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Abstract 

Sufficient and various computing 

resources make heterogeneous system suitable 

for parallel and distributed applications. A task 

scheduling problem is to arrange tasks of 

application on computing resources and aim to 

achieve minimum schedule length. Many 

effective scheduling algorithms have been 

proposed, but most of them assume that the 

network is fully-connected and contention free. 

In order to make this problem more practical, we 

take the link contention constraints into 

consideration. In this paper, we propose an 

effective and efficient Communication 

Look-ahead Scheduling (CLS) algorithm 

extended from list-scheduling algorithm. CLS 

contains two scheduling phases. In the first 

phase, we prioritize tasks with a new value 

which integrates both information from the 

concept of critical path and the communication 

behavior of each task. In the second phase, we 

propose a processor selecting mechanism with 

communication look-ahead manner to allocate 

tasks. According to our performance evaluations, 

CLS is superior to other algorithms both in 

effectiveness and efficiency. 

Keywords: Task scheduling, Heterogeneous 

system, Link contention 

1 Introduction 

Heterogeneous system is a computing 

platform which consists of different kinds of 

resources interconnected with a high-speed 

network. Because of various and sufficient 

computing resources, a heterogeneous system 

requires compile-time and runtime support for 

executing parallel programs. Thus, an efficient 

task scheduling mechanism becomes one of the 

key factors for achieving high performance [2-4, 

6, 8-15]. 

The task scheduling program includes two 

problems of assigning tasks to appropriate 

processors and ordering task executions on each 

processor. In general, an application is 

represented by a Directed Acyclic Graph (DAG) 

in which nodes and edges represent tasks and 

data dependencies, respectively. The scheduling 

goal is to find a schedule with minimum 

schedule length that satisfies precedence 

constraints [13]. 

Many related scheduling algorithms on 

heterogeneous system have been proposed [3-4, 

6, 8-15]. However, most of them assume that the 

network is fully-connected (clique) and 

contention free. This assumption is unrealistic 

due to the expensive network cost. Therefore, in 
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this paper, we take the link contention 

constraints into consideration to make the 

scheduling problem more practical [1]. 

Our Communication Look-ahead 

Scheduling (CLS) algorithm contains two phases 

doing task prioritizing and processor selecting 

respectively. In the first phase, we define a 

weight value for every task, which can use to 

prioritize tasks more suitably when link 

contentions are considered. In the second phase, 

we propose a processor selecting mechanism 

with communication look-ahead manner to 

allocate tasks. It considers not only the 

completion time of the task itself, but also 

message transferring costs that the task may 

occur. Based on our performance valuations, 

CLS can achieve effective results compared with 

an existed algorithm Bubble Scheduling and 

Allocation (BSA) in most cases. Moreover, CLS 

is much efficient than BSA, especially for larger 

input DAGs. 

The paper is organized as follows. In 

section 2, we describe the problem and system 

architecture. Our proposed algorithm and 

theoretical analysis are introduced in section 3. 

Section 4 gives some simulation results. Finally, 

some conclusions and future work are listed in 

section 5. 

2 Fundamental Background and 
Related Work 

2.1 Fundamental Background on Task 

Scheduling [2-4, 6, 8-15] 

A parallel program is represented by a 

Directed Acyclic Graph (DAG) G = (T, E, C), 

where T is the set of tasks, E is the set of 

dependencies, and C is a function from E to 

integer representing the communication cost. 

The heterogeneous system consists of m 

heterogeneous processors P1…Pm, which 

connected in different network topologies and 

link contentions may happen due to the scarcity 

of communication resource [6, 12]. In order to 

represent different network topologies, an 

interconnection network matrix N is defined. If 

there exists a direct physical link between 

processors Pi and Pj, components nij and nji in N 

are both equal to one. Since a task on different 

processor has different computation cost in 

heterogeneous system, a computation cost 

matrix W is defined to record computation costs 

of all task-processor pairs. In this matrix, 

component wij indicates the computation cost of 

task Ti on processor Pj. Examples of DAG, 

network topology, and matrices N and W are 

shown in Figure 1. 

We also assume that two tasks allocated to 

different processors communicate by message 

passing. That is, Ti sends message Mij to Tj on 

network link Lxy, which is the communication 

resource of the routing path between processor 

Px and Py. Notice that the communication cost 

on the same processor is zero, and computation 

and communication can be overlapped. 

In the following we define some 

terminologies. wi is the average computation 

cost of task Ti. EST(Ti, Pj) is the Earliest Start 

Time of task Ti on processor Pj defined as 

follows: 
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where pred(Ti) is the set of immediate 

predecessors of Ti, avail(j) is the available time 

of Pj, and AFT(Ti) will be defined later. 



 

 

 

 

 

 

 

 

 

 

 

 

Next, EFT(Ti, Pj) is the Earliest Finish 

Time of task Ti on processor Pj, which is the 

summation of EST(Ti, Pj) and wij. After Ti is 

actually scheduled to Pj, its Actual Start Time 

and Actual Finish Time is represented by AST(Ti) 

and AFT(Ti), respectively. Finally, the schedule 

length, also called makespan, is equal to max 

(AFT(Tm)), where Tm is an exit task. 

2.2 Related Work [6, 12] 

Dynamic Level Scheduling (DLS) is a list 

scheduling algorithm which prioritizes tasks 

with Dynamic Level DL(Ti, Pj) [12]. DL(Ti, Pj) is 

defined as SL(Ti) – ST(Ti, Pj), where Static Level 

SL(Ti) is the maximum computation costs along 

a path from Ti to exit task, and ST(Ti, Pj) is the 

Start Time of Ti on Pj. After each scheduling 

step, it computes DL for every ready task, and 

the task with largest DL is scheduled. 

Unfortunately, the task with largest DL may not 

on the critical path, so DLS cannot always select 

the most important task in each scheduling step. 

Bubble Scheduling and Allocation (BSA) 

is another list scheduling algorithm that is more 

effective than DLS [6]. It main mechanism is 

task migration, which moves tasks to neighbor 

processors to improve their finish time. BSA 

contains two phases. In the first phase, it 

serializes tasks according to the value of bottom 

level and topological order, where the bottom 

level of Ti is the maximum computation cost 

from Ti to exit task. In the second phase, it 

selects the pivot processor, which gives the 

minimum schedule length if all tasks are 

allocated to it. Then, every task is tried to 

migrate to neighbor processors in series if the 

makespan can be improved. After considering 

all tasks, another processor is chosen as new 

pivot processor and repeats task migration steps 

until all processors are considered. 
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Figure 1. (a) DAG, (b) computation cost matrix, (c) network topology, (d) interconnection 
network matrix. 



 

 

 

Although the BSA algorithm usually 

performs more effective than DLS algorithm, its 

time complexity is higher. Hence, in this paper, 

we propose a Communication Look-ahead 

Scheduling (CLS) algorithm to solve the task 

scheduling problem efficiently in heterogeneous 

system with link contention constraints. 

3 Communication Look-ahead 
Scheduling (CLS) Algorithm 

Based on our observation, Heterogeneous 

Earliest-Finish-Time (HEFT) is an effective and 

efficient task scheduling algorithm used in 

heterogeneous system [13]. Thus, in our CLS, 

we will extend its concepts to consider link 

contentions. Similar to many list scheduling 

algorithms, CLS contains two phases doing task 

prioritizing and processor selecting. Detailed 

scheduling steps will be described as follows. 

3.1 Task Prioritizing Phase 

In HEFT and many other task scheduling 

algorithms, bottom level is often used to 

prioritize tasks. Although bottom level also can 

consider communication overhead, they may not 

proper when we consider link contention in 

various network topologies. In CLS, we 

prioritize tasks by using the value weight which 

is defined below: 
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where succ(Ti) is the set of immediate 

successors of task Ti. 

For example, Figure 2 lists weight values 

of tasks in Figure 1. Different from bottom level, 

we sum all communication costs of a task into 

its weight value, instead of selecting only the 

maximum one. From above definition, a task 

with larger weight value indicates it may contain 

more successors, higher communication cost, or 

larger average computation cost. A task with any 

one of above feature should be scheduled earlier, 

especially when link contention constraints are 

considered. In Section 3.3 we will analyze the 

difference between bottom level and weight 

more detailed. Finally, tasks will be sorted in 

non-increasing order of weight values. 

3.2 Processor Selecting Phase 

Many task scheduling algorithm used on 

heterogeneous system suggest to allocate task to 

the processor which can complete it earliest, and 

their results have been proven quite effective. 

But once link contentions are considered, this 

selecting mechanism seems not precise enough, 

because the chosen processor may not contain 

sufficient communication resources to transfer 

necessary messages. Hence, in CLS, we propose 

a new processor selecting mechanism to avoid 

above situation. 

In the beginning, we will introduce some 

terminologies at first. DLi = {Lij | i ≠ j and nij = 1} 

is the set of direct links connected to processor 

Pi. ECST(Ti, DLj) = max (avail(DLj), EFT(Ti, Pj)) 

is the Estimative Communication Start Time of 

task Ti on link set DLj, where avail(DLj) returns  

task T0 T1 T2 T3 T4 T5 T6 T7 T8 

weight 942 292 143 155 49 106 120 111 14 

Figure 2. The weight values of tasks in Figure 1. 



 

 

 

 

 

 

 

 

the earliest available time provided by any direct 

link in DLj. Next, ECFT(Ti, DLj) is the 

Estimative Communication Finish Time of task 

Ti on link set DLj, which equals to ECST(Ti, DLj) 

+ δ, where δ represents the time needed by task 

Ti to transfer all possible messages to its 

immediate successors. 

If task Ti is allocated to processor Pj, all 

possible messages from Ti to its immediate 

successors should be arranged on DLj. As for the 

message arrangement, in CLS we use the 

simplest ASAP (As Soon As Possible) 

mechanism, which will transfer messages as 

soon as any appropriate network link is available. 

We use the partial schedule of DAG in Figure 1 

as an example. If T0 and T1 are allocated to P2 

and P1 respectively, messages M01, M15, and M16 

should be arranged as shown in Figure 3(a). 

Figure 3(b) lists related values if T1 is allocated 

to other processors. 

After calculating ECST and ECFT values 

of a task on all processors, this task is allocated 

to the processor with minimum ECFT. In above 

example, T1 will be allocated to P2. Notice that 

when we calculate ECFT values of task Ti, all 

possible messages from Ti are assumed to be 

transferred. Actually this assumption is unduly 

considered, because some transformations are 

unnecessary. However, this assumption can lead 

us to select the appropriate processor for Ti. 

In summary, CLS contains both the 

concept of EFT, which is widely used in many 

task scheduling methods in heterogeneous 

system, and the extra consideration of limited 

communication resource. The entire CLS 

algorithm is listed in Figure 4, and in the next 

subsection we will analyze it theoretically. 

3.3 Preliminary Analysis 

At first, we discuss the difference between 

using bottom level and weight values to 

prioritize tasks when link contention is 

considered. Suppose there is a task Ti in the 

lower level of a DAG with small computation 

cost and large number of immediate successors. 

In BSA Ti will be scheduled very late, because its 

bottom level is small. Unfortunately the 

makespan may be lengthened, since all its 

successors must wait for its completion and 

transferring necessary messages. This situation 

is much serious when link contention is  

Figure 3. (a) Partial schedule of DAG in Figure 1, (b) related values. 
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 P0 P1 P2 P3 

EST 42 42 2 42 

EFT 63 92 59 98 

ECST 63 92 59 98 

ECFT 73 102 69 108 

 (b) 



 

 

 

 

 

 

 

 

considered. On the other hand, in CLS Ti can be 

scheduled earlier to avoid above situation, due to 

its larger weight value caused by lot of 

successors. 

As for the processor selection, we use a 

look-ahead mechanism by prearranging all 

possible messages on direct links. This feature 

can help us select the beneficial processor, 

which will not postpone unscheduled tasks. 

Moreover, since that we consider the number of 

links connected to a processor when calculating 

ECFT, this processor selecting mechanism also 

can tolerate various network topologies. 

The time complexity is derived as follows. 

Suppose that the given DAG contains n tasks 

and e edges and there are m processors in the 

system. In the task prioritizing phase, weight 

values can be computed by traversing the DAG, 

so its time complexity is O(n+e). In the 

processor selecting phase, every task takes O(me) 

to compute ECST and ECFT, so its time 

complexity is O(men). Therefore, the entire time 

complexity of CLS is O(mem). Obviously, our 

CLS algorithm is more efficient than that of BSA 

which complexity is O(m2en) [6]. 

4 Performance Studies 

4.1 Simulation Environment 

In this section, we construct a simulation 

and evaluation environment to evaluate BSA and 

CLS. Our environment contains three parts. The 

Random Graph Generator part is used to 

generate DAGs randomly with different number 

of tasks and granularity, which is defined as the 

average computation cost divided by the average 

communication cost in the DAG [6-7]. In our 

simulation we let the number of tasks between 

50 and 500, and the granularity may be 0.1, 1, 

or 10. The Network Topology part is used to 

construct four network topologies containing 16 

processors, including Ring, Hypercube, Clique, 

and Mesh [5]. Finally in the Algorithm part we 

implement algorithms BSA and CLS. 

4.2 Experimental Results 

First at all,  we define Normalized 

Schedule Length (NSL) as the schedule length of 

CLS divided by the schedule length of BSA. In 

other words, if NSL is less than one, the 

schedule obtained by CLS is shorter. Next, 

another value speed is defined as the scheduling  

Figure 4. Communication Look-ahead Scheduling (CLS) algorithm. 

Input: DAG and matrices N, C, and W 
Output: Schedule result and makespan 
 
1. Calculate weight values for all tasks in DAG 
2. Sort tasks in non-increasing order of weight values 
3. for (task Ti with largest weight value) 

(a) Calculate ECFT(Ti, DLj) for every processor Pj 
(b) Allocate Ti to Pk with minimum ECFT(Ti, DLk) 
(c) Delete Ti from the task queue 

4. Repeat step 3 until all tasks are scheduled 
5. Output the schedule result and makespan 
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time of CLS divided by the scheduling time of 

BSA. That is to say, if speed is larger, BSA 

spends much more time doing scheduling. 

In the following we describe experimental 

results in different network topologies. Figure 

5(a) is simulation results on Clique network. 

This network topology offers sufficient 

communication resources, and their NSL are 

smaller than or nearly equal to one whether 

granularities are. Results on Ring network are 

illustrated in Figure 5(b). On the contrary, this 

network topology has limited communication 

resources. In the figure, obviously all NSL are 

also smaller than or equal to one. From above 

observations, it shows that CLS has effective 

performance on two extreme network topologies 

with respect to the communication resource. 

Figures 5(c) and 5(d) are simulation results on 

Hypercube and Mesh networks, respectively. 

We can see that CLS still outperforms than that 

of BSA in most case. 

Then, we analyze simulation results in 

different granularities. From Figure 5, it is clear 

that CLS performs much effectively than that of 

BSA for coarse-grain DAGs (granularity = 10). 

For these computation-dominated DAGs, the 

performance of task serialization becomes more 

important . In previous section we have 

mentioned that prioritizes tasks according to 

their weight values is much suitable, so our CLS 

can outperform BSA. On the other hand, 

performances of CLS and BSA are similar for  

(a) (b) 

(c) (d) 

Figure 5. Simulation results. (a) Clique, (b) Ring, (c) Hypercube, (d) Mesh. 
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fine-grain DAGs (granularity = 0.1). For these 

DAGs with heavier communication costs, the 

arranging of messages becomes critical. 

Intuitively CLS should also achieve better results 

than that of BSA since it contains 

communication look-ahead mechanism, but 

actually their performances are similar. We 

think the reason is that our communication 

look-ahead mechanism is not accurate enough, 

because we simply assume that all possible 

messages are need to be transferred. Hence, the 

processor selected for every task is not the most 

appropriate. We remain this problem to be 

solved in our future work. 

Finally, we discuss the efficiency of CLS 

algorithm. Based on previous complexity 

analysis, CLS runs at least m times faster than 

BSA, where m is the number of processors. In 

Figure 6, we find that speedup increases with the 

number of tasks increasing, which means that 

CLS is much efficient in larger DAGs. 

5 Conclusions and Future Work 

In this paper, we propose a 

Communication Look-ahead Scheduling (CLS) 

algorithm to schedule tasks on heterogeneous 

system considering link contention constraints. 

It contains a new weight value to effectively 

prioritize tasks, and allocates tasks by a 

mechanism with communication look-ahead 

manner. According to our theoretical analysis 

and simulation results, CLS is not only effective 

but also efficient than BSA in most cases. 

There is still a promising issue for future 

research. As mentioned in previous section, CLS 

cannot achieve expected results for DAGs with 

smaller granularity. This is because we simply 

assume all possible messages from a task will be 

transferred, but actually some on them are 

unnecessary. This unduly assumption may 

mislead the processor selecting result. In the 

future, we can design a mechanism to predict 

messages that are really need to be transferred. 

After integrating this mechanism into the 

processor selecting phase, we believe 

performances of CLS can be further improved. 
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