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Abstract 

In the distributed system, the system reli-
ability problem is always an important and in-
teresting topic for discussion. System reliability 
and allocation of data are closely related － the 
well is files assignment, the higher is system 
reliability. The theme of this thesis is how to find 
an optimal file allocation in a star-topology net-
work. 

In this paper, we have shown an optimal file 
allocation in a star-topology network problem is 
NP-hard problem. With related knowledge and 
operations of grouping genetic algorithm, we 
eliminate worse file assignment through compe-
tition and produce well; lead to find out an opti-
mal file assignment in amount of finite comput-
ing time. Finally, we compared our proposed 
algorithms with exact and heuristic algorithms. It 
is clear to see that our proposed algorithms could 
find an exact or a better file allocation. 

Keywords： file allocation, grouping genetic 
algorithm, star-topology, reliability, distributed 
system. 

摘要 

分散式系統中，系統可靠度問題一直是一

個重要和有趣的議題，系統的可靠度與資料之

間分佈情形有著密不可分的關係 ─ 一個較

好的檔案配置有著一個較高的系統可靠度，本

論文研究的主題是如何在星狀網路下得到一

個最佳化檔案配置。 

在論文中，我們證明了星狀網路下最佳化

檔案配置問題是一個 NP-hard問題，透過相關
的知識與分群基因演算法的操作，淘汰較差的

檔案配置，產生較佳的檔案配置，以便在有限

的時間內得到檔案的最佳配置，最後，再與正

確解和其他的啟發式演算法做比較，可以清楚

發現本論文所提出的演算法可以得到一個正

確或一個較佳的檔案配置。 

關鍵詞：檔案配置、分群基因演算法、星狀網

路、可靠度、分散式系統。 

1. Introduction 

In the engineering, one of the most consid-
erable problems is the reliability. It also occurs 
in the design of the distributed computing sys-
tems (DCSs). A DCS is made up of processing 
nodes and communication links. In a DCS, we 
can use the redundancy of the resource to in-
crease its reliability. How to design a DCS with 
the best reliability is significant to the computer 
staff. 

System performance can be described with 
different measures. One of them is reliability, 
which is the probability of successful operations. 
In the past few decades, numerous efficient reli-
ability computing algorithms had been devel-
oped [2-5]. M. S. Chang, et al [2] proposed a 
polynomial algorithm to calculate distributed 
program reliability (DPR) on a star topology 
with some additional restricted file distribution, 
and a polynomial algorithm for computing DPR 
with approximate solution. In addition, much 
research has been done for the optimization of 
system reliability [6-13] with genetic algorithm. 
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A survey of reliability design with genetic algo-
rithm based is presented in [6]. Y. S. Yeh, et al 
[11] for K-node set reliability optimization with 
capacity constraint of a distributed system. In 
[13], A. Kumar, et al achieved various files were 
allocated to different nodes of a distributed 
computing system so that the reliability of a 
executing a program was maximized. 

In daily life, people usually connect their 
computer to a hub through communication lines 
for communicating with others no mater where 
they are. It is clear to see that most computers 
are centralized in a hub. In graphic, we can pre-
sent this connection schema as star topology. We 
are interested in that how to allocate a set of 
various files such that the optimal reliability of a 
star DCS with given the reliability of communi-
cation and perfect processing nodes. In this pa-
per, we took advantage of the concept of group-
ing genetic algorithm to handle it. It would find 
an exact or near-optimal file allocation in finite 
execution time. 

2. Problem statements and Mathe-
matical model 

Before this file allocation problem pro-
ceeded, we firstly introduce the simple alike case, 
and then give a full description of ours. 

2.1 Bin packing problem 

The bin packing problem (BPP) is a com-
binatorial optimization problem and defined as 
below [15]: 

Given a finite set of the N objects with sizes 
i  and the identical bins with capacity C, such 

that each . Find a partition of the ob-
jects into the bins such that the number of bins, 
K, is minimized. 

s
Csi ≤

2.2 File allocation in a star network problem 

File allocation in a star network problem 
(FASP) can be described as follows: given a set 
of files of various sizes and copies, subject to 
physical environment constraints (i.e. reliability 
and memory of processing nodes, reliability of 
distributed systems and communication links, 
cost and so on) , how should be the files distrib-
uted among the processing nodes in a star net-
work, so that total size of the files within each 
processing node are no larger than its capacity 
and the redundant files do not in the same proc-
essing node, as to obtain the best distributed 
system reliability ? 

2.3 Mathematical model 

An optimal file allocation in a star topology 
problem is described above can be formulated as 
follows: 

Maximize: 
  DSR(S)                (1) 

Subject to: 
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where 

DSR(S) is the distributed system reliability of a 
star network S. 

ijx  represents that file j is allocated to node i. 

⎩
⎨
⎧

=
otherwise.0

nodetoallocatedisfileif1 ij
xij

 (5) 

js  is the size of file j. 

ic  is the capacity of processing node i. 

jf  is the copies of file j. 
n  is the number of processing nodes in S. 
m  is the number of distinct files in the file 
set. 

The following list the relevant assumptions 
of this problem: 

1. Both the processing nodes and the central 
node (hub) in a star network are perfect. 

2. Failure of a communication link in a star 
network is independent of failures of oth-
ers. 

3. At most one copy of each file can be allo-
cated in a processing node. 

2.4 File allocation in a star network problem 
is NP-hard 

In this section, we assume that the reader is 
familiar with the basic notions of NP-hard [15]. 
The BPP [15] is a well-known NP-hard problem. 
Therefore, we show that the BPP can be reduced 
to the FASP, and the FASP is NP-hard as well. 
The statements of the proof are delineated as 
below: 

Proof: 

Given any instance I of the BPP, which has 
identical bins of capacity C and a finite set of 
object of sizes  such that each . 
Trivially, there is a direct mapping can make the 

is Csi ≤
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BPP be reduced to the FASP easily. The direct 
mapping maps the objects and the bins in the 
BPP to the files and the processing nodes in the 
FASP respectively. Here, we assume the mapped 
star network S in the FASP has the same reliabil-
ity r (<1) of communication links and each file 
has only one copy. This S is the simplest special 
case in the FASP. In addition, we assume the 
maximal distributed system reliability R of the S 
can be computed in amount of finite time. That 

is,  where the parameter k is the mini-
mal number of the nodes to which the files allo-

cated. The parameter k is able to draw as 

krR =

r
R

log
log  

and also the minimal number of bins in the BPP. 
Owing to NP-hard problem, there is no known 
optimal algorithm for BPP running in polyno-
mial time; in other words, the minimal number 
of bins, k, can’t be computed in amount of finite 
time. The fact contradicts the assumption. So, 
the FASP is NP-hard as well ■. 

The FASP has been shown as NP-hard. 
Thus, as either the number of processing nodes 
or of the distinct files, or both increase, it would 
take a large amount of execution time to find an 
optimal file allocation in a star network. 

3. Solution algorithm based on 
grouping genetic algorithm 

In the industrial, many optimal problems 
are quite hard to solve by conventional optimi-
zation techniques. A powerful method originated 
from natural genetics is called genetic algorithm 
(GA) which has been developed by John Hol-
land in 1975 can provide a means to handle 
various optimal problems [16-18]. In GA, a 
chromosome represents a solution to the prob-
lem at hand. Each chromosome is composed of 
genes. A gene is the basic unit of information. 
Each gene represents a trait and will influence 
the future individual. The basic GA operations 
include crossover, mutation, selection, and fit-
ness evaluation. In [20], E. Falkenauer modified 
GA for grouping problems. The modified GA is 

called grouping genetic algorithm (GGA). The 
main steps in GGA are the same as GA. The 
differences in GGA are that crossover operator 
transfers groups from parents to offspring and 
mutation operator works with groups rather than 
items. The steps in our solution algorithms are 
described as the following sections. 

3.1 Chromosome encoding 

We use a binary number based coding 
scheme. The length of a chromosome, lchrom, 
depends on n and m, and is equal to , 
where m is the number of distinct files and n is 
the number of processing node. An illustration of 
a chromosome scheme is given in Figure 1, 
where = 1 (0) if file j is (not) allocated to 
node i. 

nm×

ijx

3.2 Evaluation of chromosome 

Because computing the reliability of a star 
DCS has been shown NP-hard [2], it is hard to 
calculate exact reliability of a DCS. Therefore, 
we adopt approximate computing methods [2, 3] 
to be our evaluation of chromosomes. There are 
two bound for our problem, and they are de-
scribed respectively as follows: 
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← node 1 → ←  node 2 → ←  node 3 → ←  node 4 → ←  node 5 → 

11x  12x  13x  21x  22x  23x 31x 32x 33x 41x 42x 43x 51x  52x  53x

Figure 1 Illustration of a chromosome scheme with n = 5 and m = 3 (15 genes). 
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where 

k  is the kth file cutest in the set of file 
distributed in a star network. 
P

T  is the set of distinct files distributed in a 
star network. 

"' , kk OO  are the sets of nodes that do not con-
tain file k. 

"' , kk FF  are the set of nodes that contain file 
k. 

j  is the working probability of link associate 
with the node j in  or . 
p

'
kO "

kO
jq  is the failure probability of link associate 

with the node j in  or . '
kF "

kF

The computational complexity of these two 
approximate methods are O(mn2) [3]. 

We take conveniently the mean of the upper 
and the lower bound as the fitness of a chromo-
some. That is as follows: 

2
)L_BOUND()U_BOUND()( vvvfitness +

=  

3.3 Initial population 

In this stage, we use a combinatorial 
method of random and worst fit (WF) heuristic 
to produce a chromosome that satisfies the 
node’s constraints and the file’s constraints. Pro-
vided that the selected random node does not 
contain the file and its capacity is large enough 
to put, we can put it into the selected random 
node. If not, require another node. Putting the 
file into the founded node that with largest ca-
pacity and does not yet contain it yields the 
worst fit heuristic. 

3.4 Operators 

The roulette wheel strategy [16, 17], fit-
ness-proportional selection, is used. Crossover 
operator transfers some node section from par-
ents to offspring [20]. Mutation operator works 
with a random node rather than a random bit 
[20]. Repair operation used to tune those infea-
sible chromosomes to feasible ones. 

Owing to the fact that exchanges a section 
of the chromosome in the crossover stage, the 
file constraints could be violated. We call the 
violation of the file constraints as defect phe-
nomenon. It can be divided two case further －  
positive defects and negative defects. Positive 
defects refer to the copies of files over than the 
file constraints; on the contrary, refer as negative 
defects. In order to tune those infeasible chro-
mosomes to feasible ones, we adopt a pair of 
repairing mechanisms. The repair procedure is 

listed as bellows, where  and are the 
remaining capacity factor for positive and nega-
tive defects respectively. 
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.Procedure. End
End.        

End.                  
node. that ofcapacity   theupdate and                        
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End.                        
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For the positive defects, the  of node i 
refers as follows: 
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For the negative defects, the  of node 
i refers as follows: 
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3.5 Replacement 

In order to get better solutions, the worse 
individuals have to be thrown away in process-
ing. Two replacement used here; one is full gen-
erational replacement and the other is elitist 
strategy [16-18]. The two worst chromosomes 
are replaced by their offspring soon after they 
give birth. This is called the full generational 
replacement. 

3.6 Termination rule 

We treat the upper bound of generations 
specified by the tester as the termination condi-
tion of the GGAFAS. When the number of gen-
erations exceeds the upper bound, the execution 
of the GGAFAS is terminated. 

4. Experimental results 

The experimental programs used in our ex-
periments had been implemented in Borland 

C++, and listed as below: 

1. Exact algorithm (EA) [21, 22]: find the 
exact reliability with the best file alloca-
tion. 

2. Heuristic algorithm 1 (HA 1): assign files 
based on the reliability of a communica-
tion link. 

3. Heuristic algorithm 2 (HA 2): assign files 
based on the product of a node capacity 
and the reliability of the communication 
link which incident on the node. 

4. Heuristic algorithm 3 (HA 3): It’s criterion 
of the candidate node selection as follows: 

( ) ( ) ,...,,2,1,
1

nipiweight
i

m

j
jsc

i ==

∑
=

 
(11)

where ci is the capacity of node i, and sj is 
the size of file j. 
5. Grouping genetic algorithm 1 (GGAFAS 

1): without ranking and replacement; that 
is, only crossover and mutation. 

6. Grouping genetic algorithm 2 (GGAFAS 
2): ranking [16-18] version. 

7. Grouping genetic algorithm 3 (GGAFAS 
3): full generational replacement version. 

8. Grouping genetic algorithm 4 (GGAFAS 
4): elitist [16-18] version. 

In the implementation of our heuristics, we 
also consider the effect affected by the files as-
signed order. We divided this influence into two 
ways in detail; one is the smallest file size first 
and the other is the biggest first. At each pass, 
files relying on their sizes assigned in turn until 
satisfy the file requirements. 

We used a set of star distributed computing 
systems with the numbers of various processing 
nodes, the unlike capacities of processing nodes, 
the number of distinct files, and the different 
copies of files as our experimental materials. The 
first number of the test file name represents that 
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the node number in a star DCS, and the second 
number represents that the distinct file number in 
a star DCS. For example, a 6-4 test file repre-
sents a star DCS consists of 6 different process-
ing nodes and 4 distinct files. 

Due to all of the heuristics have two file as-
signments, in Table 1, the column title “small-
est” refers to the file with smallest size first as-
signed, and “biggest” refers to the file with big-
gest size first assigned. Symbol ‘－‘ means that 
the star DCS is too large to exactly calculate its 

reliability. The data met the exact values shown 
in Table 1 are underlined, and the most ap-
proximate is shown with asterisk (*).  

When the number of processing nods in a 
star DCS greater than 20, we calculated the av-
erage of upper bound and lower bound as its 
reliability. We could see that the HA1 performs 
well than other heuristic algorithms in almost all 
cases form Table 1. 

Table 1 the experimental data of the exact algorithm and the heuristics. 

 HA 1 HA 2 HA 3 

n m 
EA 

smallest biggest smallest biggest smallest biggest 
6 4 0.85344 0.7576 0.82754* 0.721 0.784 0.7735 0.79856

7 3 0.89544 0.871192 0.8596 0.787 0.8176 0.872032* 0.8596

8 3 0.90272 0.89014* 0.8806 0.8575 0.8398 0.88804 0.8785

9 3 0.953907 0.953907 0.952828 0.841704 0.93761 0.840854 0.935636

10 3 0.945002 0.918492 0.945002 0.83814 0.933372 0.915672 0.926386

15 6 － 0.895647 0.908301 0.804284 0.864195 0.886023 0.916376*

20 13 － 0.912788 0.905985 0.87128 0.905356 0.919974* 0.909575

30 19 － 0.9106 0.919068 0.893928 0.882953 0.920838* 0.905563

50 22 － 0.918804* 0.902886 0.86129 0.856423 0.908406 0.899141

100 40 － 0.908864* 0.907111 0.806761 0.785517 0.885185 0.885948

200 25 － 0.968567* 0.96558 0.863665 0.850215 0.961191 0.965395

 

In our experiments for GGAFASs, each test 
file represents a star DCS. According to the 
number of processing nodes in a DCS, we could 
classify them into three sorts – small-scale 

, middle-scale ,and 
large-scale , where and n is the number 
of processing node. We chose appropriate popu-
lation sizes for each sort. Small-scale would 
have 100 individuals. Middle-scale would have 
300 individuals. Large-scale would have 500 
individuals. We also found well performance for 
GGAFASs with crossover rate r

)10( ≤n )5010( ≤< n
)50( ≥n

c = 1, mutation 
rate rm = 0.05, and generation=30. The experi-
mental data listed in Table 2. 

In Table 2, symbol ‘－‘ indicates that the 
calculation of the final reliability is intractable 
when n > 20.The data met the exact values 
shown in Table 1 are underlined, and the most 
approximate is shown with asterisk (*). The 
meanings of columns are illustrated as below: 

1. Exact_Max : the maximum of exact value 
at the last generation in 30 trials. 

2. Max_FT : the maximum fitness at the last 
generation in 30 trials. 

3. Min_FT : the minimum fitness at the last 
generation in 30 trials. 

4. FT_Avg : the average fitness at the last 
generation for 30 trials. 

We observed both GGAFAS 3 and 
GGAFAS 4 could find a global optimal in the 
small-scale, but GGAFAS 1 and GGAFAS 2 
sometimes could find only a local optimal. In the 
middle-scale and large-scale, the GGAFAS 3 
could performer best, the second is GGAFAS 4, 
the third is GGAFAS 1, and the last is GGAFAS 
2. From Table 1, we observed the heuristic algo-
rithm 1 could get better solutions, the heuristic 3 
is the second, and the heuristic 2 is the poor. We 
compared GGAFASs with heuristics as Figure 3 
shown; most of GGAFASs would get better so-
lutions than heuristics besides GGAFAS 2. The 
performance of GGAFAS 3 and GGAFAS 4 are 
excellent in middle-scale and large-scale. 

We presented the relative errors of all cases 
in small-scale in Table 3. 
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Table 2 the experimental data of GGAFASs under rc = 1 and rm = 0.05 

 GGAFAS 1 GGAFAS 2 

n m Exact_Max Max_FT Min_FT FT_Avg Exact_Max Max_FT Min_FT FT_Avg 

6 4 0.85344 － － － 0.80948 － － － 

7 3 0.89544 － － － 0.874752 － － － 

8 3 0.90272 － － － 0.90272 － － － 

9 3 0.951824 － － － 0.938336 － － － 

10 3 0.945002 － － － 0.927336 － － － 

15 6 0.917781 － － － 0.881592 － － － 

20 13 0.927262 － － － 0.895543 － － － 

30 19 － 0.919642 0.862682 0.8959 － 0.847595 0.752405 0.807822 

50 22 － 0.905096 0.864982 0.886874 － 0.847053 0.74346 0.796436 

100 40 － 0.864804 0.811001 0.83788 － 0.775108 0.586768 0.669208 

200 25 － 0.949631 0.909122 0.937051 － 0.842965 0.725463 0.775536 

 GGAFAS 3 GGAFAS 4 

n m Exact_Max Max_FT Min_FT FT_Avg Exact_Max Max_FT Min_FT FT_Avg 

6 4 0.85344 － － － 0.85344 － － － 

7 3 0.89544 － － － 0.89544 － － － 

8 3 0.90272 － － － 0.90272 － － － 

9 3 0.953907 － － － 0.953907 － － － 

10 3 0.945002 － － － 0.945002 － － － 

15 6 0.939392* － － － 0.927822 － － － 

20 13 0.951664* － － － 0.933935 － － － 

30 19 － 0.955008* 0.936481 0.945964 － 0.931501 0.905442 0.919903 

50 22 － 0.947798* 0.929994 0.940892 － 0.923432 0.89685 0.909386 

100 40 － 0.919355* 0.897167 0.90743 － 0.882147 0.850134 0.866312 

200 25 － 0.976545* 0.970773 0.973711 － 0.966712 0.932327 0.952358 
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Figure 3 the experimental results of each 
GGAFAS compare with each EA. 

Table 3 the relative errors of all cases in 
small-scale. Fitness 

err (%) 6-4 7-3 8-3 9-3 10-3

HA 1 -3.03 -2.71 -1.39 0 0

HA 2 -8.14 -8.69 -5.01 -1.71 -1.23

HA 3 -6.43 -2.61 -1.63 -1.92 -1.97

GGAFAS1 0 0 0 -0.22 0

GGAFAS 2 -5.15 -2.13 0 -1.63 -1.87

GGAFAS3 0 0 0 0 0

GGAFAS 4 0 0 0 0 0

Case 
5. Conclusion 
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In this paper, we used the concept of 
grouping genetic algorithm to solve the file as-
signment in a star-topology network problem 
subject to constraints of nodes’ capacity and 
files’ copies. We have shown that this problem 
belongs to NP-hard. In the proposed algorithms, 
we developed the repair procedure to tune those 
infeasible chromosomes to feasible ones. We 
also have compared our proposed algorithms 
with exact and heuristic algorithms. 

The exact algorithm usually can find the 
exact solution in the small-scale; however, it 
takes much execution time. The heuristic algo-
rithms generally take less execution time than 
GGAFASs, but it is only able to find out a 
near-optimal in the middle-scale and large-scale. 
Experimental results have shown that GGAFASs 
led to better solutions than heuristics in almost 
all cases. 
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