application
technique allows communication among
machines and remote speech servers in the form
of dialog for people to request machine services
in voice.

Natural voice interaction has also other
advantages. Users do not have to fill up a web
form or use a keyboard to enter their names or
e-mail addresses. Regarding keyword capture
and natural voice processing technology, users
can easily use their customized interface and
say a word such as “台積電” and the computer
can respond “買進 43塊 5毛…”.

2.2 The Network and Data

Voice browsing forms a bridge between the
network and voice communications. The
Internet explosion is basically built on the
success of web browsing. The effective
protocol communications between
Client/Server architecture, HTML markup
language, and http have given the Internet a
strong distributed/concentrated query structure
as well as a simplified application development
mechanism. It can be said that browsing is the
core of the Internet. Voice applications have
been previously simplified with closed
interaction. Data originally come from
pre-recorded messages while operating
procedures use simple keypad menus. The
ability to distinguish and integrate voice that
allows human-machine interaction is becoming
more mature.

2.3 Voice Browsing, Debugging, and
Testing Tools

Tools such as VOICEXML BUILDER [3] and
V-Builder 1.2 [4] are not enough for browsing,
debugging, and testing. Moreover, they do not
support Chinese language. Currently,
development problems voiced out in
VoiceXML Forum are shown in Figure 2.1 [5].
The figure shows that in terms of software tools,

those that help developers to improve coding
efficiency and definition are enumerated as
follows:

Figure 2.1: The VoiceXML-Related Tools

 Survey

Debug/Test Tools and Syntax Checkers/Editors
are the most useful. Since current local
industries do not have these two VoiceXML
Chinese language development tools, the design
in this paper is starting from these two so as to
improve the problems involved in development
and testing.

3. VoiceViewer: IDE for the Voice
Browsing System

3.1 Integrated VoiceXML Voice
Service Environment

The increasing of the people’s outdoors
activities and the advances of the technology
have spurred development of various types of
mobile devices. However, few are talking about
voice browsing portals. Thus, there is a great
need for designing an integrated VoiceXML
voice operating environment. Voice services
need an ideal operating environment so that all
its functions can be used. We have designed an
integrated VoiceXML voice service
environment as shown in Figure 3.1. The
environment includes a voice browsing system
which consists of six main parts, Voice Server,
TTS Server, ASR Server, Web Server, VXML
Interpreter, and VXML Generator Module. The
idea behind this operating environment is that,
aside from providing plain old telephone
service (POTS), it also offers IP-phone, smart
phone, and tablet PC services.

PSTN

Telephone

Internet

Web Server

DB

Mobile

TTS Server

ASR Server

Voice Server

Content Provider

 VXML
Interpreter

Smart Phone

TablePC

1 2 3

4 5 6
7 8 9

* 8 #

IP-Phone

Figure 3.1: Integrated VoiceXML voice service

To the designer of the voice service

applications, a development system with the
above functions is required. Therefore, we
implement the system by simulating the above
functions using the functional diagram as
shown in Figure 3.2. The system is an
integrated development environment for the
voice browsing system, called VoiceViewer. In
the next section, the VoiceViewer Components
and the VXI core will be discussed in detail.

START

TTS

VXML Parser

Open URL/
Local File

VXI Core

Function
Decision

User

Initialization

Run VXML
Document

Save File

Load VXML
Document

Key-
Pad Control

VXI

Figure 3.2: Functional diagram of the

VoiceViewer

3.2 Design of the VoiceViewer

3.2.1 The Components

 In this subsection seven components,
Initialization, Function Decision, Save File,

Open URL/Local File, Run VXML Document,
Load VXML Document, and Key-Pad Control,
are described first. Other components are
VXML parser, VXI Core, and TTS.

3.2.2 VXML Interpreter

 Similar to the function of most interpreters,
instead of generating object code, the VXML
interpreter will interpret and execute each
original instruction immediately. There are
usually two types of interpretation: iterative
interpretation and recursive interpretation [6].

In our design, basic instructions may
involve different formats, instructions may have
commands, expressions, or declarations.
Interpreting a command may prompt another
action. In this case, recursive interpretation has
to be used for the program. Below, we will give
a simple example to illustrate the process of
description, analysis, using a parse tree to build
a basic computational procedure, and with this
tree, assigning tasks to complete the work. At
first, the VXI includs two parts, VXML parser
and VXI core. The VXML parser will be
discussed below:

1. VXML Parser:
As the “Run VXML Document” component
receives the VXML document from the remote
web server or disk, it gets a text content with
text/vxml content type that is one of MIME
(Multipurpose Internet Mail Extensions) [7]
content types. It needs a VXML parser to parse
the document. The VXML parser will get a
document from the component and parse it.
After finishing parsing the document, the
VXML parser will construct a tree, called a
parse tree, which represents the content of the
document. Every node in the tree represents a
tag or a text, and attributes of a node represent
attributes of a tag. A child node is a node that
maps the tag or text occurs under the tag that is
represented as the parent node. VoiceXML
documents are mainly made up of many

elements and grammatical rules; form
especially plays an important role. This section
will categorize VoiceXML elements.

During performing the lexical analysis,
tokens must be defined. Based on the definition
of different types, the syntactical analysis and
debugging can be executed. Furthermore,
based on the syntax format, composite
command of the source program can be parsed
and decided.
There are seven types of tokens as shown in
Table 3.1.

Table 3.1 Token types
Token Type Content

IDENTIFIER Variable, element or
attribute name

KEYWORD Keyword

STRING In string of “ ”

DELIMITER Punctuation and operator

NUMBER Value

BLOCK < or >
Reserved Reserved for portability

and extensibility.

Before coding the VXML parser, one must

have a basic knowledge of VXML structure.
This paper uses a modularized VXML parser
based on the formal VXML structure (W3C
standard) [8]. The structure has strict
declaration and definition parts and uncommon
statements are temporarily not considered. The
study does not need the complete set, only the
basic elements. The requirement for a basic
browser and development system environment
means that the interpreter structure and
environment is also much simplified, using
simplified functions. All VXML programs
normally have more than one element and
variable. An element has an element name,
attribute list, and program code block. The
program code block starts with a “ <
“ followed by one or more statements which
are terminated by a “ > “. In VXML, statements
are preceded by a Keyword (such as vxml or
form) or it can be a simple expression (such as
A = B + C). We use a simple production rule as
defined in Table 3.2. The purpose of
“Reserved” is reserved for portability and
expansibility in the future.
A VXML program starts from a “<?xml” call
mark. If there is no other call mark, open file,
or goto call, then the document is terminated by
a “</vxml>” mark. Based on the above
production rule, the entire program is analyzed
once. The “<?xml” mark starts the interpreter
while the “<?xml”…“</vxml> ” ends it.

Table 3.2 Production rules

Category Production Rule

Program Assembly of elements (Include
variables)

Element Element assigned word,
attribute series, program blocks

Program
block “<“ Statement “>“

Statement Keywords, expressions,
program blocks

Reserved Reserved for portability and
extensibility

The grammar rules describe each
language’s basic syntax and through syntactical
rules, statements and expressions can be
accurately made. Thus, for an interpreter,
syntax decisions have to be based on parser
rules. In this paper, the parser can recognize the
source program. When a parse expression is
executed, it will first run the scanner program.
The scanner program will declare or search for
the identifier.

Figure 3.3: Token parsing

Figure 3.3 shows the interpreter which

performs the lexical analysis and syntax
analysis on the source program. Nevertheless,
the process may not be a sequence of fetch,
analyze, and execute steps. In this case, lexical
and syntactical analyses are done recursively
until the source program is cut into meaningful
syntactical tokens. In addition, the parsing rule
is verified to be error-free.

 The lexical and syntactical analyses
compose a producer/consumer relationship.
Lexical analysis produces a token while
syntactical analysis uses the token. A produced
token can be stored in a token buffer until they
are used up. When the buffer is full or empty,
further processing cannot proceed. Normally,
the buffer only has one token and the lexical

analysis program is replaced by a syntactical
analysis program that calls the needed token.

The current study undertakes three levels
of analysis on source code syntax:
z Linear Analysis: Source code is read from

left to right as a string of symbols. It is
then organized into tokens which are
symbols that have special meanings.

z Hierarchical Analysis: Each symbol or
syntax token is organized together in a
hierarchy, forming a hierarchical assembly
with its own special meaning. This is also
called syntax analysis.

z Semantic Analysis: Checks are made to
ensure that each part of the program can be
meaningfully combined.

2. VXI core:

To design the interpreter, the current
study uses a recursive interpretation and the
basic structure is illustrated as follows:

Begin （CC is a parse tree,
shown in Figure 3.11）
fetch and analyze CC ;
execute CC ;
end

By parsing the lexical analysis and grammatical
rules, we can complete the core program using
the interpreter as in the Figure 3.4.

Figure 3.4 Basic interpreter framework

The VXI core program shown in Fig. 3.4 is
the interpreter module proposed by this paper.
The program was written using Visual Basic
and Visual C++ objects, object encapsulation
module, and enabling this part of the program

to have a basic encapsulation. In our design, we
avoid integrating interpreter functions that may
produce undesired results.

Based on the loop structure in the VXML
language, the loop structure in our interpreter is
divided into a syntactical structure:
Define if … else as:

b
t
I
t
h
p
i

i
t

3

A
i
c
o
v
o
l
c

3

3

I
f
w
m
p
s
i
m
T
s
V

<if (expression)>

 statement

<else/>

 statement2

</if>
From the above definition, by using a
asic loop function, we can perform the loop
hrough the program control. The VXML
nterpreter is the core the proposed IDE, and
he if-else structure is the basic syntax for
andling recursive processing. According to the
arsing rule, we can build a parse tree as shown
n Figure 3.5

After constructing the parse tree as shown
n Figure 3.5, the interpreter will travel the tree
o generate the required result.

.3 TTS design
The flow of TTS is shown in the Fig. 3.6.

 text is derived after the processing of the
nterpreter. Then the BIG5 code of text is
onverted, and an audio file is obtained based
n the index tree. The audio file is sent to a
oice synthesizer, to generate the natural voice
utput. The TTS is expandable for other
anguages, such as the simplified Chinese
haracter, Japanese character, etc.

.4 Input and Output

.4.1 Console Mode

n the simple console, we used MS-DOS mode
or standard input/output while standard error is
ritten in standard output. The interpreter
odule reads the source program through the

arameter. It allocates a memory block for the
ource code, and then handed on to the
nterpreter for processing. Results of error
essages are written in the output environment.
he standard output is the console dialogue
creen. The interpreter module is coded by
isual C++.

childNodes

Item 1
attributes

childNodes : Nothing

length : 1

nodeName : “ block＂
text : "您 的 集 保 帳 號 餘 額為 台 積 電 三 百 萬 股 "
vxm l : "<block name="P2">您 的 集 保 帳 號 餘 額 為 台 積 電 三 百 萬 股 </block>"

Item 1
attribu tes : N othing
childNodes : N othing

length : 1

nodeName : “ name＂
nodeValue : “ P2＂
vxm l : “ name=＂ P2＂ ＂

nodeName : “ form＂
nodeValue : Null
vxm l:"<form id="result"><block name="P2">您 的 集 保 帳 號 餘 額 為 台 積 電 三 百 萬 股 </block></

form>"

Figure 3.5 Constructed parse tree framework

Figure 3.6 TTS Flow

3.4.2 Window System

The browser system and editor use the basic
frame of Visual Basic. This helps us to use the
main frame and table for the window interface.
There is not necessary to set the windows
appearance. We already have a basic editor area
with complete editing functions. Moreover, we
can construct a basic browsing and editing
environment (Figure 3.7 shows Browser and
editor).

Figure 3.7 Browser and editor environment

4. Operation and Discussion

4.1 VoiceViewer Platform

There are modes in the system, console mode
and windows mode.

1. Console mode: Execution of the VXI
Core The input method is set to use the
parameter method by opening a file (See Figure
4.1).

Figure 4.1: Parameter addition method to

input the file

We used the interpreter, called testVXI, to
interpret query_gipo.vxml in a console mode.
We also used the command line to input
query_gipo.vxml contents. The shell shows the
prompt when the program is executed.

Figure 4.2 shows the starting information
for interpreting the program query_gipo.vxml
after issuing the command:
C:\VXICore>Exe\testVXI.exe query_gipo.vxml
-numChannels 1.

The output of the interpreted result for
interpreting the program query_gipo.vxml is
shown in Figure 4.3.

In Figure 4.3 the simulation process are
shown and detailed procedures can be viewed.
This allows developers to see everything at one
glance and quickly evaluate if the voice
browser procedure is proceeding as planned.

2. Windows mode: Interpreter Execution
The current section uses images to explain
interpreter functions. Figure 4.4 shows the
voice browser system executed in Windows.
The testing platform operating system is
Windows 2000.

Figure 4.5 shows a query for numerical
input from the user when the voice browser
system is running.

Figure 4.2 Pre query_gipo.vxml wait screen

Figure 4.3 query_gipo.vxml contents and

output

4.2 Evaluation and Discussion

Table 4.1 shows the comparisons of four
IDEs, OpenVXI, VoiceGenie IDE, XML Spy,
and the proposed VoiceViewer. SpeechWorks [9]
and VoiceGenie [10] are two of the market
leaders in voice browsing system development,

and have begun efforts to simplify development
of voice browsing systems for their customers.

Figure 4.4 Executing the voice browser

system in Windows

Figure 4.5 Phone keypad simulation

interface

Table .4.1: Comparison of IDE

 Product
Function

OpenVXI VoiceGenie
Genie IDE

XML
Spy

VoiceViewer

Chinese
TTS
package

X

X

 X

○

Voice
Interaction

○

○

X

○

Console
mode

 ○ X X ○

Windows
mode

 X ○ ○ ○

Online ○ ○ X ○
Portability X X X ○
Extensibility ○ X X ○

5. Conclusion

The VoiceViewer voice browser system
described in this paper can be run in either
MS-DOS or windows mode. We developed a
VoiceXML interpreter, including the editing,
debugging, simulation, and testing, that
facilitates developers in debugging and testing
of voice web. In addition, the Chinese TTS
(Text To Speech) mechanism has been modified

in our system to solve the mixed pronunciation
problem of the Chinese character. As a result,
through the interface of the browser, developers
or users can develop or browse the VoiceXML
web pages easily. Furthermore, for browsing
the VoiceXML web pages, the PC speaker can
be used to browse and present the flow of
VoiceXML document, and the flow of IVR can
be processed by way of the simulated interface
of the telephone keypad input. Thus, the
developers and general users can develop or
browse voice web pages simply and quickly on
the PC through a centralized VoiceXML Test
Portal.

6. References

[1] D. Raggett, A.L. Hors, and I. Jacobs,
“HTML 4.01 Specification”, W3C
Recommendation. WWW Consortium,

 Dec. 1999.
[2] Ying Chi Huang, “Research on Web

Accessing with Aural Rendering Model”,
http://datas.ncl.edu.tw/theabs/1/, Xerox

 PARC, 4-6 Nov. 1996, pp. 57-103
[3] Janet D. Hartman and Joaquin A. Vila,”

V O I C E X M L B U I L D E R : A
WORKBENCH FOR INVESTIGATING
VOICED-BASED APPLICATIONS”,
ASEE/IEEE Frontiers in Education
Conference, October 10 - 13, 2001 Reno,

 NV6
[4] Nuance communication, V-Builder 1.2,
 Nuance, 2001
[5] http://www.voicexmlreview.org
[6] David A. Watt, ”Programming Language

 Processors”, Prentice Hall, 1993
[7] N. Freed, et al., Multipurpose Internet

Mail Extensions (MIME), November
 1996. http://www.ietf.org/rfc/rfc2045.txt.

[8] http://www.w3.org/TR/2003/CR-voicexm
l20-20030128/#dmlAFIA

[9] SpeechWorks International, Inc.
http://www.speechworks.com/

[10] VoiceGenie Technologies Inc,
http://www.voicegenie.com/

	Token Type
	Content
	Category

