
 1

An Analysis of Delegation Mechanism in

 Workflow Management System

Jian-Wei Wang, Chi-Hsieh Chang, and Feng-Jian Wang
Department of Computer Science and Information Engineering

 National Chiao Tung University, Hsinchu, Taiwan, ROC
Telephone: (03)5712121 x 54718 Fax: (03)5724176

Email: {jwwang,chschang,fjwang}@csie.nctu.edu.tw

Abstract

 Despite many research works in the

features of Workflow Management System

(WFMS), several issues are not researched yet.

One of them is the delegation mechanism.

Delegation mechanism ensures the continuity of

processes. This paper presents an analysis of

delegation mechanism in a Workflow

Management System. Two scenarios in which

delegations happen and several delegation rules

are shown as the detail of delegation mechanism.

Then several problems of delegation are

discussed based on the delegations and

delegation rules. In order to find out the

problems with delegation mechanism, a method

is discussed to transform the delegations with

delegation rules into a graphic view. With the

graphic method, algorithms of finding

corresponding delegation problems are

presented.

Keywords: workflow, delegation mechanism,

delegation, delegation rules, delegation graph

1. Introduction

In recent years, many issues in Workflow

Management System (WFMS) have been studied

and implemented to commercial products.

Delegation is one of the security mechanisms in

Workflow Management System. This

mechanism can ensure that a process session to

be done in the appropriate time. Even one of the

process members is unavailable during a short

time. One can temporally assign the job to

another member in the company. The process

will be done on time and the company operates

normally, continuously.

Our research topic is study the phenomena

of delegation in a Workflow Management

System. Categorize the detailed delegation rules,

delegation types and scenarios of different

delegations. Find possible problems according to

the mixed delegation rules and scenarios. Finally,

a method which can solve these problems will be

proposed to provide a systematic solution to

administrators of Workflow Management

System.

2. Background

2.1. Workflow Management System (WfMS)

Recently, Work Flow Management is a fast

evolving technology which is exploited by

businesses and industries [6]. The primary

characteristics of Workflow Management are the

automation of processes which combine the

human and machine-based activities [6]. The

management should define each model that is

related to the workflow, the basic process

definition model, role model, related application,

 2

the interaction and data interchange with the

model.

 Workflow Management System, WfMS, is

a system that implements all features that WFM

defines. The definition of process model, role

model, and other features that WFM defines will

be combined as one of the WfMS’s functionality.

The WfMS possibly offers a GUI for users to

define their own specific processes, the roles and

relevant data of this process. With the detail

description of process, the WfMS controls the

execution and interoperation of process

instances.

2.2. AgentFlow

AgentFlow [8], which is based on the concept of

Process-centered Software Engineering

Environment (PSEE) [2][5], is a software that

contains lots of tools and lets end users to use

the tools to define the enterprise’s specific

workflow management. AgentFlow contains the

tools that correspond to all necessary

components and interfaces in the workflow

model. AgentFlow has five components, which

includes PDE, ORG, FormDesigner, FlowEngine

and Agenda [3]:

Figure 1 illustrates the overview of AgentFlow.

Figure 1 AgentFlow System overview

 With AgentFlow, designers can easily

construct specific process and define each

relevant data to process activities. All process

related data will be stored in the process

Repository, such as Database. During the process

execution, system administrator can monitor the

execution of each process with administrator

access right in Agenda and system execution

logs [3]. End users interact with Agenda client

program to do the jobs in their own work-list.

With flexible characteristics of flow

modification, these data can be viewed as the

treasure to tune up the business processes more

effectively, and achieve the BRP(Business

Process Reengineering) [7][9][10].

3. Delegation phenomena

3.1. Scenarios of delegation

3.1.1. Delegation in regular processes

This scenario indicates that a delegation

rule can be applied in an e-office or

e-organization. One participant could own

multiple roles in an organization. For example,

the RD department supervisor participant owns a

supervisor role obviously. This supervisor could

own another role, like the engineer or the

supervisor of project B; multiple roles have

different delegation rules, one corresponding to

each role. The delegation rules might be applied

role by role in regular processes, the related

problems within this scenario will be discussed

in chapter 4.

3.1.2. Delegation in specific processes

In this scenario, the delegation rules can

not be applied in other processes. In other words,

the roles and the corresponding participants’

delegation rules are established in the

organizational role model during the process

specification.

 The life time of such a process instance is

limited. So are that of relevant data and

temporary new roles in the same project. The

new process needs new relevant data and

temporary new roles. The relevant data and

temporary new roles will vanish after the

 3

specific processes completes.

3.2. Delegation rules

1. Delegation Forbiddance

 Delegation forbiddance is the first rule

which is defined to prevent important process

activities to be delegate to unrelated members. If

a process activity is defined associated with

delegation forbiddance rule alone, this activity

won’t allow any delegation to be activated.

 If there are too many forbiddance rules set

in a process, the process might lose flexibility in

execution time. In delegation forbidden activities,

the participant will stall the whole execution

because of his unavailability. Thus, deciding the

delegation forbiddance rule of activities depends

on the policies of organizations.

2. Single delegation

 Single delegation is one of the major rules

for members in the organization to define their

own delegation. There is one or more than one

choice, and this most common method provides

a one-to-one delegation of a process activity for

the participants, especially; the target participant

is the same and single for all common source

members in a process definition.

3. Multi-conditional delegation

 This delegation rule allows user to

delegate the job to one or divide the delegation

into a group of members each time.

Multi-conditional delegation provides a flexible

delegation rule for multiple members in the

organization.

 For example, member A has a

multi-conditional delegation rule with a process,

where such a rule may be associated with

multiple values. The value could be composed of

the following data: process name, activity

subjects, job deliver time, the job sender, etc.

During runtime of process activities, if the

multi-conditional delegation mechanism is

activated, the system calculates the above data to

get the corresponding target participants for the

delegation.

4. Multiple-conditionally general delegation

The most general specification model of

delegation is to allow multiple value-conditions

where a value points to its own target and the

target is either a single member or a group of

members.

4. Delegation Analysis

4.1. Defects in delegation phenomena with

delegation in regular process

 After introducing different rules and types

of delegation, there are several problems

associated with delegations in regular processes.

To simplify the problem, here the delegation

rules and delegations are assumed to be fixed

under process specification for us to analyze.

The analysis of dynamic delegation will also be

discussed.

4.1.1. A general delegation loop

 A general delegation loop will possibly

happen under the rules of single delegation,

multi-conditional delegation and

multiple-conditionally general delegation.

In Figure 2(a), the delegation loop is the

simplest loop. A, B, C indicates the participants

in enterprise. With the delegation D(A, B) D(B,

C) D(C, A), the delegation sequence will end up

with a deadlock. In Figure 2(b), a sequence of

delegation delegate to target participant D, and

the delegation rules D(D, E) D(E, B) D(B, C)

D(C, D) also end up in a deadlock.

(a) (b)

Figure 2 Delegation loop

 4

4.1.2. Mutually Exclusive Roles

In RBAC [11], the most common

constraints in RBAC are mutually exclusive

roles. Assume that a user can be assigned only

one role in the mutually exclusive role set. This

constraint can assure the separation of duties and

avoid the assignment fraud.

In the process specification, participants

of this process may not conflict the mutually

exclusive role constraint. But it may conflict the

constraints after the delegation is activated.

Delegation conflicts the mutually exclusive

constraint are defined as two types:

1) Direct delegation conflict

In Figure 3(a), participant EA, owns role R1,

delegates the jobs to another target participant EB

who owns role R2. R1 and R2 are in the mutually

exclusive roles set S. Participant EA plays two

mutually exclusive roles and conflicts the

constraint.

2) Indirect delegation conflict

In Figure 3(b), Participant EC plays two

mutually exclusive roles and conflicts the

constraint.

Figure 3 Mutually exclusive roles

4.1.3. Work unbalance

With the delegation mechanism, the

mechanism might break the work balance. In

Figure 4, participants EA, EB, and EC are

working on the project process P. If EA and EB

assign their delegation rule to EC, EC shall do all

the jobs in this project process. And then a work

unbalance problem appears. The delegation

appears always in WfMS, but the process

execution might be inefficient if the plan is not

good as in Figure 4.

Figure 4 Work unbalance

4.1.4. Inappropriate delegation

Several delegation problems are special

because the delegations in these problems are

always legal. Inappropriate delegation problem

is one of them. Inappropriate role delegation

problem will damage the access control policy in

some enterprises and leads to assignment fraud.

 For example of inappropriate delegation,

there are two roles, CEO and assistant

engineering in an organization structure. These

two roles are not mutually exclusive, but CEO

should not normally delegate his or her jobs to

the assistant engineer. The delegation does not

make a fraud but is not allowed actually.

4.2. Solutions to problems in scenario of

delegation in regular process

4.2.1. A graphic method

In previous section, a delegation

sequence is defined as: Let a role S has a

delegation rule D whose target is T, the D(S, T).

A sequence of continuous delegations, can be

defined as D(S1, S2), D(S2, S3), D(S3, S4) … D(Si,

Si+1) …, etc. To form a delegation graph from

delegation sequences in a process, an algorithm

to generate is defined as follows:
A delegation graph G, delegation set S in process
P
P has fixed delegations and delegations rules
A delegation or a delegation sequence D in S
indicates a delegation of source -> target or a
sequence of source -> target combinations

Generate_delegation_graph(G,D,P)
Begin

 5

For each D in process P
For each existed nodes in graph G

If source = one of the exist nodes in G
Then Connect this delegation D to

exist node in G
 Else G = G U D
End

 Delegation loop and unbalance

Delegation loop and work unbalance

could be observed on the delegation graph.

Mutually exclusive set problems and

inappropriate delegation can also be observed in

addition to the add-on on delegation graph.

 Delegation loops and work unbalance are

shown in Figure 5. In Figure 5(a), a delegation

loop is found between participants A, B, C. In

Figure 5(b), a work unbalance problem is found

under participants A, B, C, D.

 The algorithm of delegation loop and

unbalance are shown as follows:
//the begin of algorithm with delegation loop use
DFS algorithm
Check_delegation_loop_work_unbalance (G)
Begin
 DFS(G)
 If any edge marked as back edge
 Then claim a delegation loop will occur
 If any edge marked as Forward edge

or cross edge
 Then a work unbalance will occur
End

In above algorithm, a DFS(G) will traverse

all vertices in a delegation graph. A back edge

indicates a participant points to its ancestor

which means a loop occur. A forward edge and

cross edge indicates the participant points to a

traversed participants which means the

participant might have more than one delegated

job to do and it means a work unbalance will

happen.

Figure 5 A delegation loop and work

unbalance

 Mutually exclusive roles

To find out mutually exclusive role sets

problem, a mutually exclusive role list has to be

added in the delegation graph. Participants A and

B are in the mutually exclusive role sets. In

Figure 6(a), there is a delegation from A to B

and might cause a direct conflict if this

delegation activated in process execution. In

Figure 6(b), there is an indirect delegation

conflict because of A and B delegate jobs to the

same participant C.

Figure 6 Mutually exclusive role sets problem

The example in Figure 6 presents a

possible direct and indirect delegation problem

in mutually exclusive role sets. In Figure 7(c),

participant A might not direct delegate jobs to

target participant B but in a indirect way and

same as in Figure 7(d), but participants A and B

also delegate jobs to target participant C and

conflict mutually exclusive role sets problem.

Figure 7 Another mutually exclusive role sets

problem

The algorithm of checking mutually exclusive

role sets are shown as follows:

Check_mutually_exclusive_problems (G)
Begin
 //first check the direct conflict using DFS
 For each node in DFS progress

 6

 Record the ancestors of current node
 If current nodes and any of traversed

nodes in this path are all in the
mutually exclusive role sets list

 Then this delegation will cause
mutually exclusive role sets problem

 Else continue DFS
 //Second check the indirect conflict
 For each node’s ancestors list(s)
 If in ancestors list has two of the

ancestors are in the mutually
exclusive roles set

 Then this node has an indirect
conflict

 Continue until all nodes’ list are checked
End

 Inappropriate delegation

Inappropriate delegation is defined as

legal but has an essential delegation problem. To

resolve the problems in delegation graph, a level

constraint can be used on the participants in

processes. For example, the organization can

separate participants’ power into 10 levels, and

the delegation have to make a constraint of

“cannot delegate the jobs to power level lower or

higher than 3 to 5 levels. Figure 8 illustrates the

inappropriate delegation in delegation graph.

Participant A has a power level of 2 and B has a

power level of 7.
The algorithm is similar in delegation loop test,
also shown as follows:
Check_inappropriate_delegation (G)
Begin
 For each traversed nodes in DFS
 If this node’s class level is much lower

or higher than any of the nodes in
traversed path

Then warning an inappropriate
error will occur and mark this
edge as inappropriate edge in
graph G

 Else continue DFS
End

Figure 8 Inappropriate delegation

4.2.2. Using method in dynamic delegation

When this participant’s defined delegation

or delegation rules change, the previous static

analysis in process specification time can not

apply on this situation.

In Figure 9, there is a delegation graph

which is calculated by our algorithm in process

specification time and an inappropriate edge is

found. But in the execution time of this process,

participant D decide to change his delegation

rule from single delegation to multi-conditional

delegation which delegates his job to the other

two participants J and K.

Therefore the previous delegation graph

will be changed into Figure 10. Notice that the

delegation of participants J and K should be

included in this new changed delegation graph.

Then the whole algorithms of detecting the

delegation problems will be applied into this

new delegation graph. There will be a back edge

from participant J to C, cross edge from

participant K to F, and still the inappropriate

edge from H to I.

Figure 9 A previous analyzed delegation

graph

Figure 10 An analysis of changed delegation

graph

4.3. Problems of delegation in scenario of a

specific process

 Delegations from participants to other

participants in specific roles of the process

The delegation is allowed in this specific

process. Delegations will also be revoked with

 7

the destruction of this specific process. When a

specific process has ended and destroyed, the

delegations of this specific process will also be

destroyed. Because of the delegation’s source

and destination are in the specific roles.

Therefore, the delegation will not cause any

errors in this delegation type.

 Delegations from other source participants

to target participants in this specific

process

In this situation, other source participants

who do not participate in the specific process

may define the delegation to any of the

participants in this process using the

multiple-conditionally general delegation rule.

Other jobs maybe delegated to specific

participants by using this delegation rule.

Problems will occur when this specific process

has been done and destroyed.

4.4. An example

4.4.1. Using method on an example flow

Let us illustrates the example flow graph.

The participants are the RD department

engineers and RD department supervisor.

Figure 11 An example flow graph

Figure 12 illustrates role tree of the

participants of this flow graph. In this figure,

related roles of delegation are also listed.

Figure 12 A role tree of the participants and

related role

After the role tree and flow graph

presentation, Figure 13 illustrates the

delegations of participants in this flow graph.

Figure 13 The delegations of participants of

flow graph

After the delegations of participants are

listed, a delegation graph can be easily formed

by the method presented in previous section.

When the delegation graph of this flow graph is

formed, this graph can be analyzed in a static

way to find out possible problems which are

defined in previous section.

Figure 14 illustrates the delegation graph

of this flow graph. In this figure, several

problems are found as follows:

Figure 14 Delegation graph formed by

delegations

After the transformation of delegations to

delegation graph, we can now apply our

algorithm to this delegation graph. First a DFS

algorithm is applied on this graph with back

edge, cross edge, forward edge, and a new

inappropriate edge. The delegation graph will

become as Figure 15. A back edge D(G, A),

forward edge D(D, F) and a inappropriate edge

D(H, I) are founded and a delegation loop, an

inappropriate delegation problems will occur if

these delegations are activated in process

runtime.

 8

Figure 15 Algorithm applied delegation graph

5. Conclusion

In this paper, delegation, delegation

phenomena, and several types of delegation rules

are defined. The details of delegation rules are

also presented to provide a clear view of

delegation phenomena in WFMS. Then possible

delegation problems are proposed and a static

method is proposed to analyze the flow graph

and delegation relation. This method provides a

clear view of analyzing the delegation behavior

in process specification time. Finally several

examples are presented based on the role tree

and flow graph with this graphical method.

In delegation phenomena, although

possible delegation problems are listed., there

are still many delegation phenomena which are

not figured out or analyzed. There is still need

works to deal with the delegation area in WFMS.

Finding the whole problems or issues of

delegation mechanism in WFMS is still a

research goal in this area.

Reference

[1] [URL] http://www.wfmc.org

[2] M. F. Chen, B. S. Liang and F. J. Wang, “A

Process-Centered Software Engineering

Environment with Network Centric

Computing”, 1997

[3] Y.S. Chen, F. J. Wang. “Building an Edit

and Enactment System for Process

Definition”, 2001

[4] M. F. Chen, B. S. Liang, and F. J. Wang,

“Enacting a Software Development

Process”, to appear in Proceeding of

International Conference of Engineering

Complex Computer System, 1997

[5] B. S. Liang, M. F. Chen, and F. J. Wang,

“The Study of a Process-Driven Software

Project Development Environment”,

Technical Report CS85-0210-D009-014,

Microelectronics and Information System

Research Center, National Chiao-Tung

University, 1996

[6] David Hollingsworth, “Workflow

Management Coalition The Workflow

Reference Model”.

[7] R. Marshak, “Software to Support BPR –

The value of Capturing Process

Definitions”, Workgroup Computing

Report, Patricia Seybold Group, Vol,17,

No.7, July, 1994

[8] [URL] http://www.flowring.com.tw

[9] Karagiannis, D. (1994, May). “Toward

Business Process Management Systems”.

Tutorial at the International Conference on

Cooperative Information Systems

(CoopIS’94). Toronto, May 1994.

[10] Soles, S. (1994). “Work Reengineering and

Workflows: Comparative Methods”. In

(White & Fischer, 1994), 70-105

[11] Ravi S. Sandhu, Edward J. Coyne, Hal L.

Feinstein, Charles E. Youman,

“Role-Based Access Control Models”,

IEEE Computer, February 1996

