
The Study of Optimal File Allocation in Star Distributed

Computing Systems based on Grouping Genetic Algorithm

基於分群基因演算法處理星狀分散式

系統下最佳化檔案配置之研究

陳永瑞
國立台北科技大學電機系

s2319005@ntut.edu.tw

林敏勝

國立台北科技大學電機系

mslin@ee.ntut.edu.tw

Abstract

In the distributed system, the system reli-
ability problem is always an important and in-
teresting topic for discussion. System reliability
and allocation of data are closely related － the
well is files assignment, the higher is system
reliability. The theme of this thesis is how to find
an optimal file allocation in a star-topology net-
work.

In this paper, we have shown an optimal file
allocation in a star-topology network problem is
NP-hard problem. With related knowledge and
operations of grouping genetic algorithm, we
eliminate worse file assignment through compe-
tition and produce well; lead to find out an opti-
mal file assignment in amount of finite comput-
ing time. Finally, we compared our proposed
algorithms with exact and heuristic algorithms. It
is clear to see that our proposed algorithms could
find an exact or a better file allocation.

Keywords： file allocation, grouping genetic
algorithm, star-topology, reliability, distributed
system.

摘要

分散式系統中，系統可靠度問題一直是一

個重要和有趣的議題，系統的可靠度與資料之

間分佈情形有著密不可分的關係 ─ 一個較

好的檔案配置有著一個較高的系統可靠度，本

論文研究的主題是如何在星狀網路下得到一

個最佳化檔案配置。

在論文中，我們證明了星狀網路下最佳化

檔案配置問題是一個 NP-hard問題，透過相關
的知識與分群基因演算法的操作，淘汰較差的

檔案配置，產生較佳的檔案配置，以便在有限

的時間內得到檔案的最佳配置，最後，再與正

確解和其他的啟發式演算法做比較，可以清楚

發現本論文所提出的演算法可以得到一個正

確或一個較佳的檔案配置。

關鍵詞：檔案配置、分群基因演算法、星狀網

路、可靠度、分散式系統。

1. Introduction

In the engineering, one of the most consid-
erable problems is the reliability. It also occurs
in the design of the distributed computing sys-
tems (DCSs). A DCS is made up of processing
nodes and communication links. In a DCS, we
can use the redundancy of the resource to in-
crease its reliability. How to design a DCS with
the best reliability is significant to the computer
staff.

System performance can be described with
different measures. One of them is reliability,
which is the probability of successful operations.
In the past few decades, numerous efficient reli-
ability computing algorithms had been devel-
oped [2-5]. M. S. Chang, et al [2] proposed a
polynomial algorithm to calculate distributed
program reliability (DPR) on a star topology
with some additional restricted file distribution,
and a polynomial algorithm for computing DPR
with approximate solution. In addition, much
research has been done for the optimization of
system reliability [6-13] with genetic algorithm.

- 1 -

A survey of reliability design with genetic algo-
rithm based is presented in [6]. Y. S. Yeh, et al
[11] for K-node set reliability optimization with
capacity constraint of a distributed system. In
[13], A. Kumar, et al achieved various files were
allocated to different nodes of a distributed
computing system so that the reliability of a
executing a program was maximized.

In daily life, people usually connect their
computer to a hub through communication lines
for communicating with others no mater where
they are. It is clear to see that most computers
are centralized in a hub. In graphic, we can pre-
sent this connection schema as star topology. We
are interested in that how to allocate a set of
various files such that the optimal reliability of a
star DCS with given the reliability of communi-
cation and perfect processing nodes. In this pa-
per, we took advantage of the concept of group-
ing genetic algorithm to handle it. It would find
an exact or near-optimal file allocation in finite
execution time.

2. Problem statements and Mathe-
matical model

Before this file allocation problem pro-
ceeded, we firstly introduce the simple alike case,
and then give a full description of ours.

2.1 Bin packing problem

The bin packing problem (BPP) is a com-
binatorial optimization problem and defined as
below [15]:

Given a finite set of the N objects with sizes
i and the identical bins with capacity C, such

that each . Find a partition of the ob-
jects into the bins such that the number of bins,
K, is minimized.

s
Csi ≤

2.2 File allocation in a star network problem

File allocation in a star network problem
(FASP) can be described as follows: given a set
of files of various sizes and copies, subject to
physical environment constraints (i.e. reliability
and memory of processing nodes, reliability of
distributed systems and communication links,
cost and so on) , how should be the files distrib-
uted among the processing nodes in a star net-
work, so that total size of the files within each
processing node are no larger than its capacity
and the redundant files do not in the same proc-
essing node, as to obtain the best distributed
system reliability ?

2.3 Mathematical model

An optimal file allocation in a star topology
problem is described above can be formulated as
follows:

Maximize:
 DSR(S) (1)

Subject to:

mjni

fx

csx

i
jij

j
ijij

,,2,1;,2,1

,

LL ==

=

≤

∑

∑

(2)

(3)

(4)

where

DSR(S) is the distributed system reliability of a
star network S.

ijx represents that file j is allocated to node i.

⎩
⎨
⎧

=
otherwise.0

nodetoallocatedisfileif1 ij
xij

 (5)

js is the size of file j.

ic is the capacity of processing node i.

jf is the copies of file j.
n is the number of processing nodes in S.
m is the number of distinct files in the file
set.

The following list the relevant assumptions
of this problem:

1. Both the processing nodes and the central
node (hub) in a star network are perfect.

2. Failure of a communication link in a star
network is independent of failures of oth-
ers.

3. At most one copy of each file can be allo-
cated in a processing node.

2.4 File allocation in a star network problem
is NP-hard

In this section, we assume that the reader is
familiar with the basic notions of NP-hard [15].
The BPP [15] is a well-known NP-hard problem.
Therefore, we show that the BPP can be reduced
to the FASP, and the FASP is NP-hard as well.
The statements of the proof are delineated as
below:

Proof:

Given any instance I of the BPP, which has
identical bins of capacity C and a finite set of
object of sizes such that each .
Trivially, there is a direct mapping can make the

is Csi ≤

- 2 -

BPP be reduced to the FASP easily. The direct
mapping maps the objects and the bins in the
BPP to the files and the processing nodes in the
FASP respectively. Here, we assume the mapped
star network S in the FASP has the same reliabil-
ity r (<1) of communication links and each file
has only one copy. This S is the simplest special
case in the FASP. In addition, we assume the
maximal distributed system reliability R of the S
can be computed in amount of finite time. That

is, where the parameter k is the mini-
mal number of the nodes to which the files allo-

cated. The parameter k is able to draw as

krR =

r
R

log
log

and also the minimal number of bins in the BPP.
Owing to NP-hard problem, there is no known
optimal algorithm for BPP running in polyno-
mial time; in other words, the minimal number
of bins, k, can’t be computed in amount of finite
time. The fact contradicts the assumption. So,
the FASP is NP-hard as well ■.

The FASP has been shown as NP-hard.
Thus, as either the number of processing nodes
or of the distinct files, or both increase, it would
take a large amount of execution time to find an
optimal file allocation in a star network.

3. Solution algorithm based on
grouping genetic algorithm

In the industrial, many optimal problems
are quite hard to solve by conventional optimi-
zation techniques. A powerful method originated
from natural genetics is called genetic algorithm
(GA) which has been developed by John Hol-
land in 1975 can provide a means to handle
various optimal problems [16-18]. In GA, a
chromosome represents a solution to the prob-
lem at hand. Each chromosome is composed of
genes. A gene is the basic unit of information.
Each gene represents a trait and will influence
the future individual. The basic GA operations
include crossover, mutation, selection, and fit-
ness evaluation. In [20], E. Falkenauer modified
GA for grouping problems. The modified GA is

called grouping genetic algorithm (GGA). The
main steps in GGA are the same as GA. The
differences in GGA are that crossover operator
transfers groups from parents to offspring and
mutation operator works with groups rather than
items. The steps in our solution algorithms are
described as the following sections.

3.1 Chromosome encoding

We use a binary number based coding
scheme. The length of a chromosome, lchrom,
depends on n and m, and is equal to ,
where m is the number of distinct files and n is
the number of processing node. An illustration of
a chromosome scheme is given in Figure 1,
where = 1 (0) if file j is (not) allocated to
node i.

nm×

ijx

3.2 Evaluation of chromosome

Because computing the reliability of a star
DCS has been shown NP-hard [2], it is hard to
calculate exact reliability of a DCS. Therefore,
we adopt approximate computing methods [2, 3]
to be our evaluation of chromosomes. There are
two bound for our problem, and they are de-
scribed respectively as follows:

()

Procedure.End

;1

End.
End.

;

then1if
do1- to1For

;

;

doto1For

1

''

'

'

' '
∑ ∏ ∏
= ∈ ∈

−

−∪=

=−

=
=

=

=

m

k Fj Oj
jj

kikk

ki

k

kk

k k

pqreturn

PPOO

PP
ki

O

PF

mk

φ

/* boundlower */)(L_BOUND :Procedure v

(6)

← node 1 → ← node 2 → ← node 3 → ← node 4 → ← node 5 →

11x 12x 13x 21x 22x 23x 31x 32x 33x 41x 42x 43x 51x 52x 53x

Figure 1 Illustration of a chromosome scheme with n = 5 and m = 3 (15 genes).

- 3 -

{ }()
{ }

Procedure. End

;1

.End
End.

;then

1,,1if

doFor
;

;

doto1For
/* boundupper * /) U_BOUND(:Procedure

""1

""

"

"

"

∏∑ ∏
∈= ∈

−

−=

−=≠−∩

−∈

−=

=

=

kk Oj
j

m

k Fj
j

kk

ki

k

kk

kk

pqreturn

jOO

kiforjOP

PTj
PTO

PF

mk
v

Kφ

where

k is the kth file cutest in the set of file
distributed in a star network.
P

T is the set of distinct files distributed in a
star network.

"' , kk OO are the sets of nodes that do not con-
tain file k.

"' , kk FF are the set of nodes that contain file
k.

j is the working probability of link associate
with the node j in or .
p

'
kO "

kO
jq is the failure probability of link associate

with the node j in or . '
kF "

kF

The computational complexity of these two
approximate methods are O(mn2) [3].

We take conveniently the mean of the upper
and the lower bound as the fitness of a chromo-
some. That is as follows:

2
)L_BOUND()U_BOUND()(vvvfitness +

=

3.3 Initial population

In this stage, we use a combinatorial
method of random and worst fit (WF) heuristic
to produce a chromosome that satisfies the
node’s constraints and the file’s constraints. Pro-
vided that the selected random node does not
contain the file and its capacity is large enough
to put, we can put it into the selected random
node. If not, require another node. Putting the
file into the founded node that with largest ca-
pacity and does not yet contain it yields the
worst fit heuristic.

3.4 Operators

The roulette wheel strategy [16, 17], fit-
ness-proportional selection, is used. Crossover
operator transfers some node section from par-
ents to offspring [20]. Mutation operator works
with a random node rather than a random bit
[20]. Repair operation used to tune those infea-
sible chromosomes to feasible ones.

Owing to the fact that exchanges a section
of the chromosome in the crossover stage, the
file constraints could be violated. We call the
violation of the file constraints as defect phe-
nomenon. It can be divided two case further －
positive defects and negative defects. Positive
defects refer to the copies of files over than the
file constraints; on the contrary, refer as negative
defects. In order to tune those infeasible chro-
mosomes to feasible ones, we adopt a pair of
repairing mechanisms. The repair procedure is

listed as bellows, where and are the
remaining capacity factor for positive and nega-
tive defects respectively.

'RC "RC

 End.
End.

node. that ofcapacity theupdate and delete then and
 weight selectivelargest with contains which node aSelect

End.
. nodefor weight selective theand theCalculate

do to1 For
do to1 For

 then0 if

. of constraint the- of copiescurrent the

do to1For
/* defects positivefor process * /

.chromosome ain nodeeach ofcapacity remainingcurrent the
 and fileeach of copiescurrent theCalculate

REPAIR :Procedure

''

i

i

kkk

ii

f
 f

kqRCRC

nk
timesj

times

fftimes

mi

×

=
=
>

=

=

(8)

(7)

- 4 -

.Procedure. End
End.

End.
node. that ofcapacity theupdate and

 add then and weight selectivelargest with node aSelect
End.

. nodefor)-(1 weight selective theand theCalculate

do to1 For
do to1 For

 then0 if

. of copiescurrent the- of constraint the

do to1For
/* defects negativefor process * /

""

i

kkk

ii

f

kpRCRC

nk
timesj

times

fftimes

mi

×

=
=
>

=

=

For the positive defects, the of node i
refers as follows:

'RC

ni

j

iRC n

j

i

,,2,1

)9(,
 node ofCapacity Remaining

 node ofCapacity Remaining

1

'

K=

=

∑
=

For the negative defects, the of node
i refers as follows:

"RC

.,,2,1

)10(

,0
file. theeaccommodatcan i node if

,
 node ofCapacity Remaining

 node ofCapacity Remaining

1
"

ni
otherwise

j

i

RC

n

j

K=

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

= ∑
=

3.5 Replacement

In order to get better solutions, the worse
individuals have to be thrown away in process-
ing. Two replacement used here; one is full gen-
erational replacement and the other is elitist
strategy [16-18]. The two worst chromosomes
are replaced by their offspring soon after they
give birth. This is called the full generational
replacement.

3.6 Termination rule

We treat the upper bound of generations
specified by the tester as the termination condi-
tion of the GGAFAS. When the number of gen-
erations exceeds the upper bound, the execution
of the GGAFAS is terminated.

4. Experimental results

The experimental programs used in our ex-
periments had been implemented in Borland

C++, and listed as below:

1. Exact algorithm (EA) [21, 22]: find the
exact reliability with the best file alloca-
tion.

2. Heuristic algorithm 1 (HA 1): assign files
based on the reliability of a communica-
tion link.

3. Heuristic algorithm 2 (HA 2): assign files
based on the product of a node capacity
and the reliability of the communication
link which incident on the node.

4. Heuristic algorithm 3 (HA 3): It’s criterion
of the candidate node selection as follows:

() () ,...,,2,1,
1

nipiweight
i

m

j
jsc

i ==

∑
=

(11)

where ci is the capacity of node i, and sj is
the size of file j.
5. Grouping genetic algorithm 1 (GGAFAS

1): without ranking and replacement; that
is, only crossover and mutation.

6. Grouping genetic algorithm 2 (GGAFAS
2): ranking [16-18] version.

7. Grouping genetic algorithm 3 (GGAFAS
3): full generational replacement version.

8. Grouping genetic algorithm 4 (GGAFAS
4): elitist [16-18] version.

In the implementation of our heuristics, we
also consider the effect affected by the files as-
signed order. We divided this influence into two
ways in detail; one is the smallest file size first
and the other is the biggest first. At each pass,
files relying on their sizes assigned in turn until
satisfy the file requirements.

We used a set of star distributed computing
systems with the numbers of various processing
nodes, the unlike capacities of processing nodes,
the number of distinct files, and the different
copies of files as our experimental materials. The
first number of the test file name represents that

- 5 -

the node number in a star DCS, and the second
number represents that the distinct file number in
a star DCS. For example, a 6-4 test file repre-
sents a star DCS consists of 6 different process-
ing nodes and 4 distinct files.

Due to all of the heuristics have two file as-
signments, in Table 1, the column title “small-
est” refers to the file with smallest size first as-
signed, and “biggest” refers to the file with big-
gest size first assigned. Symbol ‘－‘ means that
the star DCS is too large to exactly calculate its

reliability. The data met the exact values shown
in Table 1 are underlined, and the most ap-
proximate is shown with asterisk (*).

When the number of processing nods in a
star DCS greater than 20, we calculated the av-
erage of upper bound and lower bound as its
reliability. We could see that the HA1 performs
well than other heuristic algorithms in almost all
cases form Table 1.

Table 1 the experimental data of the exact algorithm and the heuristics.

 HA 1 HA 2 HA 3

n m
EA

smallest biggest smallest biggest smallest biggest
6 4 0.85344 0.7576 0.82754* 0.721 0.784 0.7735 0.79856

7 3 0.89544 0.871192 0.8596 0.787 0.8176 0.872032* 0.8596

8 3 0.90272 0.89014* 0.8806 0.8575 0.8398 0.88804 0.8785

9 3 0.953907 0.953907 0.952828 0.841704 0.93761 0.840854 0.935636

10 3 0.945002 0.918492 0.945002 0.83814 0.933372 0.915672 0.926386

15 6 － 0.895647 0.908301 0.804284 0.864195 0.886023 0.916376*

20 13 － 0.912788 0.905985 0.87128 0.905356 0.919974* 0.909575

30 19 － 0.9106 0.919068 0.893928 0.882953 0.920838* 0.905563

50 22 － 0.918804* 0.902886 0.86129 0.856423 0.908406 0.899141

100 40 － 0.908864* 0.907111 0.806761 0.785517 0.885185 0.885948

200 25 － 0.968567* 0.96558 0.863665 0.850215 0.961191 0.965395

In our experiments for GGAFASs, each test
file represents a star DCS. According to the
number of processing nodes in a DCS, we could
classify them into three sorts – small-scale

, middle-scale ,and
large-scale , where and n is the number
of processing node. We chose appropriate popu-
lation sizes for each sort. Small-scale would
have 100 individuals. Middle-scale would have
300 individuals. Large-scale would have 500
individuals. We also found well performance for
GGAFASs with crossover rate r

)10(≤n)5010(≤< n
)50(≥n

c = 1, mutation
rate rm = 0.05, and generation=30. The experi-
mental data listed in Table 2.

In Table 2, symbol ‘－‘ indicates that the
calculation of the final reliability is intractable
when n > 20.The data met the exact values
shown in Table 1 are underlined, and the most
approximate is shown with asterisk (*). The
meanings of columns are illustrated as below:

1. Exact_Max : the maximum of exact value
at the last generation in 30 trials.

2. Max_FT : the maximum fitness at the last
generation in 30 trials.

3. Min_FT : the minimum fitness at the last
generation in 30 trials.

4. FT_Avg : the average fitness at the last
generation for 30 trials.

We observed both GGAFAS 3 and
GGAFAS 4 could find a global optimal in the
small-scale, but GGAFAS 1 and GGAFAS 2
sometimes could find only a local optimal. In the
middle-scale and large-scale, the GGAFAS 3
could performer best, the second is GGAFAS 4,
the third is GGAFAS 1, and the last is GGAFAS
2. From Table 1, we observed the heuristic algo-
rithm 1 could get better solutions, the heuristic 3
is the second, and the heuristic 2 is the poor. We
compared GGAFASs with heuristics as Figure 3
shown; most of GGAFASs would get better so-
lutions than heuristics besides GGAFAS 2. The
performance of GGAFAS 3 and GGAFAS 4 are
excellent in middle-scale and large-scale.

We presented the relative errors of all cases
in small-scale in Table 3.

- 6 -

Table 2 the experimental data of GGAFASs under rc = 1 and rm = 0.05

 GGAFAS 1 GGAFAS 2

n m Exact_Max Max_FT Min_FT FT_Avg Exact_Max Max_FT Min_FT FT_Avg

6 4 0.85344 － － － 0.80948 － － －

7 3 0.89544 － － － 0.874752 － － －

8 3 0.90272 － － － 0.90272 － － －

9 3 0.951824 － － － 0.938336 － － －

10 3 0.945002 － － － 0.927336 － － －

15 6 0.917781 － － － 0.881592 － － －

20 13 0.927262 － － － 0.895543 － － －

30 19 － 0.919642 0.862682 0.8959 － 0.847595 0.752405 0.807822

50 22 － 0.905096 0.864982 0.886874 － 0.847053 0.74346 0.796436

100 40 － 0.864804 0.811001 0.83788 － 0.775108 0.586768 0.669208

200 25 － 0.949631 0.909122 0.937051 － 0.842965 0.725463 0.775536

 GGAFAS 3 GGAFAS 4

n m Exact_Max Max_FT Min_FT FT_Avg Exact_Max Max_FT Min_FT FT_Avg

6 4 0.85344 － － － 0.85344 － － －

7 3 0.89544 － － － 0.89544 － － －

8 3 0.90272 － － － 0.90272 － － －

9 3 0.953907 － － － 0.953907 － － －

10 3 0.945002 － － － 0.945002 － － －

15 6 0.939392* － － － 0.927822 － － －

20 13 0.951664* － － － 0.933935 － － －

30 19 － 0.955008* 0.936481 0.945964 － 0.931501 0.905442 0.919903

50 22 － 0.947798* 0.929994 0.940892 － 0.923432 0.89685 0.909386

100 40 － 0.919355* 0.897167 0.90743 － 0.882147 0.850134 0.866312

200 25 － 0.976545* 0.970773 0.973711 － 0.966712 0.932327 0.952358

0.75
0.76
0.77
0.78
0.79
0.8

0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89
0.9

0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

1

6-4 7-3 8-3 9-3 10-3 15-6 20-
13

30-
19

50-
22

100-
40

200-
25

HA 1 HA 2 HA 3

GGAFAS 1 GGAFAS 2 GGAFAS 3

GGAFAS 4

Figure 3 the experimental results of each
GGAFAS compare with each EA.

Table 3 the relative errors of all cases in
small-scale. Fitness

err (%) 6-4 7-3 8-3 9-3 10-3

HA 1 -3.03 -2.71 -1.39 0 0

HA 2 -8.14 -8.69 -5.01 -1.71 -1.23

HA 3 -6.43 -2.61 -1.63 -1.92 -1.97

GGAFAS1 0 0 0 -0.22 0

GGAFAS 2 -5.15 -2.13 0 -1.63 -1.87

GGAFAS3 0 0 0 0 0

GGAFAS 4 0 0 0 0 0

Case
5. Conclusion

- 7 -

In this paper, we used the concept of
grouping genetic algorithm to solve the file as-
signment in a star-topology network problem
subject to constraints of nodes’ capacity and
files’ copies. We have shown that this problem
belongs to NP-hard. In the proposed algorithms,
we developed the repair procedure to tune those
infeasible chromosomes to feasible ones. We
also have compared our proposed algorithms
with exact and heuristic algorithms.

The exact algorithm usually can find the
exact solution in the small-scale; however, it
takes much execution time. The heuristic algo-
rithms generally take less execution time than
GGAFASs, but it is only able to find out a
near-optimal in the middle-scale and large-scale.
Experimental results have shown that GGAFASs
led to better solutions than heuristics in almost
all cases.

6. Reference
[1] R. Ramakumar, Engineering Reliability:

Fundamentals and Applications, Pren-
tice-Hall, New Jersey, 1993.

[2] D. J. Chen, K. L. Ku, M. S. Chang, and M. S.
Lin, “The Distributed Program Reliability on
a Star Topology: Efficient Algorithm and
Approximate Solution”, Computers & Op-
erations Research, Vol. 27, 2000,pp.
129-142.

[3] J. S. Provan and M. O. Ball, “Disjoint prod-
ucts and efficient computation of reliability”,
Operations Research, Vol.26, No. 5, 1988,
pp.703-715.

[4] G. J. Hwang and S. S. Tseng, “A Heuristic
Task Assignment Algorithm to Maximize
Reliability of a Distributed System”, IEEE
Trans. Reliability, Vol. 42. No. 3, 1993 Sep,
pp.408-415.

[5] C. S. Raghavendra, S. Hariri and V. K. P.
Kumar, “Reliability Analysis in Distributed
Systems”, IEEE Trans. Reliability, Vol. 37.
No3, 1988 Mar, pp.352-258.

[6] J. R. Kim and M. Gen, “GA-based Reliabil-
ity Design: State-of-the-Art Survey”, Com-
puter and Industrial Engineering, 37, 1999,
pp.151-155.

[7] J. Campbell and L. Painton, “Genetic Algo-
rithm in Optimization of System Reliability”,
IEEE Trans. Reliability, Vol. 44. No. 2, 1995
Jun, pp.172-178.

[8] S. T. Cheng, “Topological Optimization of a
Reliable Communication Network”, IEEE
Trans. Reliability, Vol. 47. No. 3, 1998 Sep,
pp.225-233.

[9] A. Kumar, R. M. Pathak, and Y. P.Gupta,

“Genetic-Algorithm-Based Reliability Op-
timization for Computer Network Expan-
sion”, IEEE Trans. Reliability, Vol. 44. No1,
1995 Mar, pp.63-72.

[10] A. E. Smith and D. W. Coit, “Reliability
Optimization of Series-Parallel Systems Us-
ing a Genetic Algorithm”, IEEE Trans. Re-
liability, Vol. 45. No. 2, 1996 Jun,
pp.254-260.

[11] C. C. Chiu, R. S. Chen, and Y. S. Yeh, “A
Genetic Algorithm for K-node Set Reliabil-
ity Optimization with Capacity Constraint of
a Distributed System”, Proc. Natl. Sci.
Counc. ROC(A), Vol. 25. No. 1, 2001,
pp.27-34.

[12] G. Legault and S. Pierre, “A Genetic Algo-
rithm for Designing Distributed Computer
Network Topologies”, IEEE Trans. System,
Man, and Cybernetics, Vol. 28. No.2, 1998
Apr, pp.249-258.

[13] A. Kumar, R. M. Pathak, and Y. P. Gupta,
“Genetic Algorithm Based Approach for File
Allocation on Distributed Systems”, Com-
puter Ops. Res, Vol. 22. No 1, 1995,
pp.41-54.

[14] D. J. Chen, K. M. Kavi, and P. Y. Chang,
“Multimedia File Allocation on VC Net-
works Using Multipath Routing”, IEEE
Trans. Computers, Vol. 49. No. 9, 2000 Sep,
pp.971-977.

[15] D.S. Johnson and M. R. Garey, Computer
and Intractability: A Guide to the Theory of
NP-completeness, Freeman, San Francisco,
1979.

[16] M. Gen, and R. Cheng, Genetic Algo-
rithms and Engineering Design, John Wiley
& Sons, New York, 1997

[17] Z. Michalewicz, Genetic Algorithms +
Data Structures = Evolution Programs, 3rd
eds., Springer-Verlag, New York, 1999.

[18] D. E. Goldberg, Genetic Algorithms in
Search, Optimization, and Machine Learn-
ing, Addison-Wesley, 1989.

[19] C. L. Hwang, F. A. Tillman, V. R. Prasad,
and W. Kuo, Optimal Reliability Design
Fundamentals and Applications, Cambridge,
2001.

[20] E. Falkenauer, “A hybrid grouping genetic
algorithm for bin packing”, Journal of Heu-
ristics, 2(1), Boston, 1996, pp5-30.

[21] C. J. Colburn, The Combinatorics of Net-
work Reliability, Oxford, 1987, pp9-11.

[22] D. R. Shier, Network Reliability and Al-
gebraic Structures, Oxford, 1991, pp8-10.

- 8 -

- 9 -

	陳永瑞

