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Abstract 

A great number of gene-finding programs 
have been developed for annotating newly 
sequenced DNA genomes. However, none of 
them have consistent performance over various 
species. Recently, a decision fusion concept that 
improves the prediction accuracy by combining 
the predictions obtained by multiple 
gene-finding programs has been raised. The 
existing combination methods are relatively 
ad-hoc or lack intensive experiments. In this 
paper, we propose a new combination method 
based on reinforcement learning which learns 
from history predictions obtained by existing 
gene-finding programs and derives the optimal 
policy for selecting the best prediction program 
at each nucleotide. The experimental results 
manifest that the proposed method can 
significantly improves the performance 
compared to the single best program.  
Keywords: Bioinformatics; DNA sequence; 

Gene identification; 
Reinforcement learning. 

摘要 

為了註解新定序的基因體 DNA，已經有
許多基因搜尋程式被發展出來，但是沒有一個

程式能對各種不同物種表現一致的效能。近

來，有人提出結合數個基因搜尋程式的預測以

提高準確度的決策融合觀念，但是目前已提出

的結合方法卻都相當的直觀或者缺乏大量的

實驗。在這篇論文當中，我們利用增強學習法

提出一個新的結合方法，它可以學習已存在的

基因搜尋程式過去預測基因的歷史紀錄，進而

推論出可以在每一個核苷酸位置挑選出最適

合的基因搜尋程式的最佳策略。實驗結果顯示

我們提出的方法與最佳的單一基因搜尋程式

相比，可以顯著提高基因預測的效能。 

關鍵詞：生物資訊、去氧核糖核酸序列、基因

識別、增強學習法。 

 
1. Introduction 

 
 There is an explosive growth in the 
amount of sequenced nucleotides of genomic 
DNA due to the newly developed biotechnology 
and various genome projects. Several million 
bases of genomic DNA are sequenced daily and 
made available to the public. It becomes crucial 
to analyze the data and characterize sequence 
content in a high-throughput computational way. 
To date, many gene-finding programs have been 
developed to annotate the newly sequenced 
genomes. This is an essential and important step 
in the works of genome annotation. Those 
programs are based on pattern recognition 
methods such as artificial neural networks 
[GRAIL (Xu et al., 1997), GeneParser (Snyder 
and Stormo, 1995)], discriminant analysis 
[GeneFinder (Solovyev et al., 1994), MZEF 
(Zhang, 1997)], and hidden Markov models 
[Genie (Kulp et al., 1996), GENSCAN (Burge 
and Karlin, 1997), HMMgene (Krogh, 1997)].  
 Although these gene-finding programs 
have reported high prediction accuracy in 
specific domains, we still lack a universal 
program that can report satisfactory accuracy in 
general cases. Researchers thus further verify the 
predictions of these programs by searching for 
similar homologues in the database, however, it 
has been already known that about 50% of 
newly discovered genes have no similar 
homologues in the protein sequence database 
(Uberbacher et al., 1996; Dunham et al., 1999). 
As such, improving the prediction accuracy of 
gene-finding programs is more important than 
the validation task thereafter. Moreover, most 
researchers strive to develop a new gene-finding 
program that can attain better prediction 
accuracy than the others, they ignore the fact that 
a gene-finding method may yield highly accurate 
predictions in a specific domain, but there is no 
single gene-finding approach which is the most 
appropriate gene predictor for all newly 
sequenced genomes. Even if a worse 
gene-finding program can correct part of the 
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predictions produced by a novel gene predictor. 
For instance, when we annotate a 28,984 bp-long 
contig of human DNA sequence into exon and 
intron regions, GENSCAN can correctly identify 
gene structures from 28,430 bp of them. Among 
the 554 bp remaining sequences that are not well 
annotated by GENSCAN, more gene structures 
can be recognized by GeneView (366 bp) and 
HMMGene (454 bp), respectively. This reveals a 
good compensation among those programs in 
gene prediction. Therefore, a careful 
combination of multiple gene-finding programs 
is very likely to overcome any individual 
program. 
 In this paper, a reinforcement learning 
model (RLM) for combining three gene-finding 
programs is presented. The predictions produced 
by GENSCAN, HMMgene, and GeneView on an 
annotated HMR195 genomic dataset 
(http://www.cs.ubc.ca/labs/beta/genefinding/) are 
used to train the RLM network. The results 
manifest that the RLM learns the optimal policy 
which can determine the best gene-finding 
program at a given nucleotide site to maximize 
the expected gene identification accuracy over 
the whole genome, thus the synergism among 
those programs is achieved. 

 
2. Methods 

 
2.1 Combining Gene Predictions 
 There already exist some methods which 
combine the predictions by several gene-finding 
programs. GeneNomi (Harris, 1997) combines 
several sources of genomic analysis tools, such 
as BLAST, GRAIL, GeneFinder, Genie, etc., to 
make better predictions, however, the details for 
combining those tools are not described. 
Murakami and Takagi (1998) proposed five 
combination methods, namely AND, OR, 
HIGHEST, RULE, and BOUNDARY methods, 
to integrate the predictions by FEXH, 
GeneParser3, GENSCAN, and GRAIL2. The 
AND method labels the exon candidates as the 
intersection of the predicted exon regions by the 
programs, while the OR method determines the 
exon regions as the union of the 
program-predicted exons. As for the HIGHEST 
method, the exon candidates are those regions 
which have the highest score among the 
programs. The RULE method determines the 
predictions in accordance with a priority order of 
the programs based on a previous empirical 
study. Finally, the BOUNDARY method 
determines which are the best coding-/noncoding 
boundaries based on the score and boundary type 
given by the programs. The five combination 
methods are simple and ad-hoc, and cannot 
accommodate the correlations between programs 

and adjacent nucleotides. For instance, given the 
predictions (exon or non-exon) by three 
programs on two adjacent nucleotides there are 
in total 64 possible combinations, however, most 
of the combinations are not differentiated by 
those methods. Rogic et al. (2002) proposed 
three methods for combining predictions by 
GENSCAN and HMMgene. They focused on 
improving exon level accuracy by union or 
intersection of predicted exon regions 
considering probabilistic scores and reading 
frame consistency. The accuracy improvement 
on a newly assembled dataset is 7.9% over the 
single best program. Nevertheless, these 
methods are also rule-based and are not able to 
model complex correlations among programs 
and adjacent nucleotides. Pavlovic et al. (2002) 
provided a full Bayesian framework and adopted 
the hidden input/output Markov models for 
combining gene-predictions produced by a set of 
program experts. The prior observations on the 
predictions by the programs can be used to train 
the Bayesian network which models the 
correlations between programs and adjacent 
nucleotides. The authors claimed that the 
probabilistic model can significantly improve the 
prediction accuracy over a single best program, 
however, only one annotated drosophila 
sequence was managed to testify their method. 
 
2.2 Reinforcement Learning Model 
 The reinforcement learning model (RLM) 
is broadly used in the machine learning 
community and has exhibited many successful 
applications [Kaelbling and Moore (1996), 
Mitchell (1997), Peng and Bhanu (1998)]. The 
RLM addresses the issue of how a simple agent 
can learn a task through many trial-and-error 
interactions with its environment. The agent 
senses the current state of its environment then 
makes a decision of choosing an action to 
perform. The state of the environment is 
therefore, activated by the agent’s action, 
changed to another state, and the agent will 
receive a scalar reward regarding the desirability 
of the state transition. The process is repeated 
until the agent has learned an optimal policy that 
maximizes the accumulative reward received 
over time.  
 The RLM can model the task for learning 
to combine predictions of gene-finding programs 
as depicted in Figure 1. A set of annotated 
nucleotide sequences (the environment) is used 
to train the RLM network. The agent serving as 
the combiner which can observe the recent 
history predictions (the state) by the programs 
and makes a decision regarding which current 
prediction (the action) of those experts to 
perform at the present nucleotide site. Then, the 
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environment returns a binary indicator (the 
reward) to the agent about the precision of the 
performed prediction, i.e., whether the 
performed prediction matches the annotation. 
The environmental state is updated by adding the 
current predictions to the recent history 
predictions. Therefore, the agent learns the 
optimal policy which maximizes the expected 
sum of precisions attained at each nucleotide 
site. 
 Three gene-finding programs, namely 
GENSCAN, HMMGene, and GeneView, are 
combined by the RLM where the former two 
programs had been reported to have high 
prediction accuracy and the latter was found to 
be able to complement the other two programs in 
our early experiments. Let us denote the three 
programs by e1, e2, and e3, and their prediction 
decisions at base t by , , and , 
respectively. The principal elements of the RLM 
for combining predictions of gene-finding 
programs are characterized in the following. 
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t-1 is the expert program adopted at 
base t – 1 and  and  
are the confidence levels of the probability 
scores produced by GENSCAN and 
HMMGene at base t. In addition to the 
factors adopted by RLM-1, the RLM-2 
further considers the dependence between 
the predictions at the adjacent nucleotides 
and adds into the state descriptor the 
predictions made by all the programs at base 
t – 1. Thus, the environmental state 
employed by RLM-2 is described by s = 
[   

]. The comparative performance of 

the two state presentation schemes will be 
given in the result section. 

,,

(2) Agent action, a∈A, where A denotes the set 
of actions to be performed by the agent. The 
agent action reflects the decision regarding 
which expert program and the corresponding 
prediction is adopted at base t. Therefore, the 
action is characterized by a = [ e ]. t
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(3) Scalar reward, r∈R, where R denotes the set 
of scalar rewards which represent the 
desirability about the currently adopted 
prediction. We use a binary reward, i.e. R = 
{0, 1} and let r = 1 if the adopted prediction 
matches the annotation, and r = 0 otherwise.  

(4) A state transition function, SAS →× : δ . 
The state transition function determines the 
next state which is triggered by a performed 
action at the preceding state. By the 
afore-mentioned definitions, we get 
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In essence, the agent makes a decision at 
current site and moves forward to collect new 
evidence, thus the agent learns from 
collective experience. 

 

 The optimal policy, *π , learned 
by the agent maximizes the prediction accuracy 
over all of the training sequences, that is, 
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where  is the accuracy reward received at 
base t using the policy 

tr
π  to select experts and 

predictions, ]1,0[∈γ  indicates the 
discounting factor that determines the relative 
weight of . Let  be the maximum 
overall prediction accuracy which can be 
received by performing action a in state s and 

tr )a ,(sQ
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then proceeding optimally using . The 
optimal policy can be learned by an iterative 
Q-learning algorithm (Kaelbling and Moore, 
1996) through the following recursive definition 
of the Q function, 

*π

 
  (4) ). ), ,((max) ,( aasQrasQ

a
′+=

′
δγ

 
The implementation of Q-learning algorithm for 
combining gene-finding programs is described 
as follows. First, the agent initializes a table of 
the estimate of the Q function for each possible 
state-action pair. Then, the annotations about a 
training set of genomic DNA sequences and the 
predictions by the gene-finding programs on the 
same training set are fed into the agent at the 
sequential base order for training the Q function. 
The agent senses the current state and performs 
an action according to the action selection rule 
as will be described further. The state thus is 
transited to a new one and a reward regarding to 
the prediction accuracy of the current base is 
determined. The corresponding Q table entry is 
accordingly updated by the new state and the 
received reward using Equation (3). The 
algorithm is iterated until the agent experiences 
all training sequences and an approximate Q 
function is obtained. Then the agent is able to 
use the approximate Q function to predict the 
genes of newly sequenced genomes. 
 The action selection rule is a search 
heuristic which controls the relative importance 
between exploration and exploitation of the 
policy space. Exploration search focuses on the 
selection of the actions that have not been 
performed yet in the hope that new and better 
policy can be found. On the other hand, 
exploitation search utilizes the previous 
experience (the Q function estimate) about the 
desirability of choosing the actions and favors 
the one that will yield higher reward. Based on 
these guidelines, we propose a thresholded 
maximum selection rule which performs with a 
probability threshold the action leading to the 
maximal Q function estimate, otherwise a 
random action is drawn. The thresholded 
maximum selection rule oscillates between the 
exploitation for the best-so-far action and the 
exploration of new actions. It has been shown in 
our previous study (Yin, 2002) that the 
thresholded maximum selection rule overcomes 
many others involving linear, quadratic, 
exponential weighting rules, etc. 
 The proposed RLM for the combination of 
gene-finding programs can capture the 
correlation among programs and the dependence 
between adjacent nucleotides. The Q-learning 
algorithm is simple and can be easily 

implemented but it is still powerful in learning 
the optimal policy which gives the highest 
prediction accuracy based on combination of 
multiple sources. 
 

3. Results 
 
 To quantify the prediction performance, 
two commonly used measures, namely the 
sensitivity and specificity, are adopted and 
defined as 
 
 

FNTP
TPSn
+

=  (5) 

 
and 
 
 

FPTP
TPSp
+

= , (6) 

 
where TP (true positive) is the number of 
nucleotides that are correctly predicted as exons, 
FN (false negative) is the number of nucleotides 
that are predicted as introns while their 
groundtruth annotations are exons, and FP (false 
positive) is the number of nucleotides that are 
labeled as exons even though they are actually 
part of introns. In addition to measuring the 
prediction accuracy at nucleotide base level, 
sensitivity and specificity can also be calculated 
at exon levels and will be referred to as ESn and 
ESp, respectively. However, each of sensitivity 
and specificity cannot be used alone since 
perfect sensitivity of 1 can be obtained if all the 
nucleotides are predicted as coding region, and 
perfect specificity can be obtained if all the 
nucleotides are predicted as noncoding region. A 
unified measure named correlation coefficient 
(CC) has been proposed and intensively used for 
evaluating gene-finding programs (Burset and 
Guigo, 1996; Rogic et al., 2001). It is defined as 
 
 

)()()()( FNTNFPTPFPTNFNTP
FPFNTNTPCC

+⋅+⋅+⋅+
⋅−⋅

=
. (7) 

 
But it is undefined if no nucleotides are 
predicted as coding region. Thus, Burset and 
Guigo (1996) introduced the approximate 
correlation (AC) as 
 
 )5.0(2 −= ACPAC , (8) 

 
where 
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which is defined under any circumstances. 
 The testing human genomic sequences for 
performance evaluation are those in the 
HMR195 genomic dataset which contains 195 
sequences of human, mouse, and rat 
(http://www.cs.ubc.ca/labs/beta/genefinding/). 
The mean length of the sequences is 7096 bp, 
and the number of exons per gene is 4.86. Sixty 
randomly selected sequences from this set is 
used as training sequences and the rest are for 
testing. Table 1 shows the average performances 
obtained at both the base level and the exon level 
by the three gene-finding programs, the AND 
and OR combination methods, and the proposed 
RLM algorithms. It is observed that GENSCAN 
has the best performance among the three 
gene-finding programs as we expected. The 
AND method is strictly conservative and has a 
very low sensitivity value while the OR method 
is plagued with over-predictions about the exons 
and fails to improve the specificity. Both the two 
combination rules do not deliver better 
predictions as compared to those by GENSCAN. 
On the other hand, the RLM-1 method which 
models the correlations between expert programs 
does improve the prediction accuracy at the base 
level compared to GENSCAN. The RLM-2 
method accommodating the correlations between 
programs as well as the dependence between 
adjacent nucleotides seems to has no advantage 
over RLM-1. We believe that it is because we let 
both RLM-1 and RLM-2 be trained for the same 
number of nucleotides, the performance of 
RLM-2 should be superior if we trained RLM-2 
with more sequences since RLM-2 has a more 
complex probabilistic network. We notice that 
neither RLM-1 nor RLM-2 exhibits significant 
improvement on the exon level performance 
since they do not utilize exon-level-information 
such as exon boundary type and reading frame 
consistency, which will be considered in our 
future research. 
 
 

4. Conclusions 
 In this paper, we have proposed a 
reinforcement learning approach for improving 
the gene identification accuracy by combination 
of gene-finding programs. The correlation of the 
programs and the dependence between adjacent 
nucleotides are suitably modeled and the 
proposed method can learn from history 
predictions of several gene-finding programs and 
derives the optimal policy that determines the 
best program to make annotation of a given 

nucleotide. The HMR195 dataset has been used 
to testify our method. The experimental results 
reveal that our combination method outperforms 
the single best gene-finding program and some 
of the existing combination methods. This will 
be very useful in the recent works of genome 
annotation, because it can improve the accuracy 
of prediction of gene structure in substance. 
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Figure 1 The RLM for combining predictions of gene-finding programs. Figure 1 The RLM for combining predictions of gene-finding programs. 

  

Table 1 The average performances obtained using various methods. Table 1 The average performances obtained using various methods. 
  GENSCAN GENSCAN GenView GenView HMMgeneHMMgene AND AND OR OR RLM-1 RLM-1 RLM-2 RLM-2 

Sn 95.0 75.3 91.4 72.0 97.6 95.3 95.2 

Sp 91.0 84.1 93.8 98.3 81.0 91.6 91.7 

CC 91.7 76.2 91.3 81.9 86.8 92.2 92.2 

AC 91.7 76.3 91.3 82.6 87.1 92.2 92.2 

ESn 77.6 27.3 75.8 37.2 63.3 78.0 70.4 
ESp 75.8 37.2 80.4 59.3 55.4 75.5 65.7 
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