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Abstract— This paper presents a scalable scheme
for ensuring causal ordering of messages passing
among processes in large-scale distributed systems.
Previously proposed approaches, categorized as cen-
tralized or fully distributed, either place the en-
tire processing loads on a single process or incur
quadratic message overheads in the number of par-
ticipating processes. These solutions perform limit-
edly in large-scale systems. Our scheme organizes the
entire system as hierarchical clusters in which any
of the previously proposed approaches can be em-
ployed. Message causality is maintained by enforcing
the rules by which messages are propagated from ori-
gins to destinations. This approach incurs much less
processing load on hot-spot sites than the centralized
approach, or, alternatively, requires a message space
overhead much less than that in the fully distributed
approach. We shall show that, by setting cluster size
appropriately, the message space overhead can be
only a linear or even a logarithmic function of the
number of processes involved. Our approach is suit-
able for large non-proprietary networks.
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I. I NTRODUCTION

The nondeterministic nature of distributed sys-
tems,i.e., asynchronous process execution speeds
and unpredictable communication delays, is the
major factor that complicates the design, verifica-
tion, and analysis of distributed systems.Causal
message ordering, henceforth referred to as CMO,
is an ordering imposed on message deliveries to re-
duce system nondeterminism while retaining con-
currency. In systems preserving CMO, messages
directed to the same destination are delivered in
an order consistent with their potential causality.
The causality under consideration is determined by
the happens-beforerelation [25] but is restricted
to message sending and receiving events. Specif-
ically, if a message-sending event happens before
the sending of another message, the former mes-
sage is considered to have the potential for affect-
ing the latter in a causal way, and therefore must be
received before the latter to retain their cause-effect
relationship, if they are destined for the same pro-
cess. In asynchronous distributed systems, it may
be difficult to ensure CMO since processes con-
tinue their computation and communication activi-

ties after they issue messages, and message delays
are arbitrary.

CMO is considered important to reliable dis-
tributed systems [6], [8], [10], [27]. It can be used
to maintain the consistency of replicated data lo-
cated at different sites [23], [13], observe behav-
iors of a distributed systems [29], [33], simplify the
design of distributed algorithms [1], [4], [6], and
preserve semantic causality in news or teleconfer-
ence applications. Many implementations and ex-
tensions of causally ordered communication have
been done in distributed shared memory systems
[3], multimedia systems [2], [7], and mobile com-
puting systems [5], [18], [28], [35]. Stoller and
Schneider [32] formulated a Hoare-style proof sys-
tem for the verification of algorithms that exploit
CMO as their communication primitives. Yen [34]
analyzed the probability of breaking CMO by as-
suming some random distributions of message de-
lays.

Conventional CMO solutions are either central-
ized or fully distributed. In centralized approaches
[12], [24], [30], a dedicated coordinator process se-
rializes all messages exchanged in the system, ef-
fectively imposing a total order on delivery that is
consistent with the causal order. In distributed ap-
proaches [8], [9], [29], [31], each process can send
messages directly to any others without the inter-
vention of a coordinator. The distributed approach
may use piggybacking technique [8], where each
message carries a history copy of all causally prior
messages. Thus when a messagem is delivered to
a processP , copies of all messages addressed to
P that causally precedem also arrive withm or
have arrived earlier. Alternatively, the distributed
approach may exploit vector clocks [20], [26] or
similar mechanisms [19] so that, instead of the con-
tents of all causally preceding messages, only vec-
tor clock timestamps of causally preceding mes-
sages need to be carried in each message [9], [29],
[31]. The basic idea is to deliver messagem to pro-
cessP only if all messages that causally preceded
m and were destined forP have already been de-
livered. Otherwise, messagem should be buffered
until the delivery condition stated above is satisfied.

None of these conventional approaches scales
well. The centralized approach creates a per-



formance bottleneck at the coordinator, result-
ing in performance degradation especially when
message-exchanges are frequent. This drawback
makes centralized approaches unsuitable for large-
scale systems. The piggybacking approach may
either suffer from unbounded growth of the in-
formation added to messages, or require a com-
plex mechanism to prevent it. Fully distributed
approaches exploiting vector clocks, on the other
hand, impose a size ofO(n2) message header on
every message (n is the number of participating
processes), which has been proven necessary for
system-wide CMO [2]1 This overhead becomes in-
tolerable whenn grows large.

In fact, one of the reasons that some researchers
criticized about CMO is that observed solutions do
not scale [17]. To cope with this limitation, in
this paper we propose a CMO scheme that unifies
conventional approaches for large-scale distributed
systems. Our scheme organizes the system into hi-
erarchicalclusters. Within a cluster, any existing
CMO methods can be locally adopted. Our ap-
proach effectively decomposes system-wide CMO
into a number of independent cluster-wide CMOs.
The correctness is guaranteed by confining the way
in which messages are propagated. The merit is
that the heavy work load on the coordinator that the
centralized approach imposes is distributed, or, al-
ternatively, the costly message space overhead that
a distributed approach imposes is decreased signif-
icantly.

The rest of this paper is organized as follows.
Section 2 gives some definitions and assumptions
concerning the problem. Section 3 describes de-
tails of the proposed method and also proves its
correctness. In Section 4, we analyze the effects of
clustering on reducing message header space. Sec-
tion 5 concludes the paper.

II. PRELIMINARY

Our scheme assumes an asynchronous dis-
tributed system consisting ofn processes. A pro-
cess communicates with others solely by means
of message-passing. No shared memory or global
clock is available. The communication channel be-
tween a pair of processes is assumed to be logically
reliable. Message transmission delays are arbitrary
but finite.

An event is defined as an atomic operation that
changes the state of a process. Three types of
events may occur in distributed systems: thesend-
ing of messages, thereceiptof messages, and inter-
nal events [26]. What constitutes an internal event

1The message overhead of some multicast (broadcast) proto-
cols can be degenerated toO(n). For such examples, we re-
fer the reader to [14], [11]. Observe that a multicast can be
achieved by multiple unicasts but notvice versa. The reduction
of complexity essentially results from abbreviating redundant,
repeatedly identical causality information of messages in the
unicast-type protocol. This paper is primarily concerned with
the point-to-point communication paradigm, a primitive.

depends on the context of the system and is irrel-
evant to the definition of message causality. The
happens-before relation (denoted by “→”) on the
set of events is the smallest transitive relation satis-
fying the following conditions [25]:
• if a andb occur in the same process and ifa

comes beforeb thena → b;
• if a is the sending of messagem andb is the

receipt ofm, thena → b.
Conventional CMO approaches can be abstracted
as providing every process with a causal message
delivery part (CMD) between the application pro-
cess and underlying communication network. The
receipt of a message is thus differentiated from the
delivery of the same message. A message is said to
bereceivedby a site when it arrives at the CMD of
that site, and is said to bedeliveredto a site when it
is passed by the CMD to the application process
without violating causal order. Letsent(m) and
deliv(m), respectively, denote the events of sending
and delivering messagem. Conventional schemes
as well as ours aim to ensure CMO with respect
to sending and delivering events,i.e., sent(m) →
sent(m′) always impliesdeliv(m) → deliv(m′) for
two messagesm andm′ addressed to the same des-
tination.

III. T HE PROPOSEDSCHEME

The proposed scheme consists of two parts. The
first part states how processes are organized. The
second part describes how messages are propa-
gated from sources to destinations. We shall first
present a primitive two-layer hierarchy and then
extend it to a more complex structure.

A. A Primitive Two-Layer Hierarchy

Process Organization
The set of all processes is partitioned into a number
of subsets called clusters. Processes in the same
cluster is allowed to send messages directly (i.e.,
without any intermediation of any other process) to
each other. Within each cluster a specific process is
designated as theagentof the cluster, and all oth-
ers are referred to asclients. All messages into or
out of a cluster must be queued and served serially
at the agent. The set of all agents forms a special
cluster, theagent cluster, which has no agent for
it. How processes are clustered is irrelevant to the
correctness of our scheme. A straightforward ap-
proach is to assign computationally coherent pro-
cesses to the same cluster. Alternatively, processes
can be clustered to match the underlying commu-
nication or administration structure of existing net-
work.
Message Ordering and Propagation
We extended the abstraction of conventional ap-
proaches by introducing at every site a message
relay part (MR) between the application process
and the CMD. MR takes charge in relaying mes-
sages between clusters. When a message is issued



by an application process, it is first passed to the
MR at the same site to determine the next stop of
the messages. The determination rule is as fol-
lows. An intra-cluster message will be sent directly
to its destination, whereas an inter-cluster message
will be first directed to the origin’s agent, then to-
ward the destination’s agent, and finally to the des-
tination process. Each relay of this message cor-
responds to an intra-cluster message propagation
between two MRs. Since every cluster employs
its own CMO protocol, the relay is accomplished
by the locally adopted cluster-wide CMO proto-
col. An agent, which involves in communications
between two clusters, must maintain two indepen-
dent CMD processes, one for each cluster. At such
an agent, an incoming message is first received by
the corresponding CMD process. Upon delivery
respecting CMO, the message is then passed up-
ward to the MR. If the delivered message is des-
tined for this site, it is passed further to the applica-
tion process; otherwise, the MR relays the message
through the other CMD process. A typical message
propagation scenario is illustrated in Figure 1.
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Fig. 1. Message propagation example

Note that the relaying between two CMD pro-
cesses must be done in FIFO order. ConsiderY
in Figure 1 as an example. Letm andm′ be two
messages both from clusterB. If m is delivered by
CMDB to Y ’s MR beforem′ is, the MR must send
m throughCMDC beforem′. For message relayed
in the opposite direction,i.e., from clustersC to B,
the FIFO order requirement must be met as well.

B. Hyper-Clustered Hierarchy

The two-layer hierarchy can be extended, con-
sidering the fact that the agent cluster forms a
smaller subsystem that can be further decomposed
by recursively applying the same clustering rule.
Such an extension yields a hyper-clustered hierar-
chy.

Definition 1: Consider systemS. Let the primi-
tive set of processes be at the first layer and let the
set of processes at thei-th layer be denoted bySi.
S forms anl-layer hierarchy (l ≥ 2) if for all i,
1 ≤ i < l, the following conditions hold.
• Si is partitioned into mi clusters,
S1

i ,S2
i , . . . ,Smi

i , where1 < mi < |Si|.
• Let Aj

i denote the agent of clusterSj
i (1 ≤

j ≤ mi). Si+1 = {A1
i , A

2
i , . . . , A

mi
i }.

According to the definition, there is only one clus-
ter on the topmost layer which has no agent for it-
self. Figure 2 shows an example of a three-layer
hierarchy. Note that some process participating in
two or more clusters may act as an agent on some
layer as well as a client on a higher layer. As an ex-
ample, processR in Figure 2 involves in commu-
nications among three clusters, one on each layer,
and acts as a client on the third layer.
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Fig. 2. An example of a three-layer hierarchy

A site participating ink (k ≥ 2) clusters now
must maintaink independent CMD processes, one
for each cluster. This results in totalk(k − 1) pos-
sible directions along which messages may be re-
layed from one CMD process to another. It is re-
quired that MR must relay all messages along the
same direction in FIFO order.

The message relaying rule is generalized for an
l-layer hierarchy (l ≥ 2). Figure 3 shows a proce-
dure, MRP, that computes the complete sequence
of sites through which to propagate a message with
known source and destination sites. The relaying
path for messages from siteSi to site Sj is ob-
tained by invokingMRP(Si, Sj , 1). The output is
a sequence of〈sender, receiver〉 tuples, which, in
order, specifies each link of that path.

C. CMD Implementations

Adopting Raynal-Schiper-Toueg Algorithm
The first implementation we consider is to adopt
in every cluster the algorithm proposed by Raynal,
Schiper, and Toueg [29] (henceforth referred to as
the RST algorithm). In this algorithm, each process
Pi maintains ann × n matrix, SENTi, wheren is
the total number of processes, to record the number
of messages, as it has known, sent from each pro-
cess to each others. Every message transmitted by
Pi is tagged with the contents ofSENTi. Each pro-
cessPi also maintains ann-entry vector,DELIVi,
to record the number of messages delivered toPi



procedureMRP(Si, Sj , k)
if Si andSj are in the same cluster on layerk then

output〈Si, Sj〉
else

Let Ai be the agent ofSi on layerk
Let Aj be the agent ofSj on layerk
if Si 6≡ Ai then

output〈Si, Ai〉
end if
invokeMRP(Ai, Aj , k + 1)
/* to generate the path fromAi to Aj */
if Sj 6≡ Aj then

output〈Aj , Sj〉
end if

end if
end procedure

Fig. 3. Procedure Message Routing Path (MRP)

from all others. On receiving a message, saym,
processPi can determine whetherm can be deliv-
ered by comparingDELIVi with the i-th column
of the SENTmatrix taggingm. If m can be de-
livered,SENTi as well asDELIVi are updated, and
theSENTmatrix taggingm can be discarded.

Adopting the RST algorithm as an implementa-
tion of CMD, our scheme can be viewed as a way
of clustering the RST algorithm. Each CMD pro-
cess maintains its ownSENT matrix andDELIV
vector. The sizes of the matrix and the vector de-
pend on the size of the cluster which the CMD
process belongs to. When a message is delivered
by a CMD, the taggedSENTmatrix will be dis-
carded before the message is passed to the MR.
On the other hand, when the MR passes a message
through a CMD to send to a cluster, the CMD will
tag the message with theSENTmatrix maintained
by that CMD. Consequently, when an inter-cluster
message is in propagation, it is only tagged with
theSENTmatrix corresponding to the current clus-
ter. TheSENTmatrix corresponding to the previ-
ous cluster has been discarded when the message
left that cluster.
Adopting the Centralized Approach
If the centralized approach is adopted in every clus-
ter as an implementation of CMD, a coordinator
must be nominated in each cluster. A simple strat-
egy is to incorporate the coordinator’s functional-
ity in every agent, and to nominate a process as
the coordinator at the top layer since the top layer,
by our definition, has no agent for itself. When
combining this strategy with the FIFO requirement
on message relaying, message propagation can be
modeled as a propagation tree similar to those pro-
posed for total-ordering multicast [21], [22]. Fig-
ure 4 shows the propagation tree that corresponds
to the three-layer hierarchy shown in Figure 2.

It is also possible to adopt other CMO algo-
rithms, and to even use different approaches for
each cluster. Various degrees of modifications may
be needed in adopting these approaches.
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Fig. 4. The propagation tree corresponding to the hierarchy
shown in Figure 2

D. Correctness Justification

We shall justify that our mechanism ensures
system-wide CMO. The key to the correctness is
that wheneversent(m) → sent(m′) holds for two
messagesm and m′ addressed to the same pro-
cess, our scheme ensures that the same relation
will also be present in the destination cluster and
therebydeliv(m) → deliv(m′) by the CMO proto-
col employed there. This successful ordering en-
forcement relies on a property of our scheme: the
Replay Property. Consider the scenario shown in
Figure 5. If sent(m) → sent(m′) is present in
clusterA, the CMO protocol employed inA en-
sures thatdeliv(m) → deliv(m′) at X (the agent
of A) and the FIFO message relaying rule ensures
thatsent(m) → sent(m′) will be present in cluster
D. Thus form andm′, the relationsent(m) →
sent(m′) is “replayed” in the next cluster.
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Fig. 5. Scenario illustrating the Reproduction Property.

Another important property is that by our mes-
sage propagation rule, there is only one unique path
between any two sites. Consider two messagesm
and m

′
addressed to the same process such that

sent(m) →sent(m
′
). If they are sent by the same

site, they will traverse the same propagation path.
By the Replay Property, the same causal relation
between them will be present in all clusters along
the path. CMO will be respected in that case. If
these messages are sent by different sites, the fol-
lowing theorem shows that CMO will still be pre-
served.

Theorem 1:Let m be a message sent by siteX
and destined for siteY . Let Xi be any site other
thanX andY . Letmi be the first messageX sends
to Xi after the sending ofm. Then any message
m
′

that is sent byXi and destined forY after the
delivery ofmi will not be delivered beforem atY .
Proof: There are five possible message propaga-
tion routes amongX, Y , andXi, as shown in Fig-



ure 6. Note that as mentioned above, since there
is only one unique path between any two sites,
routes containing cycles are not possible. In (a),
it follows from the Replay Property that causal re-
lation sent(m) →sent(mi) will be recognized by
all agents on the path fromX to Xi (including
Xi). Therefore,Xi will send (actually, relay)m
beforem′. By the Replay Property, causal relation
sent(m) →sent(m′) will be present at all agents on
the path fromXi to Y . CMO will thus be enforced
by the CMO scheme employed in the last cluster.
In (b), sent(m) →sent(mi) will be recognized by
all agents on the path fromX to Y , sinceY is lo-
cated on the way of propagatingmi to Xi. ThusY
will deliver m beforemi. Messagem′ can never
be delivered beforem is becausesent(m′) occurs
causally subsequent tosent(mi). In (c),X sendsm
before sendingmi. Later, when messagem′ from
Xi is delivered and then sent again (relayed) byX,
sent(m) →sent(m′) will be honored. The Replay
Property ensures that this relation will be present at
agents on the path fromX to Y . Thusm will be
delivered beforem′ is. In (d), similar to the forego-
ing argument of (b), relationsent(m) →sent(mi)
will be recognized at all sites fromX to W (in-
cludingW ). ThusW sends (relays)m beforemi,
and it is guaranteed by the Replay Property that
sent(m) →sent(m′) will be recognized in the last
cluster. Hence CMO is never violated. Case (e)
is possible only whenW1, W2, and W3 are all
in the same cluster. By the Reproduction Prop-
erty, sent(m) →sent(mi) will by recognized by
W1. W2 will observedeliv(mi) →sent(m′) due
to causality. Therefore,sent(m) →sent(m′) holds
in this cluster. The CMO scheme at this cluster will
guarantee the desired CMO.2
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IV. PERFORMANCEANALYSIS AND

COMPARISON

We shall analyze and compare the performances
of our approach to those of the centralized and the
RST algorithm. We are primarily concerned with
two measurements, namely, message cost and pro-
cessing load. We assume that the system is orga-
nized in the following way. When the number of
sites,n, is not greater than a certain numberd, the
whole system forms a single cluster. Otherwise, all
sites are equally partitioned intob clusters, where

1 < b < d. If after partition, the number of sites in
a cluster is still greater thand, each cluster is fur-
ther partitioned intob smaller clusters. The cluster-
ing process terminates when the number of sites in
a cluster is less than or equal tod. In this way, the
number of layers,l, that ann-site system will form
can be derived by

l = dlogb

n

d
e+ 1 (1)

A. Message Cost

In this subsection we analyze the effects of clus-
tering on reducing message cost. The message cost
is defined as the extra space required in each mes-
sage’s header for CMO. In fact, this measure con-
tributes to message transmission time as well as
message processing time. We shall show that the
message cost in our scheme is only a linear or even
a logarithmic function of the number of processes.

The RST algorithm incursO(n2) message cost.
Suppose that the RST algorithm is employed in ev-
ery cluster. The message cost of an intra-cluster
message is proportional to the square of the clus-
ter size. The message cost of an inter-cluster mes-
sage is the sum of the costs of individual intra-
cluster messages, each of which corresponds to a
hop of that message. We are interested in evaluat-
ing the worst-case message cost. LetC(n) denote
the worst-case message cost for ann-site system.
When n is not greater thand, the whole system
forms a single cluster, and clearlyC(n) = cn2,
wherec is a constant. Whenn is greater thand, all
sites together form a hierarchy of two or more lay-
ers. In that case,C(n) corresponds to the cost of
propagating a message from some non-agent site
in Layer 1 to the top layer, exchanging the mes-
sage between two agents in the top layer, and then
propagating it to another non-agent site in Layer 1.
Therefore we have

C(n) =
{

cn2 1 ≤ n ≤ d
2D(n) + cb2 n > d

whereD(n) denotes the worst-case cost of prop-
agating a message between a site in Layer 1 and
another site in the top layer. We defineD(n) = 0
when1 ≤ n ≤ d. Whend < n ≤ bd, the whole
system forms a two-layer hierarchy, andD(n) is
proportional to the square of the Layer 1 cluster
size. ThusD(n) = c(n/b)2. Whenn > bd, the
whole system forms a hierarchy of more than two
layers. The value ofD(n) for ak-layer hierarchy is
essentially the value ofD(n/b), the worst-case cost
of propagating a message between a site in Layer
1 and a site in Layer(k − 1), plus cb2, the cost
of propagating a message between a site in Layer
(k − 1) and a site in Layerk. Therefore, the value
of D(n) can be expressed as a recurrence relation:

D(n) = D(n/b) + cb2



It is known [15] thatD(n) = O(log n). Therefore,
we arrive at the following equation:

C(n) =





cn2 1 ≤ n ≤ d
c(2n2/b2 + b2) d < n ≤ bd
O(log n) n > bd

From the above we obtain the following result.
When the whole system forms a two-layer hierar-
chy (d < n ≤ bd), settingb =

√
n yields O(n)

message cost. When the whole system forms a hi-
erarchy of three or more layers, the message cost
is only O(log n), for b being fixed to some small
number in comparison withn.

B. Processing Load

The processing load on a single site is defined as
the average number of messages arriving at that site
per unit of time, referred to as the site’smessage
arrival rate, when the whole system is in a steady
state. Suppose that in equilibrium, every site is-
sues an average ofλ messages per unit of time. Let
message destination be a random variable that is
uniformly distributed over alln sites (including the
sender). If the system employs the RST algorithm,
each site contributes a message arrival rate ofλ/n
to each of the other sites. So the processing load on
each site isλ, independent of the number of sites in
the system. On the other hand, if the system adopts
the centralized approach, the message arrival rate
at the coordinator isnλ. Clearly, the processing
load on the coordinator increases in proportion to
the number of sites in the system.

Regarding our approach, we assume that the
centralized approach is adopted in every cluster,
and the coordinator’s functionality is incorporated
in each cluster’s agent. In addition, an extra site
not in the system is employed to act as the coordi-
nator for sites at the top layer. This site forwards
messages for all other sites without initiating any
messages of its own.

We shall derive the message arrival rates at the
coordinator and at agents. The following basic
rules [16] are needed in our derivation.
• If there arek independent message streams

fed into site S at respective arrival rates
λ1, λ2, . . . , λk, the message arrival rate atS

is
∑k

i=1 λi.
• Let m be a message stream feeding into site

Si with arrival rateλ. Suppose thatSi has to-
tal k downstream links leading respectively to
Si,1, Si,2, . . . , Si,k, to each of whichm can be
forwarded bySi with respective probabilities
pi,1, pi,2, . . . , pi,k. Let pi = 1 − ∑k

j=1 pi,j

be the probability of directingm to Si itself.
Letting λi,j be the average rate at whichSi

forwards messages toSi,j (referred to as the
message departure ratefrom Si to Si,j), we
haveλi,j = pi,j ·λ. The same argument holds
for message streams originating fromSi.

Given ann-site system, letL(n) be the mes-
sage arrival rate at the coordinator of the top layer.
When1 ≤ n ≤ d, the system forms a one-layer
hierarchy andL(n) = nλ, which is essentially
the same as with the purely centralized approach.
Whenn > d, the system forms a hierarchy ofl
layer (l ≥ 2) as indicated by Equation (1). Let
mn,k be a layer-k coordinator of ann-site system,
where1 ≤ k ≤ l, and letR(n, k) be the message
arrival rate atmn,k that is contributed by all sites it
serves. Since a layer-1 coordinator servesn/bl−1

sites, we haveR(n, 1) = nλ/bl−1. Any other co-
ordinator in layer-k, where1 < k ≤ l, servesb
sites, each of which is a layer-(k − 1) coordinator
with message arrival rateR(n, k − 1). Since mes-
sages fed into a layer-(k − 1) coordinator can be
addressed to some site served by the same coordi-
nator, in this case an inter-cluster message propa-
gation to the layer-k coordinator is not always re-
quired. Assume that a portionp of R(n, k − 1)
constitutes the message departure rate from a layer-
(k−1) coordinator to the layer-k coordinator. Then
we can formulatep as the ratio of how many sites
are not served by the layer-(k − 1) coordinator to
n, the total number of sites in the system. For a
layer-2 coordinator,p is equal to

n− n/bl−1

n
=

bl−1 − 1
bl−1

Therefore,

R(n, 2) = b · bl−1 − 1
bl−1

·R(n, 1)

=
bl−1 − 1
b2l−3

· nλ

For a layer-3 coordinator,p is equal to

n− n/bl−2

n
=

bl−2 − 1
bl−2

Therefore,

R(n, 3) = b · bl−2 − 1
bl−2

·R(n, 2)

=
(bl−1 − 1)(bl−2 − 1)

b3l−6
· nλ

In general, for a layer-k coordinator,

R(n, k) =
∏k−1

i=1 (bl−i − 1)
bj

· nλ

wherej = kl −∑k
i=1 i. Therefore,

L(n) = R(n, l) =
∏l−1

i=1(b
l−i − 1)

bl(l−1)/2
· nλ

Except for the coordinator of the top layer, every
layer-k coordinator also has a message stream from
its upper layer destined for some site within its ser-
vice cluster. LetS(n, k) be the message arrival rate



0.0

�

0.2

�

0.4

�

0.6

�

0.8

�

1.0


0

�

2
 4
 6
 8
 10
 12

b


�

L
(
n
� )

�

R

�

(
n
� ,1)+
S

�

(
n
� ,1)


Fig. 7. Message arrival rates at coordinators versusb.

at mn,k that is contributed by its layer-(k + 1) co-
ordinator. Under our assumption of uniformly dis-
tributed destinations, a layer-k coordinator will di-
vide its S(n, k) into b equal parts, each of which
contributesS(n, k − 1). Therefore,

S(n, k) =
{

L(n)/b if k = l − 1
S(n, k + 1)/b if 1 ≤ k ≤ l − 2

Solving this recurrence relation, we have
S(n, k) = L(n)/bl−k. The total message ar-
rival rate at mn,k is the sum ofR(n, k) and
S(n, k). As an example, consider a two-layer
hierarchy. We haveL(n) = (b − 1)nλ/b and
R(n, 1) + S(n, 1) = nλ/b + L(n)/b. Figure 7
shows the values ofL(n) andR(n, 1) + S(n, 1)
for various settings ofb. It can be seen that, on the
condition ofb being 2, the processing load on the
top-layer coordinator is only half of that on the co-
ordinator in the centralized approach; however, the
processing loads on the bottom-layer coordinators
are relatively high. Asb increases, the processing
load on the layer-two coordinator increases while
processing loads on other coordinators decrease.
This can be explained by the fact that whenb = 2,
the amount of traffic due to inter-cluster messages
is the same as that of intra-cluster messages. As
b increases, the cluster size becomes smaller,
thus an agent serves fewer clients. Meanwhile,
inter-cluster messages increase, placing more
processing loads on the top-layer coordinator.

V. CONCLUSIONS

Conventional CMO solutions take either cen-
tralized or fully distributed approaches. We have
proposed a CMO scheme that unifies both kinds
of CMO approaches by partitioning processes into
clusters which can be further structured into a hi-
erarchy. This manner of process clustering is sus-
ceptible to outstanding scalability and thereby ef-
ficient communication, in the following lines. In
the centralized approach, the coordinator becomes
a performance bottleneck when the number of pro-
cesses increases beyond a certain value, making
the approach unsuitable for large-scale distributed
systems. By means of process clustering, twofold
advantages result. The processing load can be al-
leviated substantially from the central coordinator

and shared among agents, achieving better scal-
ability. On the other hand, fully distributed ap-
proaches like the RST algorithm demandO(n2)
message cost, which increases both message trans-
mission and processing delays. Given our scheme,
message overhead is decomposed into a number of
small components. By setting cluster size appro-
priately, the message cost can be reduced to only
O(n) or evenO(log n).

As a remark on our proposal, we note that the
number of intermediate nodes to be traversed for
propagating messages, namely hop count, can in-
crease when more layers are introduced into the
system. This, however, does not necessarily im-
ply longer communication delay. Indeed, a simu-
lation study conducted in [5] showed that the size
of message space overhead can dominate the over-
all system performance. The significant reduction
of this overhead by our scheme could outbalance
the side effect of longer routing paths. Yet another
remark pertinent to our proposal is stated as fol-
lows. All causal ordering, point-to-point protocols,
including ours, are subject to a form of potential
deadlock, referred to ascausal gap[9] in the liter-
ature, if both node and link failures can occur. In
contrast, causal multicast protocols like those de-
ployed in the ISIS system [11], [14] do not suffer
from this problem.

Nowadays large-scale networks such as the In-
ternet are organized as a collection of subnetworks.
If we view each subnetwork as a cluster and des-
ignate one site in each subnetwork as the agent,
the system-wide CMO can be maintained with the
flexibility that any CMO solution can be locally
adopted in each cluster. This makes our proposal a
practical solution and apt for modern non-propriety
networks.
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