
An Effective Task Scheduling Method with Link Contention

Constraints for Heterogeneous System
Shuo-Zhan Ho, Yi-Hsuan Lee, Shun-Min Hsu, and Cheng Chen
Department of Computer Science and Information Engineering

National Chiao Tung University, Hsinchu, Taiwan, R.O.C.
E-mail: {sjho, yslee, smhsu, cchen}@csie.nctu.edu.tw

Abstract

Sufficient and various computing

resources make heterogeneous system suitable

for parallel and distributed applications. A task

scheduling problem is to arrange tasks of

application on computing resources and aim to

achieve minimum schedule length. Many

effective scheduling algorithms have been

proposed, but most of them assume that the

network is fully-connected and contention free.

In order to make this problem more practical, we

take the link contention constraints into

consideration. In this paper, we propose an

effective and efficient Communication

Look-ahead Scheduling (CLS) algorithm

extended from list-scheduling algorithm. CLS

contains two scheduling phases. In the first

phase, we prioritize tasks with a new value

which integrates both information from the

concept of critical path and the communication

behavior of each task. In the second phase, we

propose a processor selecting mechanism with

communication look-ahead manner to allocate

tasks. According to our performance evaluations,

CLS is superior to other algorithms both in

effectiveness and efficiency.

Keywords: Task scheduling, Heterogeneous

system, Link contention

1 Introduction

Heterogeneous system is a computing

platform which consists of different kinds of

resources interconnected with a high-speed

network. Because of various and sufficient

computing resources, a heterogeneous system

requires compile-time and runtime support for

executing parallel programs. Thus, an efficient

task scheduling mechanism becomes one of the

key factors for achieving high performance [2-4,

6, 8-15].

The task scheduling program includes two

problems of assigning tasks to appropriate

processors and ordering task executions on each

processor. In general, an application is

represented by a Directed Acyclic Graph (DAG)

in which nodes and edges represent tasks and

data dependencies, respectively. The scheduling

goal is to find a schedule with minimum

schedule length that satisfies precedence

constraints [13].

Many related scheduling algorithms on

heterogeneous system have been proposed [3-4,

6, 8-15]. However, most of them assume that the

network is fully-connected (clique) and

contention free. This assumption is unrealistic

due to the expensive network cost. Therefore, in

mailto:@csie.nctu.edu.tw

this paper, we take the link contention

constraints into consideration to make the

scheduling problem more practical [1].

Our Communication Look-ahead

Scheduling (CLS) algorithm contains two phases

doing task prioritizing and processor selecting

respectively. In the first phase, we define a

weight value for every task, which can use to

prioritize tasks more suitably when link

contentions are considered. In the second phase,

we propose a processor selecting mechanism

with communication look-ahead manner to

allocate tasks. It considers not only the

completion time of the task itself, but also

message transferring costs that the task may

occur. Based on our performance valuations,

CLS can achieve effective results compared with

an existed algorithm Bubble Scheduling and

Allocation (BSA) in most cases. Moreover, CLS

is much efficient than BSA, especially for larger

input DAGs.

The paper is organized as follows. In

section 2, we describe the problem and system

architecture. Our proposed algorithm and

theoretical analysis are introduced in section 3.

Section 4 gives some simulation results. Finally,

some conclusions and future work are listed in

section 5.

2 Fundamental Background and
Related Work

2.1 Fundamental Background on Task

Scheduling [2-4, 6, 8-15]

A parallel program is represented by a

Directed Acyclic Graph (DAG) G = (T, E, C),

where T is the set of tasks, E is the set of

dependencies, and C is a function from E to

integer representing the communication cost.

The heterogeneous system consists of m

heterogeneous processors P1…Pm, which

connected in different network topologies and

link contentions may happen due to the scarcity

of communication resource [6, 12]. In order to

represent different network topologies, an

interconnection network matrix N is defined. If

there exists a direct physical link between

processors Pi and Pj, components nij and nji in N

are both equal to one. Since a task on different

processor has different computation cost in

heterogeneous system, a computation cost

matrix W is defined to record computation costs

of all task-processor pairs. In this matrix,

component wij indicates the computation cost of

task Ti on processor Pj. Examples of DAG,

network topology, and matrices N and W are

shown in Figure 1.

We also assume that two tasks allocated to

different processors communicate by message

passing. That is, Ti sends message Mij to Tj on

network link Lxy, which is the communication

resource of the routing path between processor

Px and Py. Notice that the communication cost

on the same processor is zero, and computation

and communication can be overlapped.

In the following we define some

terminologies. wi is the average computation

cost of task Ti. EST(Ti, Pj) is the Earliest Start

Time of task Ti on processor Pj defined as

follows:







+=

=

∈
otherwise

 task theis task if 0

)))((max),(max(),(

),(

)(
mim

TpredT
ji

iji

cTAFTjavailPTEST

entryTPTEST

im

where pred(Ti) is the set of immediate

predecessors of Ti, avail(j) is the available time

of Pj, and AFT(Ti) will be defined later.

Next, EFT(Ti, Pj) is the Earliest Finish

Time of task Ti on processor Pj, which is the

summation of EST(Ti, Pj) and wij. After Ti is

actually scheduled to Pj, its Actual Start Time

and Actual Finish Time is represented by AST(Ti)

and AFT(Ti), respectively. Finally, the schedule

length, also called makespan, is equal to max

(AFT(Tm)), where Tm is an exit task.

2.2 Related Work [6, 12]

Dynamic Level Scheduling (DLS) is a list

scheduling algorithm which prioritizes tasks

with Dynamic Level DL(Ti, Pj) [12]. DL(Ti, Pj) is

defined as SL(Ti) – ST(Ti, Pj), where Static Level

SL(Ti) is the maximum computation costs along

a path from Ti to exit task, and ST(Ti, Pj) is the

Start Time of Ti on Pj. After each scheduling

step, it computes DL for every ready task, and

the task with largest DL is scheduled.

Unfortunately, the task with largest DL may not

on the critical path, so DLS cannot always select

the most important task in each scheduling step.

Bubble Scheduling and Allocation (BSA)

is another list scheduling algorithm that is more

effective than DLS [6]. It main mechanism is

task migration, which moves tasks to neighbor

processors to improve their finish time. BSA

contains two phases. In the first phase, it

serializes tasks according to the value of bottom

level and topological order, where the bottom

level of Ti is the maximum computation cost

from Ti to exit task. In the second phase, it

selects the pivot processor, which gives the

minimum schedule length if all tasks are

allocated to it. Then, every task is tried to

migrate to neighbor processors in series if the

makespan can be improved. After considering

all tasks, another processor is chosen as new

pivot processor and repeats task migration steps

until all processors are considered.

T1

T0

T5 T6

T2 T3

T7

T8

T4

50

40
100

10 10
10

10 10 10 10

50
60

P0 P1

P3 P2
L23

L01

L12 L03



































=

2015168
74471851
60514333
78572015
12974245
55161454
6392815

56575021
62739

W



















=

0101
1010
0101
1010

N

(a) (b)

(c) (d)

Figure 1. (a) DAG, (b) computation cost matrix, (c) network topology, (d) interconnection
network matrix.

Although the BSA algorithm usually

performs more effective than DLS algorithm, its

time complexity is higher. Hence, in this paper,

we propose a Communication Look-ahead

Scheduling (CLS) algorithm to solve the task

scheduling problem efficiently in heterogeneous

system with link contention constraints.

3 Communication Look-ahead
Scheduling (CLS) Algorithm

Based on our observation, Heterogeneous

Earliest-Finish-Time (HEFT) is an effective and

efficient task scheduling algorithm used in

heterogeneous system [13]. Thus, in our CLS,

we will extend its concepts to consider link

contentions. Similar to many list scheduling

algorithms, CLS contains two phases doing task

prioritizing and processor selecting. Detailed

scheduling steps will be described as follows.

3.1 Task Prioritizing Phase

In HEFT and many other task scheduling

algorithms, bottom level is often used to

prioritize tasks. Although bottom level also can

consider communication overhead, they may not

proper when we consider link contention in

various network topologies. In CLS, we

prioritize tasks by using the value weight which

is defined below:







++=

=

∑
∈)(

))(()(

)(

ij TsuccT
jijii

iii

TweightcwTweight

TwTweight

otherwise

exit task theis task if

where succ(Ti) is the set of immediate

successors of task Ti.

For example, Figure 2 lists weight values

of tasks in Figure 1. Different from bottom level,

we sum all communication costs of a task into

its weight value, instead of selecting only the

maximum one. From above definition, a task

with larger weight value indicates it may contain

more successors, higher communication cost, or

larger average computation cost. A task with any

one of above feature should be scheduled earlier,

especially when link contention constraints are

considered. In Section 3.3 we will analyze the

difference between bottom level and weight

more detailed. Finally, tasks will be sorted in

non-increasing order of weight values.

3.2 Processor Selecting Phase

Many task scheduling algorithm used on

heterogeneous system suggest to allocate task to

the processor which can complete it earliest, and

their results have been proven quite effective.

But once link contentions are considered, this

selecting mechanism seems not precise enough,

because the chosen processor may not contain

sufficient communication resources to transfer

necessary messages. Hence, in CLS, we propose

a new processor selecting mechanism to avoid

above situation.

In the beginning, we will introduce some

terminologies at first. DLi = {Lij | i ≠ j and nij = 1}

is the set of direct links connected to processor

Pi. ECST(Ti, DLj) = max (avail(DLj), EFT(Ti, Pj))

is the Estimative Communication Start Time of

task Ti on link set DLj, where avail(DLj) returns

task T0 T1 T2 T3 T4 T5 T6 T7 T8

weight 942 292 143 155 49 106 120 111 14

Figure 2. The weight values of tasks in Figure 1.

the earliest available time provided by any direct

link in DLj. Next, ECFT(Ti, DLj) is the

Estimative Communication Finish Time of task

Ti on link set DLj, which equals to ECST(Ti, DLj)

+ δ, where δ represents the time needed by task

Ti to transfer all possible messages to its

immediate successors.

If task Ti is allocated to processor Pj, all

possible messages from Ti to its immediate

successors should be arranged on DLj. As for the

message arrangement, in CLS we use the

simplest ASAP (As Soon As Possible)

mechanism, which will transfer messages as

soon as any appropriate network link is available.

We use the partial schedule of DAG in Figure 1

as an example. If T0 and T1 are allocated to P2

and P1 respectively, messages M01, M15, and M16

should be arranged as shown in Figure 3(a).

Figure 3(b) lists related values if T1 is allocated

to other processors.

After calculating ECST and ECFT values

of a task on all processors, this task is allocated

to the processor with minimum ECFT. In above

example, T1 will be allocated to P2. Notice that

when we calculate ECFT values of task Ti, all

possible messages from Ti are assumed to be

transferred. Actually this assumption is unduly

considered, because some transformations are

unnecessary. However, this assumption can lead

us to select the appropriate processor for Ti.

In summary, CLS contains both the

concept of EFT, which is widely used in many

task scheduling methods in heterogeneous

system, and the extra consideration of limited

communication resource. The entire CLS

algorithm is listed in Figure 4, and in the next

subsection we will analyze it theoretically.

3.3 Preliminary Analysis

At first, we discuss the difference between

using bottom level and weight values to

prioritize tasks when link contention is

considered. Suppose there is a task Ti in the

lower level of a DAG with small computation

cost and large number of immediate successors.

In BSA Ti will be scheduled very late, because its

bottom level is small. Unfortunately the

makespan may be lengthened, since all its

successors must wait for its completion and

transferring necessary messages. This situation

is much serious when link contention is

Figure 3. (a) Partial schedule of DAG in Figure 1, (b) related values.

(a)

 P0 P1 P2 P3

EST 42 42 2 42

EFT 63 92 59 98

ECST 63 92 59 98

ECFT 73 102 69 108

 (b)

considered. On the other hand, in CLS Ti can be

scheduled earlier to avoid above situation, due to

its larger weight value caused by lot of

successors.

As for the processor selection, we use a

look-ahead mechanism by prearranging all

possible messages on direct links. This feature

can help us select the beneficial processor,

which will not postpone unscheduled tasks.

Moreover, since that we consider the number of

links connected to a processor when calculating

ECFT, this processor selecting mechanism also

can tolerate various network topologies.

The time complexity is derived as follows.

Suppose that the given DAG contains n tasks

and e edges and there are m processors in the

system. In the task prioritizing phase, weight

values can be computed by traversing the DAG,

so its time complexity is O(n+e). In the

processor selecting phase, every task takes O(me)

to compute ECST and ECFT, so its time

complexity is O(men). Therefore, the entire time

complexity of CLS is O(mem). Obviously, our

CLS algorithm is more efficient than that of BSA

which complexity is O(m2en) [6].

4 Performance Studies

4.1 Simulation Environment

In this section, we construct a simulation

and evaluation environment to evaluate BSA and

CLS. Our environment contains three parts. The

Random Graph Generator part is used to

generate DAGs randomly with different number

of tasks and granularity, which is defined as the

average computation cost divided by the average

communication cost in the DAG [6-7]. In our

simulation we let the number of tasks between

50 and 500, and the granularity may be 0.1, 1,

or 10. The Network Topology part is used to

construct four network topologies containing 16

processors, including Ring, Hypercube, Clique,

and Mesh [5]. Finally in the Algorithm part we

implement algorithms BSA and CLS.

4.2 Experimental Results

First at all, we define Normalized

Schedule Length (NSL) as the schedule length of

CLS divided by the schedule length of BSA. In

other words, if NSL is less than one, the

schedule obtained by CLS is shorter. Next,

another value speed is defined as the scheduling

Figure 4. Communication Look-ahead Scheduling (CLS) algorithm.

Input: DAG and matrices N, C, and W
Output: Schedule result and makespan

1. Calculate weight values for all tasks in DAG
2. Sort tasks in non-increasing order of weight values
3. for (task Ti with largest weight value)

(a) Calculate ECFT(Ti, DLj) for every processor Pj
(b) Allocate Ti to Pk with minimum ECFT(Ti, DLk)
(c) Delete Ti from the task queue

4. Repeat step 3 until all tasks are scheduled
5. Output the schedule result and makespan

0.7

0.8

0.9

1

1.1

1.2

50 100 150 200 250 300 350 400 450 500
Number of Tasks

N
SL

granularity = 0.1
granularity = 1
granularity = 10

0.7

0.8

0.9

1

1.1

1.2

50 100 150 200 250 300 350 400 450 500
Number of Tasks

N
SL

granularity = 0.1
granularity = 1
granularity = 10

0.7

0.8

0.9

1

1.1

1.2

50 100 150 200 250 300 350 400 450 500
Number of Tasks

N
SL

granularity = 0.1
granularity = 1
granularity = 10

0.7

0.8

0.9

1

1.1

1.2

50 100 150 200 250 300 350 400 450 500
Number of Tasks

N
SL

granularity = 0.1
granularity = 1
granularity = 10

time of CLS divided by the scheduling time of

BSA. That is to say, if speed is larger, BSA

spends much more time doing scheduling.

In the following we describe experimental

results in different network topologies. Figure

5(a) is simulation results on Clique network.

This network topology offers sufficient

communication resources, and their NSL are

smaller than or nearly equal to one whether

granularities are. Results on Ring network are

illustrated in Figure 5(b). On the contrary, this

network topology has limited communication

resources. In the figure, obviously all NSL are

also smaller than or equal to one. From above

observations, it shows that CLS has effective

performance on two extreme network topologies

with respect to the communication resource.

Figures 5(c) and 5(d) are simulation results on

Hypercube and Mesh networks, respectively.

We can see that CLS still outperforms than that

of BSA in most case.

Then, we analyze simulation results in

different granularities. From Figure 5, it is clear

that CLS performs much effectively than that of

BSA for coarse-grain DAGs (granularity = 10).

For these computation-dominated DAGs, the

performance of task serialization becomes more

important . In previous section we have

mentioned that prioritizes tasks according to

their weight values is much suitable, so our CLS

can outperform BSA. On the other hand,

performances of CLS and BSA are similar for

(a) (b)

(c) (d)

Figure 5. Simulation results. (a) Clique, (b) Ring, (c) Hypercube, (d) Mesh.

0
10
20
30
40
50
60
70
80

50 100 150 200 250 300 350 400 450 500
Numer of Tasks

Sp
ee

du
p

The CLS algorithm

fine-grain DAGs (granularity = 0.1). For these

DAGs with heavier communication costs, the

arranging of messages becomes critical.

Intuitively CLS should also achieve better results

than that of BSA since it contains

communication look-ahead mechanism, but

actually their performances are similar. We

think the reason is that our communication

look-ahead mechanism is not accurate enough,

because we simply assume that all possible

messages are need to be transferred. Hence, the

processor selected for every task is not the most

appropriate. We remain this problem to be

solved in our future work.

Finally, we discuss the efficiency of CLS

algorithm. Based on previous complexity

analysis, CLS runs at least m times faster than

BSA, where m is the number of processors. In

Figure 6, we find that speedup increases with the

number of tasks increasing, which means that

CLS is much efficient in larger DAGs.

5 Conclusions and Future Work

In this paper, we propose a

Communication Look-ahead Scheduling (CLS)

algorithm to schedule tasks on heterogeneous

system considering link contention constraints.

It contains a new weight value to effectively

prioritize tasks, and allocates tasks by a

mechanism with communication look-ahead

manner. According to our theoretical analysis

and simulation results, CLS is not only effective

but also efficient than BSA in most cases.

There is still a promising issue for future

research. As mentioned in previous section, CLS

cannot achieve expected results for DAGs with

smaller granularity. This is because we simply

assume all possible messages from a task will be

transferred, but actually some on them are

unnecessary. This unduly assumption may

mislead the processor selecting result. In the

future, we can design a mechanism to predict

messages that are really need to be transferred.

After integrating this mechanism into the

processor selecting phase, we believe

performances of CLS can be further improved.

References

[1] Donglai Dai and Dhabaleswar K. Panda,

“How Much Does Network Contention

Affect Distributed Shared Memory

Performance”, Proc. of International

Conference on Parallel Processing, pp.

454-461, 1997.

[2] I. Ekmecic, I. Tartalja, and V. Milutinovic,

“A Survey of Heterogeneous Computing:

Figure 6. Simulation results.

Concepts and Systems”, Proc. of IEEE, Vol.

84, pp. 1127-1144, Aug. 1996.

[3] T.S. Hsu, Joseph C. Lee, Dian Rae Lpoez,

and William A. Royce, “Task Allocation on

a Network of Processors”, IEEE

Transactions on Computers, Vol. 49, No. 12,

pp.1339-1353, Dec. 2000.

[4] C.C. Hui and Samuel T. Chanson,

“Allocation Task Interaction Graphs to

Processors in Heterogeneous Networks”,

IEEE Transactions on Parallel and

Distributed Systems, Vol.8, No. 9, pp.

908-925, Sep. 1997.

[5] Kai Hwang and Zhiwei Xu, Scalable

Parallel Computing, Mc Graw-Hill Book

Company, 1998.

[6] Yu-Kwong Kwok and Ishfaq Ahmad, “Link

Contention-constrained Scheduling and

Mapping of Tasks and Messages to a

Network of Heterogeneous Processors”,

Proc. of International Conference on

Parallel Processing, pp. 551-558, 1999.

[7] Yu-Kwong Kwok and Ishfaq Ahmad,

“Benchmarking the Task Graph Scheduling

Algorithm,” Proc. of Parallel and

Distributed Processing Symposium, pp.

531-537, 1998.

[8] Yu-Kwong Kwok and Ishfaq Ahmad,

“Dynamic Critical-Path Scheduling: An

Effective Technique for Allocating Task

Graphs to Multiprocessors”, IEEE Transac-

tions on Parallel and Distributed Systems,

Vol. 7, No. 5, pp. 506-521, May 1996.

[9] Yu-Kwong Kwok, Ishfaq Ahmad, and J. Gu,

“FAST: A Low-Complexity Algorithm for

Efficient Scheduling of DAGs on Parallel

Processors”, Proc. of International

Conference on Parallel Processing, Vol. 2,

pp. 150-157, 1996.

[10] J. Liou and M.A Palis, “An Efficient

Clustering Heuristic for Scheduling DAGs

on Multiprocessors”, Proc. of Parallel and

Distributed Processing Symposium, 1996.

[11] P. Shroff, D.W. Watson, N.S, Flann, and

R.Freund, “Genetic Simulated Annealing

for Scheduling Data-Dependent Tasks in

Heterogeneous Environments”, Proc. of

Heterogeneous Computing Workshop, pp.

98-104, 1996.

[12] G. C. Sih and E. A. Lee, “A Compile-Time

Scheduling Heuristic for Interconnection-

Constrained Heterogeneous Processor

Architectures”, IEEE Transactions on

Parallel and Distributed Systems, Vol. 4,

No.2, pp. 175-186, Feb. 1993.

[13] H. Topcuoglu, S. Hariri, and Min-You Wu,

“Performance-effective and Low-comple-

xity Task Scheduling for Heterogeneous

Computing”, IEEE Transactions on Parallel

and Distributed Systems, Vol.13, No. 3, pp.

260-274, March 2002.

[14] M. Wu, W. Shu, and J. Gu, “Efficient Local

Search for DAG Scheduling”, IEEE Tran-

sactions on Parallel and Distributed System,

Vol. 12, No. 6, pp. 617-627, June 2001.

[15] T. Yang and A. Gerasoulis, “DSC:

Scheduling Parallel Tasks on an Unbounded

Number Processors”, IEEE Transactions on

Parallel and Distributed Systems, Vol. 5,

No. 9, pp.951-967, Sep. 1994.

