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Abstract 

Time-series data are periodic recordings of 
time-varying information. Since the data are 
temporal in nature, finding a similar data se-
quence in time-series databases to a given query 
is very costly. The straightforward strategy to 
examine each possible occurrence by sliding a 
window over each database sequence will take 
quadratic computation cost. For large time-series 
databases, this approach is practically infeasible. 
To shorten query response time, we propose in 
this paper a low-cost filtering mechanism to 
sieve out the most similar candidates from the 
dissimilar ones in the database. Then, only small 
portions of database require the true similarity 
measurement to finalize the query. As a result, 
our preprocessing approach achieves significant 
savings in overall query processing. We show 
our filtering technique incur no false dismissals, 
and has greater pruning power than the other 
competing schemes. Empirical results indicate 
57% of non-similar data can be filtered out 
without resorting to the expensive true similarity 
measurement. 

Keywords: Dynamic time warping, L2 distance, 
indexing, filtering, subsequence matching. 

1. Introduction 

Time-series data represent temporal track-
ing of information source over time. Examples 
include the pitch/beat information from the 
user’s acoustic input [8], the heart rate of pa-
tients [1], the strength of gamma rays from ce-
lestial sources [2], hourly power demand of a 
research facility [19], RNA expression levels [3], 
just to name a few. The trajectories of mobile 
users on the plane or flying aircrafts in space are 
conceivable extensions of the original 1-D 
model [18]. Typically, time-series data consist of 
a sequence of N measured values from the ob-
served aspect of the information source. These 
measures are likely affected by anonymous 
noises so that specific values alone hardly char-
acterize the aspect being monitored. Rather, cer-
tain non-stationary features, e.g., abrupt changes, 
transient events, slowly varying trends, change 
patterns, are primary knowledge to be discov-

ered. For instance, a classical ARIMA model of 
Box and Jenkins can be used to predict future 
values and obtain general insight into the 
time-dependent behavior [4]. However, the out-
line of global trend is obtained for the sacrifice 
of many details within the data. Often, we know 
the details of change patterns, and are interested 
to find one or more similar reoccurrences in 
time-series databases. This type of query is fre-
quently referred to as k-Nearest-Neighbors 
(k-NN) search in the content-based information 
retrieval research. As an example, users can sing 
to retrieve an intended song in the music data-
bases [8], or write down the words to be recog-
nized by computer systems in automatic tran-
scription [18]. Since the input query is shorter 
than database time sequences in length, this kind 
of query is also known as subsequence similarity 
matching [14, 15]. 

To answer k-NN query, some similarity 
metrics are required to objectively judge the ex-
tent of how similar the query is to the time se-
quences in databases. Most algorithms depend 
on Euclidean distance or some variation thereof 
[5, 13, 20]. Virtually, they slide a window over 
each database sequence to measure the similarity 
of the subsequence toward the query input. The 
k subsequences with the largest similarity meas-
ures from all possible sliding are then returned 
for the query. However, this approach is very 
sensitive to noise. Particularly, imperfectly tak-
ing the query sample likely deteriorates the qual-
ity of the results. For instance, mediocre singer 
barely rehearses the song in mind professionally. 
There exist small variations in the time axis. 
Even without the background noise, the 
pitch/beat information from the user’s acoustic 
input taken in an ad hoc manner is often far 
away from the corresponding digital recordings. 
The query input with slightly defective tempo 
cannot match its desirable associates of standard 
form. Therefore, recent studies utilize Dynamic 
Time Warping (DTW) [6], more flexible dis-
tance measure for similarity match, to allow 
elastic shifting of the time axis [5, 8, 11, 12, 18, 
20]. This distance metric permits each data point 
of the query to coincide with one or more con-
secutive points of the data subsequence in ques-
tion, and vice verse. Effectively, DTW computes 
the shortest distance from stretchable alignments, 
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and thus overcomes the problem that the query 
data may be slightly imperfectly aligned with the 
database subsequences in the time axis. The idea 
is similar in spirit to the edit distance measure 
used in approximate string matching [7, 9, 10, 14, 
16, 17], where small gap of mismatched charac-
ters can be skipped during matching. 

However, the capability of stretchable 
alignments comes at a cost of increased compu-
tational complexity. In spite the DTW distance 
can be computed by efficient dynamic program-
ming algorithm [6], the overall cost of exhaus-
tive search through the entire database becomes 
formidable as the database size increases. Espe-
cially, DTW does not obey the triangular ine-
quality, rendering preprocessing database se-
quences to expedite k-NN query difficult. To 
address this problem, several approximate DTW 
functions are proposed to prune away the un-
necessary true DTW computations [11, 12, 18, 
20]. The general idea is to employ an efficient 
lower bound function of DTW to pre-qualify 
database subsequences for the query. Then, the 
true DTW distance of the best subsequence with 
the shortest approximate distance to the query is 
calculated. Since the approximate distance is 
always no greater than the true distance, the 
subsequences with the approximate distances 
larger than the currently best true distance can be 
safely discarded with no need to compute their 
true distances. Subsequently, the next best sub-
sequences are repeatedly used to update the best 
true distance so as to keep the size of the pool of 
the candidates all with the true DTW distances 
equal to k. Obviously, how close the approxi-
mate function is to DTW determines the quality 
of this general pruning procedure. The tighter, 
yet low-cost, function will lead to considerable 
savings on expensive DTW computations. In 
contrast, a looser function may be computed 
more quickly. However, the majority of its ap-
proximate distances can be much smaller than 
the best true distance measure. As a result, its 
pruning capability is very limited. 

In this paper, we focus on the tightness of 
approximate functions to the true DTW meas-
ures. Specifically, we develop a novel 
lower-bound function to improve the pruning 
power of all the existing competitors. To expe-
dite the filtering process, we also investigate an 
upper-bound function to work seamlessly with 
the above approaches. We formally prove both 
low-cost approximate distances incur no false 
dismissals during filtering, and assess their 
qualities by extensive performance evaluations 
using numerous time-series data sets. The results 
indicate our new functions consistently outper-
form all the competing approaches. The rest of 
the paper is organized as follows. Section 2 

briefly reviews the DTW algorithm and de-
scribes the related work. We will introduce the 
proposed low-cost approximate functions and 
prove their correctness in Section 3. Section 4 
presents the performance study. Finally, we give 
our concluding remarks and discuss our ongoing 
work in Section 5. 

2. Related Work 

Given two time-series Q and C of the same 
length n, the classical L2 distance, namely 
Euclidean distance, is defined as follows: 

( ) ( )2
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, ,n
i ii

L Q C q c w
=
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Comparatively, with stretchable alignments, the 
DTW distance between Q and C can be com-
puted along an elastic warping path 
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according to the following constraints on the 
warping path1: 

 ( ) ( )1 1 1, , , .m n nw q c w q c= =  
 ( ) ( ) ( )1 1 1 1, , , , ,k i j k i j i jw q c w q c q c− − − −= ⇒ = ( )1or , .i jq c−

 

 ( ) 20, , , .n
k i jw q c i j r where r∀ = − ≤ ≈

2 

DTW allows each qi to flexibly coincide with 
one or more cj, i r j i r− ≤ ≤ + , yet considers 
all possible paths to minimize the pair-wise dis-
tance. (If r=0, DTW degenerates to L2.) 
DTW(Q,C) can be computed by the dynamic 
programming using the recursion [6]: 
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Fig. 1 illustrates one possible minimum-distance 
warping path (shown in blue) within the allow-

                                                 
1 For clarity, we consider Q and C have the same length. In 
fact, DTW is applicable for the different lengths. 
2 This constraint is known as the Sakoe-Chiba Band to con-
fine W at most r away from the diagonal. 

Fig. 1: an example to illustrate the mini-
mum-distance warping path in DTW.  
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able region (shown in yellow) for n = 17. Some 
cj’s are repeatedly used to match qi & qi+1 
(c4↔q4,q5 ;c6↔q7,q8 ;c8↔q10,q11), while two qi’s 
are continually in alignment with two and three 
cj’s (q13↔c10,c11; q16↔c14,c15,c16), respectively. 

To answer k-NN query using DTW, the 
simple solution is to compute DTW(Q, C) for 
the query sequence Q and each database subse-
quence C using Eqn (2).The k subsequences 
with minimum distances are returned for the 
query. However, such approach is practically 
infeasible owing to high cost in DTW computa-
tion. Yi and Faloutsos proposed a fast approxi-
mate function of DTW [20] to avoid many un-
necessary true DTW computations. Specifically, 
their function, denoted as YF by taking the au-
thors’ initials, is shown to be a lower bound 
function of DTW. 

( )
( )

( )

2
max max

min max1
2

min min

,
, 0, ,

,

i i
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ii
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q c q c
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That is, ( ) ( ), ,YF Q C DTW Q C≤ , since 
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i ii

YF Q C q c q c
=

= − −∑       
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Fig. 2: the k-NNs algorithm with a lower bound function YF. 

With YF, the algorithm shown in Fig. 2 can 
be used to search for the k most similar database 
subsequences. The k currently best candidates 
are maintained in the queue M, which keeps the 
items inside sorted on the DTW distances in 
ascending order. For each subsequence in con-
sideration, YF(Q,C) is first computed to be 
compared with L, the DTW distance of the kth 
best candidate. If greater than L, there is no need 
to compute DTW(Q,C) in Step 6. Only when C 
has an approximate distance smaller than L, it 
then could be one of the k-NNs. Step 7 verifies if 
this is true. If so, the currently kth best candidate 
is disqualified and removed from M in Step 8. 

The new kth best candidate is used as the pivot 
for ongoing filtering. As we can see in these it-
erations, the quality of the approximate function, 
such as YF(Q,C), in fact determines the pruning 
power of the algorithm in Fig. 2. If the function 
is not very tight, it is more likely that the algo-
rithm executes Step 7 through 10, degenerating 
to the above simple solution using only DTW. 

On the other hand, Kim, Park and Chu 
proposed another lower bound functions, de-
noted as KPC, using 4-tuple feature vector [12]. 
These four components are first and last ele-
ments of the subsequence, and the maximum & 
minimum values. The maximum absolute dif-
ference of corresponding features is used as 
KPC(Q,C). Mathematically, 

( ) 1 1

max max min min

, ,
, max .

,
n nq c q c

KPC Q C
q c q c

 − −  =  
− −  

  (6) 

Besides the maximum and minimum, this func-
tion also considers the first constraint on the 
warping path: ( ) ( )1 1 1, , , .m n nw q c w q c= =  It can be 
applied similarly in the aforementioned algo-
rithm simply by replacing YF(Q,C) by 
KPC(Q,C). We note that this function is sym-
metric: KPC(Q, C) = KPC(C, Q), while YF is 
not. If cmax and cmin in Eqn. (4) are extremely 
large and small, YF(Q,C) attends to yield very 
small value in our investigations. Therefore, we 
slightly modify YF function to make it symmet-
ric, and denote the new function as YF2(Q,C). 
Likewise, ( ) ( ) ( ), 2 , ,YF Q C YF Q C DTW Q C≤ ≤ . 

( ) ( ) ( ){ }2 , max , , , .YF Q C YF Q C YF C Q=   (7) 

Most recently, Keogh [11] proposed a new 
lower bound function, denoted as KE, by utiliz-
ing the last path constraint:

 ( ), ,k i jw q c∀ =  
20, .ni j r where r− ≤ =  

This function is used to 
develop the index structure and further extended 
for 2D time-series based on the original DTW in 
Eqn. (2) [18]. The extension by Vlachos, et. al., 
is the first to introduce the upper bound of DTW 
in pruning. For clarity, we use VHGK3 to denote 
this upper bound function. Both functions can be 
modeled: assume max , min .i k i ki r k i ri r k i r

U c L c
− ≤ ≤ +− ≤ ≤ +

= =  

( )
( )

( )

2

1
2

,
, 0, ,

,

i i i i
n

i i ii

i i i i

q U q U
KE Q C L q U

q L q L
=

 − >
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 
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∑
    (8) 

( ) ( ) ( ){ }2 2

1
, max , ,n

i i i ii
VHGK Q C q U q L

=
= − −∑   (9) 

Similar to YF, ( ) ( ), ,KE Q C DTW Q C≤ . In par-
ticular, KE improves YF by using several 

                                                 
3 The original definition is used for the internal nodes in the 
index tree. We formulate the distance for pairs of time-series 
data by following the same spirit. 

Input: query Q. 
Output: k most similar database subsequences to Q. 
Variable: Last best distance L, approximate distance d, 

true distance D,minimum queue M with at 
most k items, kept sorted in ascending order. 

1. Compute DTW(Q,Ci) for the first k database sub-
sequences; insert(i, DTW(Q,Ci)) into M. 

2. L = the associated distance of the last item in M. 
3. For each Ci of the rest database subsequences 
4.   d = YF(Q,Ci). 
5.   If d < L 
6.     D = DTW(Q,Ci). 
7.     If D < L 
8.       Insert (i, D) into M. [discard the k+1th item] 
9.       L = the distance of the last (kth) item in M. 
10.      Endif 
11.   Endif 
12. Endfor 
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piece-wise maximum and minimum values, in-
stead of only cmax and cmin, to approach DTW. It 
is easy to show that ( ) ( ), ,Y F Q C K E Q C≤ . 
KE is a tighter approximation than YF. VHGK 
estimates the worst-case distance measure, 
which can be used to confine the true DTW: 

( ) ( ), ,DTW Q C VHGK Q C≤ . Both lower and upper 
bound functions can jointly work together to 
avoid expensive DTW computations. Since 
KE DTW VHGK≤ ≤ , we can substitute DTW by 
VHGK in k-NNs algorithm to eliminate the 
subsequences whose lower bounds are exceeding 
the VHGK of the kth candidate kept in M. Then, 
resort to the subsequent stage to finalize the 
query using true DTW distances. We will show 
the modified algorithm in Figure 5 and discuss 
the details of the procedure shortly after in Sec-
tion 3 after introducing the proposed approxi-
mate functions of DTW. 

3. Bounding the DTW function 

In this section, we introduce the proposed 
lower bound and upper bound functions for 
DTW. We discuss our design philosophy and 
show the rationales behind their formulations. 
Subsequently, we will show the algorithm to 
utilize both approximate functions to efficiently 
eliminate the non-similar database subsequences 
without first computing their true DTW dis-
tances to the query. 

3.1 Lower Bound function of DTW 
As shown in the Eqn. (2), DTW is a mini-

mum accumulated distance along all possible 
warping paths subject to several warping con-
straints. YF considers the maximum and mini-
mum values of one sequence to reduce its dis-
tance measure to the other sequence. This ap-
proach is rather pessimistic. Only two extreme 
values are used to safely achieve lower bounding. 
Particularly, it takes no advantage of the third 
warping constraint, namely, ( ), ,k i jw q c∀ =  

20, .ni j r where r− ≤ ≈  
In reality, each cj, even if 

extremely large or small, can only match with at 
most 2r qi’s. This fact motivates KE to apply the 
sliding window of width 2r for local maxima 
Ui’s and minima Li’s so as to better lower bound 
DTW. On the other hand, KPC considers the first 
and last elements of the sequence additionally. 
When there are large differences on each bound-
ary element of the sequences in comparison, this 
lower bound can be very close to DTW. In a 
sense, KPC benefits from exploiting the first 
warping constraint, w1=(q1,c1), wm=(qn,cn). From 
the insights of these lower bound functions, we 
devise a novel alternative that likely yields better 

estimation. Fig. 3 illustrates our idea. Conceptu-
ally, we partition the permissible warping region 
into three areas: Area1, Area2, and Area3. Each 
warping path will traverse through these areas. 
In Area2, we follow the KE approach to con-
struct (Ui, Li) for each ci of the database subse-
quence C. Any possible warping path, shown in 
blue curve, needs to walk through each horizon-
tal bar, shown in bold rectangle, due to the 2nd 
constraint: ( ),k i jw q c= ⇒  ( )1 1 1, ,k i jw q c− − −=  
( )1,i jq c −  ( )1or ,i jq c−

. That is, at least one of 

( ),i jq c , i j r− ≤ , belongs to the warping path of 

DTW. Therefore, the minimum distance of qi to 
these cj’s, is included to safely lower bound 
DTW. The KE approach is good in this area. 

However, KE does not work well in both 
Area1 and Area3, each an r×r square. Due to the 
boundary limitation, the length of a horizontal 
bar for each ci gradually reduces to r as i ap-
proaches 1 or n. Particularly, any legitimate 
warping path will start from (q1,c1) and end at 
(qn,cn). By (U1,L1), aggregated from c1 to cr, will 
only give a far less accurate distance approxima-
tion. Indeed, using c1 directly surely leads to a 
tighter lower bound since the distance between 
c1 and q1 is part of DTW. The same argument 
holds for cn. Therefore, our approach is to em-
ploy an L-shape fence anchored along the di-
agonal in Area1 and Area3. Fig. 3 illustrates one 
fence in each area. Similar to horizontal bars, 
these fences will each intercept at least one point 

( ),k i jw q c=  of the warping path for DTW. As 

shown in the figure, any path (presented in blue 
curve) will pass through any given fence. We 
note that our approach can bound DTW tighter 
than KE. As an example, both L-shape fences 
shown in bold consist of five wk points, com-
pared to seven points used for (U3, L3) or (Un-2, 
Ln-2) in KE. Larger distance measures are ex-
pectable when a fence or bar contains fewer 
points in construction. This is because more 
points tend to increase the maximum Ui and de-
crease the minimum Li, and thus reduce the es-
timated distance greatly, as indicated in Eqn. (8). 

 Our approach utilizes the first warping 

Fig. 3: the proposed lower bound func-
tion is constructed by a series of fences. 
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constraint as the KPC approach. We formally 
define the proposed lower bound function, de-
noted as LB: 

( )

( )

( )
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
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     (10) 

Area2 reiterates KE’s definition in Eqn. (8) using 
a series of horizontal bars. In Area1 and Area3, 
the minimum distance is accumulated on each 
L-shape fence. When the argument i is 1 or n in 
the above formula, ,i i i i i iF R c G S q= = = = . The 
squared difference 2( )i iq c−  is included exactly 
as DTW. The lower bounding property of LB is 
established by the proof on the inequality, 

( , ) ( , )L B Q C D T W Q C≤ : 

Proof: Given the minimum-distance warping 
path 

1 2 , 2 1mW w w w n m n= ≤ < −" , of DTW, we 
abbreviate W into X from the joints at which W 
intersects a total of n horizontal bars or L-shape 
fences. If there are more than one joints for each 
bar or fence, we retain only the first one in X. 
Clearly, X has n terms:

1 2 nX x x x= " . In particu-
lar, a b a b1 1

m n
k kk k

DTW w x
= =

= ≥∑ ∑ . For each ( , )k i jx q c=  

on the bar or fence, LB would wish to include 
the squared difference a b 2( )k i jx q c= −  ideally. 
However, such joint point is hard to predict in 
advance. Conservatively, LB comprehends the 
amount that is no greater than a bkx . For a hori-
zontal bar, if maxi i ki r k i r

q U c
− ≤ ≤ +

> = , LB has 2( )i iq U−  

that is surely no greater than a bkx ; likewise, the 
similar argument applies for the case that 

i iq L< . 
Besides, when 

i i iL q U≤ ≤ , LB includes only zero 
that is no larger than a bkx  because a b 0kx ≥ . For 
an L-shape fence, LB virtually divides it into a 
horizontal bar and a vertical bar, and embodies 
the minimum from two separate conservative 
estimations as before. Therefore, the amount that 
is summed into LB inside its square root is at 
most as large as a bkx . Since each term included 
into LB is no greater than a bkx  on bars or 

fences, LB(Q,C) is surely no greater than 
a b1

n
kk

x
=∑ , which is in turn a b1

m
kk

w DTW
=

≤ =∑ . 

We conclude the inequality 
( , ) ( , )LB Q C DTW Q C≤  holds. Q.E.D.▪ 

3.2 Upper Bound function of DTW 
Our low-cost upper bound for DTW is a 

simple extension of the classical Euclidean dis-
tance. We compute distance measure along a set 
of simple diagonal warping paths and use the 
minimum as the function output. Fig. 4 shows 
this idea. As indicated, the diagonal-like warping 
path in blue progresses first vertically up for two 
points, then proceeds straightly parallel to the 
diagonal line, and finally moves horizontally to 
the end point. The path in purple consists of four 
horizontal movements, diagonal movements, and 
four vertical movements. Both paths are legal for 
DTW. In fact, DTW is computed from all possi-
ble warping paths. Appreciably, the measure 
from either path upper bounds the true DTW, 
and can be computed very quickly 

We incorporate a parameter s into our upper 
bound function, denoted as UB, to specify the 
size of the set in consideration. For s = 0, the set 
contains only the diagonal path. Thus, UB is 
exactly as the Euclidean measure. For s = 1, UB 
considers additionally the two warping paths that 
proceed one point off the diagonal. The value of 
s is limited by the third warping constraint: 

( ) 20, , , .n
k i jw q c i j r where r∀ = − ≤ ≈ That is, 0 s r≤ ≤ . 

Formally, ( ) ( ), , min , , ,UB Q C s P Q C t
s t s

=
− ≤ ≤

 

( ) ( ) ( )

( )

( ) ( )

( )

1
2 2

, , 1 11 1

2
                    ,   0    or1

2 21                  = 1 11 1

2
                    ,   0.1

n
tP Q C t q c q ci i ti i t i

n q c ti ni n t

t nq c q ci i i ti i t

n q c ti n t n i

−

∑ ∑= − + − += = + − +

− ≥∑ = − +

− −− + − +∑ ∑ + += =− +

∑ − ≤= + +

  (11) 

It is trivial to show ( ) ( ), , ,DTW Q C UB Q C s≤ , and 

Fig. 4: the proposed upper bound function is 
built by a series of diagonal-like lines. 
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( ), ,UB Q C r ( ), , 1UB Q C r≤ − ≤ ≤" ( ), , 0UB Q C  

( )2 ,L Q C= . We note that VHGK in 

Eqn. (9) also an upper 
bound function of DTW. However, its quality is 
not as good as our UB. The following proof es-
tablishes the relation, ( ),DTW Q C ≤    

( ) ( ) ( ), , , ,2UB Q C s L Q C VHGK Q C≤ ≤  by showing that 
VHGK is no less than the L2 distance. 

Proof: Recall the definition of VHGK 
( ) ( ) ( ){ }2 2

1
, max , , max , min .n

i i i i i k i ki i r k i ri r k i r
VHGK QC q U q L U c L c

= − ≤ ≤+− ≤ ≤ +
= − − = =∑

Since ( ) ( ){ } ( )2 2 2max ,i i i i i iq U q L q c− − ≥ −  for ei-

ther , ,or i i i i i ic U L L c U= < < , it is easy to obtain 

( ) ( )2 , ,L Q C VHGK Q C≤ . Q.E.D.▪ 

3.3 Using both approximate functions of DTW 

Like lower bound functions, an upper 
bound can be used to further save the expensive 
computation of the true DTW. We provide an 
algorithm using LB and UB in Figure 5. Any 
lower bound functions can be used by simply 
replacing LB therein, while an upper bound 
function, such as VHGK, can substitute UB to 
work right away. Instead of computing DTW for 
the first k database subsequences as in Fig. 2, 
this modified algorithm starts with their lower 
and upper estimates in Step 1. Insert them with 
their associative distances into M and N, fol-
lowed by iteratively checking over the rest of 
database subsequences in Step 4 through 14. In 
each iteration, the lower estimate is first com-
puted. If such value is greater than L, the cur-
rently kth best estimates, this subsequence can be 
safely disregarded. Otherwise, it can be part of 
the answer. We insert it into the candidate queue 
N, and go on to check if its upper estimate can 
help reducing L. If so, Step 10 and 11 update L. 
The original subsequence defining L is removed 
as well. Step 16 through 20 are optional. Its 
presence supports further filtering the items in N 
using the best L that is obtained from previous 
iterations. Afterwards, we need the true DTW 
computations on each item kept in N to finalize 
the query. 

Input:query Q, the number of nearest-neighbors k. 
Output:k most similar subsequences in the database to Q.
Variable:Last best distance L, lower estimate d, upper 

estimate D,minimum queue M with at most k 
items, kept sorted in ascending order,candidate 
queue N holding the possible result from filter-
ing. 

1. Compute UB(Q,Ci) and LB(Q,Ci) for the first k 
database subsequences; insert (i, UB(Q,Ci)) into M 
and insert (i, LB(Q,Ci)) into N. 

2. L = the associated distance of the last item in M. 
3. // First Pass 
4. For each Ci of the rest database subsequences 
5.   d = LB(Q,Ci). 
6.   If d < L [counters] 

7.     Insert (i,d) into N. 
8.     D = UB(Q,Ci). 
9.     If D < L 
10.       Insert (i, D) into M. [discard its k+1th item] 
11.       L = the distance of the last (kth) item in M. 
12.     Endif 
13.   Endif 
14. Endfor 
15. // Second Pass 
16. For each (i,d) in N 
17.   If d of (i,d)>L 
18.     Remove (i,d) from N 
19.   Endif 
20. Endfor 
21. // Post-processing stage: finalize the query 
22. Empty M. 
23. If the size of N is larger than k 
24.   For each (i,d) in N 
25.     Compute DTW(Q,Ci); insert (i, DTW(Q,Ci)) 

     into M. [discard the replaced item] 
26.   Endfor 
27. Endif 

Fig. 5: the k-NNs algo. with lower/upper bound functions. 

We note that the effect of filtering processes 
can be measured by the size of N prior to Step 
22. The larger the size, the more costly the 
overhead in DTW computation. If |N| is exactly 
equal to k, then the items in N are the answer. 
Otherwise, we use M to keep the k best candi-
dates, and return the items in M for the query. 
The quality of lower and upper estimate func-
tions is the key to reduce the size of N during 
filtering. We will present the results from exten-
sive investigations over the diverse time-series 
data of great variety in the next section. 

4. Performance Study 

To assess the quality of approximate func-
tions, we have performed experiments using a 
total of 32 datasets, which were used originally 
in the study of KE [11].These sets range over 
stationary/non-stationary, and noisy/smooth, 
time-series data in different fields [1-3, 19] so as 
to justify the general applicability of the ap-
proximate functions. Since the focus of this pa-
per is on the quality of the approximate func-
tions, we only report the results from 1-NN que-
ries using the algorithms in Fig. 2 & 5 for brevity. 
We set n=256 & r=12 in this study in order for 
the interested readers to compare our results with 
the ones shown in [11]. To avoid ambiguity, 
LB_Ours and UB_Ours(s) are used to present 
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the proposed lower bound and upper bound 
functions, respectively. LB_YF, LB_YF2, 
LB_KPC, and LB_KE stand for the other lower 
bound functions, while the upper bound func-
tions VHGK and Euclidean are denoted as 
UB_VHGK and UB_L2, respectively. For fair 
judgment, 50 subsequences of length 256 are 
randomly extracted from each of 32 data sets for 
each run of experiment. The same set of testing 
data is applied for each approximate function: 
one subsequence serves as the query against the 
49 others. The average from the total of 

50
2 1225C = comparisons is used as the performance 

index. For simplicity, we choose s = 5 and s = r 
(=12) to portrait the effect of the argument set-
ting in UB_Ours(s). Notice that UB_Ours(0) is 
the same as UB_L2. 

4.1 The tightness of the approximate functions 
We measure the tightness of the approxi-

mate functions as the ratio of the estimated dis-
tance over the true DTW distance, as in Eqn. 
(12). The closer this ratio 
is to 1, the better. 

 E stim ated d istance : .
 T rue D T W  d istance 

T ightness T =  (12) 

Fig. 6 & 7 show the results of the experiments, 
which are summarized in Fig. 8. Among the 
lower bound functions, LB_KPC performs the 
worst (T=0.19) on the average, while LB_YF 
and its improved version, LB_YF2, may yield 
the distance estimates4 that are very close to 
zero. They cannot consistently deliver satisfac-
tory results. LB_KE may be a good candidate in 
predicting DTW distances such that its tightness 
measure can favorably reach as high as 0.93. 
However, it is not stable enough for the serious 
time-series database applications. Its worst-case 
measure is indeed inferior to LB_KPC. In con-
trast, the proposed lower bound function ad-
dresses its shortcomings, and is the only option 
available to offer excellent performance guaran-

                                                 
4 The actual values are 0.001675 and 0.004937, respectively. 

tee, as highlighted in Fig. 8. The key for such 
achievement is to employ smaller fences in both 
boundary regions of legitimate warping region. 
On the other hand, UB_VHGK may closely up-
per bound the true DTW distance by the best 
T=1.09. However, its performance is not very 
reliable since most of its distance estimations are 
very high. In fact, the classical Euclidean dis-
tance outperforms UB_VHGK in every experi-
ment. This empirical evidence is consistent with 
the theoretical inference established earlier in 
Section 3.2. Just as expected, our upper bound 
function is a great DTW-distance predictor. With 
s = 5, it can estimate the true DTW distance with 
high accuracy, mostly within 28% overestimate 
range. This result also indicates UB_Ours(5) is 
good enough for most of upper-bound estimates 
in spite a higher value of s is more favorable. We 
will present its effect on savings of the expensive 
DTW computations in the following subsection. 

4.2 Pruning power of the approximate functions 
Fig. 2 & 5 present the algorithms to filter out 
non-similar database subsequences without the 
expensive computation of the true DTW dis-
tances using the lower bound function and upper 
bound function. To justify the effectiveness of 
such preprocessing, we employ the following 
metric to measure the pruning power: 

 Nonsimilar subsequence disqualified w/o DTW 
: . Total number of DB Subsequences Pruning power P = (13) 

We note that 0≤P≤1, a larger P measure signifies 
more pruning power. Fig. 9 summarizes the 
p-measure from extensive experiments on 32 
data sets. The first group shown on the left-hand 
side presents the pruning power of lower bound 
functions by the algorithm in Fig. 2. LB_YF is 
better than LB_KPC, and can be improved fur-
ther as LB_YF2 simply by additionally ex-
changing two input sequences. LB_KE performs 
very well. However, for some severe test cases, 
its p-measure may be as low as zero: essentially 
no effect of filtering. LB_Ours preserves the 
general pruning power, and has been the best 
performer ever since. 
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Fig. 7: The tightness of upper bound functions over 32 data sets.
LB_YF LB_YF2 LB_KPC LB_KE LB_Ours UB_VHGK UB_L2 UB_Ours(5) UB_Ours(r)

Max 0.74 0.86 0.52 0.93 0.94 64.38 9.69 2.10 2.09
Min 0.00 0.00 0.07 0.06 0.32 1.09 1.01 1.00 1.00
Avg 0.20 0.35 0.19 0.51 0.61 7.70 2.61 1.28 1.21

Fig. 8: The summary information on the tightness measure of approximate functions. 
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The second group on the right-hand side of 
Fig. 9 results from the algorithm in Fig. 5 by 
replacing the true DTW computations with the 
upper bound functions. Comparatively, this al-
gorithm can disqualify dissimilar subsequences 
much more rapidly owing to using only low-cost 
approximate functions. As shown, UB_VHGK 
hardly assumes the role of upper functions. Its 
performance is even worse than the simple 
Euclidean function. However, UB_L2 still can-
not offer satisfactory filtering performance. In 
the worst case, UB_L2 paired by LB_KE yet 
fails to meet the challenge set by the most in-
tractable test cases. With vast variations, these 
data tend to have very small lower bound meas-
ure and very high upper bound value. Powered 
by LB_Ours, UB_Ours(5) addresses this prob-
lem very well. On the first pass, 47% of 
non-similar data objects on average are filtered 
out with no true DTW computations, which is 
compatible with using LB_KE alone with the 
true DTW in the first group. The second pass 
further refines the candidate set, and gives addi-
tional 10% improvement (0.57-0.47= 0.1 = 10%). 
The proposed lower and upper bound functions 
significantly outperform all the competing func-
tions, and achieve the best filtering result. 

5. Concluding Remarks 

Nearest-neighbors queries in large 
time-series databases are popular, but very ex-
pensive to execute. The classical Euclidean dis-
tance-based index structures, despite their high 
efficiency, require the perfect input for the query. 
Dynamic Time Warping disrupts this barrier by 
allowing the query input with slightly elastic 
shifting of the time axis. However, the stretch-
able alignments bear high cost in computation. 
In particular, the triangular inequality cannot 
apply for efficient index construction. The cur-
rent trend is to employ low-cost approximate 
functions to filter out most non-similar objects 
before the expensive true distance comparisons. 
We proposed two approximate functions in this 
paper to improve the capability of all the exist-
ing competitors. We show both functions can 
work closely to deliver satisfactory preprocess-
ing results. Only relying on these low-cost ap-
proximate functions, more than half of database 
subsequences can be safely sieved out without 
any dismissal. This achievement shall foster the 
excellent quality of the index structure we are 
currently developing based on the approximate 
functions presented in the paper. 
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