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Abstract 
The heterogeneous computing system could 

exploit the computational powers of the tasks in 
an application.  It is the key to parallelize the 
tasks to several processors to reduce the total 
execution time.  Since HC environments could 
meet the requirement of exploiting the 
computational powers, so the HC environment is 
studied in this paper.  As a result, in this study, 
we consider exploiting a competent list-based 
heuristic algorithm, which is called the 
Dominant Tasks Scheduling (DTS) algorithm, 
for scheduling the tasks of a parallel application 
into HC environments. 

In the systems with the high 
communication heterogeneity or the high 
computation heterogeneity, the DTS algorithm, 
could perform better than other proposed 
algorithms from the literature by considering 
global scheduling information and by exploiting 
schedule-holes.  The experimental results show 
the superiority of the DTS algorithm. 
Keywords: heterogeneous, scheduling, 
algorithm, parallel, network 
 

1 Introduction 
The heterogeneous computing (HC) 

environment consists of a distributed set of 
different types of personal computers or 
workstations (i.e., processor elements, PEs) with 
diverse computing resources, which are 
connected by high-speed transmission medias.  
With small extra cost, the HC environment could 
be constructed with the network of workstations 
(NOWs).  HC environments could offer more 
powerful and commercial high performance 
computing systems by gathering a cluster of 
NOWs.  An application with computationally 
intensive tasks could be parallel executed in the 
HC system.  Since HC environments could 
meet the requirement of exploiting the 
computational powers, so the HC environment is 
studied in this paper.  As a result, in this study, 

we consider exploiting a competent list-based 
heuristic algorithm, which is called the 
Dominant Tasks Scheduling (DTS) algorithm, 
for scheduling the tasks of a parallel application 
into HC environments.   

In the systems with the high 
communication heterogeneity or the high 
computation heterogeneity, the DTS algorithm, 
could perform better than other proposed 
algorithms from the literature by considering 
global scheduling information and exploiting 
schedule-holes.  The experimental results show 
the superiority of the DTS algorithm. 

 
2 Related Works 

In this section, three previous list-scheduling 
heuristic algorithms and their characteristics are 
described.  They are the Dynamic Level 
Scheduling (DLS) algorithm [16], the 
Heterogeneous-Earliest-Finish-Time (HEFT) 
algorithm [17], and the 
Critical-Path-on-a-Processor (CPOP) [17].   

 
2.1  The Dynamic Level Scheduling 

(DLS) algorithm 
The main process of the Dynamic Level 

Scheduling (DLS) algorithm is to determine the 
dynamic level (DL) [16].  The DL is computed 
by using the static level (SL) and the starting 
time (ST).   The DL(ni,J) is defined as SL (ni) - 
ST(ni,J) of the node-processor pair (ni,J).  At 
each scheduling step, the DLS algorithm 
computes the DL value of each ready node on 
every processor element.  The node with the 
largest DL value would be selected and 
scheduled to the corresponding processor 
element. 

Although the DLS algorithm performs 
exhaustive pair matching of nodes to processor 
elements at each scheduling step to find the 
highest priority node, it doesn’t assign priority 
based on the CP.  The DLS algorithm has some 
problems of the node-selection priority.  It 
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selects a node with a higher static level and a 
smaller starting time to be scheduled.  But, 
sometimes, the static level of the selected node 
might not the highest and its starting time might 
not the earliest among all the ready nodes.  
With a large SL, a node might be scheduled first 
even though its starting time is not small.  This 
could block the more important nodes to be 
scheduled earlier.  

 
2.2  The 

Heterogeneous-Earliest-Finish-Ti
me (HEFT) algorithm 
The main process of the 

Heterogeneous-Earliest-Finish-Time (HEFT) 
algorithm is to determine the upward rank (ranku) 
[17].  Simply, ranku(ni) is the length of the CP 
from node ni to the exit nodes, including the 
computation cost of node ni.  The HEFT 
algorithm sorts the tasks by decreasing order of 
ranku and then constructs a scheduling list by 
this order.  Each task is scheduled by the order 
of the scheduling list onto a suitable processor 
element that allows the minimum earliest finish 
time with using the insertion-based scheduling 
policy.  The insertion-based policy is some kind 
of the scheduling policies that considers the 
possible insertion of a task in an earliest idle 
time slot between two scheduled tasks on a 
processor element. 

Although the HEFT algorithm takes care of 
the time-slot problem with the insertion-based 
scheduling policy, it still has some flaws.  In 
fact, the data transmission through the 
interconnect mechanism in the HC environment 
would cause the communication contention. The 
HEFT algorithm doesn’t consider the 
communication-contention problem.  In this 
study, the communication-contention problem is 
considered. 

 
 

2.3  The Critical-Path-on-a-Processor 
(CPOP) Algorithm 
The critical-path-on-a-processor (CPOP) 

algorithm is similar to the HEFT algorithm.  Its 
main process is to determine the upward rank 
(ranku) and the downward rank (rankd) [17].  
The difference between the HEFT algorithm and 
the CPOP algorithm is that the CPOP defines the 
CP nodes first and schedules them onto CP 
processor.  However, the CPOP algorithm also 
uses the insertion-based scheduling policy to 
find the EFT time of a candidate node. 

Like the HEFT algorithm, the CPOP 
algorithm also takes care of the time-slot 
problem with the insertion-based scheduling 
policy, it still has some flaws.  The CPOP 

algorithm doesn’t take of the communication 
contention for data transmission through the 
interconnect mechanism in the HC environment. 

 
3 The Proposed Algorithm 

In this section, the proposed algorithm, the 
Dominant Tasks Scheduling (DTS) heuristic 
algorithm would be introduced. 

 
3.1 Definitions 

In this study, a heterogeneous system model 
is presented by M=(P, Q, A, B), where 
P={pi|pi∈P, i=1,…,|P|} is the set of 
heterogeneous processor elements, Q={qij|qij∈Q, 
i,j=1,…,|P|} is the set of communication 
channels,  A={αi|αi∈A, i=1,…,|P|} is the 
execution rate of processor element pi, and 
B={βij|βij∈B, i,j, =1,…,|P|} is the 
communication rate from processor element pi 
to processor element pj.  The communication 
channel qij means the channel from processor 
element pi to processor element pj.  This study 
assumes that qij and qji are the same channel, and 
each processor element in the system has 
dedicated hardware to deal with communications 
so that communication and computation could 
take place simultaneously. 

The computation cost of node ni when it is 
allocated to processor element pk is denoted to 
be w(ni)*αk.  The communication cost from 
node ni to node nj, where ni is allocated to 
processor element pk and task nj is allocated to 
processor element pl, is denoted to be cij*βkl.  
Besides, let pred(ni) be the set of predecessor 
nodes of ni, and succ(ni) be the set of immediate 
successor nodes of ni.  The est(ni) value is the 
earliest starting time of node ni which satisfies 
the precedence constraints and considers the 
communication contentions.  The ect(ni) value 
is the earliest completion time of node ni and it is 
defined as follows: est(ni)=est(ni)+w(ni)*αk.  
The lct(ni) value is the longest execution time 
from node ni to the exit node and it is defined as 
follows: 

lct(ni)=max{cij*βkl+w(ni)*αk+lct(nj)}, 
where nj∈succ(ni). 

As described above, a DAG and a system 
model are given.  The object of the proposed 
scheduling algorithm is to gain the minimum 
completion time of the task graph by the 
algorithm in NOWs systems. 

In the DTS algorithm, only the ready nodes 
are qualified selected.  A node is called the 
ready node only if it has no predecessor node or 
all of its predecessor nodes are scheduled already.  
The DTS algorithm would choose two nodes for 
selecting the candidate node, one is DT node, 
and the other one is maximum priority node.  
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The node ni is defined as a DT node with 
max{est(ni)+w(ni)*αk+lct(ni)}, where k=1,…,|P|.  
Tie-breaking of the DT node selection is done by 
FIFO manner.    The DT nodes might change 
dynamically at each step.  Hence, the DT nodes 
would be identified by dynamic priority in this 
algorithm.  Also, the algorithm uses dynamic 
priority to determine the maximum priority node 
that is for node-selection at each step.  In this 
study, we define node-selection priority as 
follows: 

Priority(ni)=lct(ni)-w(ni)*αk-est(ni) 
Tie-breaking of the node-selection is also 

by FIFO manner. A node could obtain the 
highest priority value if its starting time and its 
computation cost are minimum, and its lct value 
is maximum.  A node has the larger lct value 
means that it carries the loads of successor nodes.  
It would take a lot time to execute all of these 
successor nodes.  With the node-selection 
priority, the maximum priority node would be 
selected.  The communication cost between two 
nodes is zero when the nodes are scheduled to 
the same processor element.   

To ensure that the DTS algorithm would 
select the most important partial node to be 
scheduled, the node-selection condition is 
defined as follows: 

Condition A: Assume na is the DT node and 
nb is the maximum priority node at schedule step 
i.  Also assume P(na) is the processor element 
that node na is allocated to obtain the highest DT 
priority value, and P(nb) is the processor element 
that node nb is allocated to obtain the highest 
node-selection priority value.  The candidate 
node is finally selected to scheduled at each step 
by the condition A, which is described in Fig. 1. 

With the condition A, the reduction of 
schedule length is ensured.  If scheduling 
maximum priority node would affect the DT 

If (na = = nb) 
       candidate node = na ; 
Else 
       If min ect(nb) is on P(na) 
            IF est(nb) > est(na) 
              candidate node= na; 
            Else 
              candidate node= nb; 
            EndIf 
       Else 
            candidate node = nb; 
       EndIf 
EndIf   

Fig. 1. Condition A. 
length, the candidate node would be the DT node, 
not the maximum priority node.  

After a candidate node is selected, a pair of 

a candidate node and its corresponding processor 
element is considered. 

The schedule-holes are the unoccupied time 
slices of processor elements to accommodate 
unscheduled nodes.  Exploiting schedule-holes 
is a manner that schedules the low priority nodes 
before the higher priority nodes without 
affecting the earliest starting times of these 
higher priority nodes.  In order to exploit the 
schedule-holes, the condition B ensures that the 
schedule length of a task graph would be strictly 
reduced. 

Condition B: Assume that na and nb are 
both ready nodes and na is candidate node at step 
i.  Also, assume that P_Time(P(na)) is the time 
for P(na) ready to execute tasks for all of the 
ready tasks after step i-1.  The node nb could be 
scheduled on P(na) before na at step i if nb could 
satisfy the following conditions: 

1) est(nb) ≥ P_Time(P(na)) as P(na) = P(nb) 
2) ext(nb) ≤ est(na) 

Tie-breaking of selecting the node nb 
selection is by the minimum est.  In this manner, 
the algorithm could exploit the schedule-holes. 

 
3.2 The Dominant Tasks Scheduling 
(DTS) algorithm 

In this section, we present the dominant 
tasks scheduling (DTS) heuristic algorithm as 
shown in Fig. 2. 

In the line 1 in Fig. 2, the DTS algorithm 
computes the lct value for each node. The line 4 
in Fig. 2 defines the DT node nDT_node by the 
maximum partial DT_length.  The equation of 
the maximum partial DT_length is described 
below: 

max{est(ni)+w(ni)*αk+lct(ni)}, where 
k=1,…,|P|. 

The line 5 in Fig. 2 defines the node 
nmax_priority with the highest priority.  The 
priority for each node at each scheduling step is 
described below: 

Priority(ni)=lct(ni)-w(ni)*αk-est(ni) 
The line 6 in Fig. 2 would select the 

candidate node ni to be scheduled by the 
condition A; as shown in Fig. 1. 

The line 7 in Fig. 2 would find the suitable 
processor element pk that provided the minimum 
est(ni) value.  With the condition B, the line 8 
in Fig. 2 selects the second candidate node nj 
from all ready nodes except node ni to be 
scheduled on the processor element pk.  After 
scheduling ni and nj (if nj could be found in the 
line 8 in Fig. 2), the DTS algorithm would 
update the list of ready nodes.  The scheduling 
would continue the steps from the line 3 to line 
11 in Fig. 2 till all nodes are scheduled.  The 
while loop takes O(n) operations, and the finding 
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nDT_node step takes O(n(n+e)p) operations, where 
n is the number of tasks, the e is the number of 
edges, and the p is the number of processor 
elements.  The finding nmax_priority step also takes 
O(n(n+e)p).  The step of selecting and 
assigning the candidate node takes O(p) 
operations.  Also, the step of selecting and 
scheduling the second candidate node takes O(p) 
operations, too.  To update the ready node list 
takes O(ne) operations.  Therefore, the time 
complexity of the DTS algorithm is O(n2(n+e)p).  
The time complexity of the DTS is acceptable 
for using in compiler time. 

Algorithm DTS 
Input: a system M=(P,Q,A,B); a 
DAG=(N,E,W,C). 
Output: A schedule with minimal parallel 
completion time for the heterogeneous NOWs. 
Begin 

1. Compute lct value for each node 
2. Make Ready_node_list 
3. While Ready_node_list not empty 
4.    Find ∈nodeDTn _ ready nodes,  

which has maximum partial  
DT_length. 

5.    Find ∈prioritynmax_ ready nodes, 
 which has max priority. 

6.    Select candidate node ni from  
nDT_node and nmax_priority with the  
condition A. 

7.    Assign ni to processor pk that  
provides min. est(ni). 

8. Select second candidate node nj  
from ready nodes expect ni if  
satisfy condition B and breaks  
tie with minimum est 

9.    Assign nj to processor pk. 
10.   Update Ready_node_list. 
11.endWhile 

End 

Fig. 2. The DTS algorithm. 
 

4 Experimental Results 
In this study, four proposed algorithms are 

experimented.  They are the DTS algorithm, the 
HEFT algorithm, the CPOP algorithm, and the 
DLS algorithm.  Six practical applications are 
applied for evaluating these algorithms.  The 
six practical applications are the fork tasks, the 
join tasks, the fork-join tasks, the FFT [3], the 
Gaussian elimination [19], and the 
LU-decomposition [11].  The comparisons are 
based on the schedule lengths, which are 
generated by these algorithms. 

Exploiting schedule-holes could reduce the 
schedule length efficiently.  By the 
experimental results, the condition B of the DTS 
algorithm performs better than the 
insertion-policy in exploiting schedule-holes in 
the communication-sensitive environments. 

The schedule length is the main measure for 
an algorithm’s performance.  The upper bound 
of schedule length is obtained by arranging all 
tasks on one processor element.  The 
comparison of four algorithms’ average schedule 
lengths is shown in Fig. 3. 
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Fig. 3. Comparisons of four algorithms’ average 
schedule length. 

 
In Fig. 3, the schedule length generated by the 

DTS algorithm is shorter than those of the HEFT, 
the CPOP, and the DLS algorithms while the 
number of processor elements is 16, although, 
the average of the schedule lengths obtained by 
the DTS algorithm are similar to those obtained 
by the HEFT algorithm.  When the number of 
processor elements is increasing, the schedule 
length of each algorithm except the DLS 
algorithm is decreasing.  The phenomenon is 
the max-min anomaly in the parallel processing 
problems.  Such phenomenon of the DLS 
algorithm, which generates the longer schedule 
length, is called max-min anomaly. 

Also, this study compares the schedule 
length performance of four algorithms with 
different CCR values, where CCR is 
computation/communication rate.  In this study, 
the CCR varies from 0.05, 0.1 to 1.  The 
comparisons of average schedule length 
generated by every algorithm with different CCR 
values are shown in Fig. 4. 

In Fig. 4, the performance of the DTS 
algorithm is similar to that of the HEFT 
algorithm, but it is better than that of the HEFT 
algorithm when CCR=0.05 and CCR=0.1.  The 
DTS algorithm perform better than the HEFT 
algorithm when CCR=1. 

The next experiment is to evaluate the 
performances of four algorithms by varying the 
heterogeneity of the communication.  The 
number of PE varies from 2, 4, 8, 16 to 32.   

 

HEFT CPOP DLS
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 (a) PE=2. 

(b) PE=4. 

(c) PE=8. 

(d) PE=16. 

(e) PE=32. 
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Fig. 4. Comparisons of average schedule 
length generated by every algorithm with 

different CCR values. 
 
The mean of each processor’s computation 

rate, α, is equal to 10.  The communication rate, 
β, varies from 10, 100 to 200.   Taking the 
Gaussian elimination task graph for example, the 
experimental results of schedule length 
generated by every algorithm with varying β 
values and the different numbers of processor 
elements are shown in Fig. 5. 

In Fig. 5, as the β increases, the DTS 
algorithm performs better than other algorithms.  
This shows that the DTS algorithm could be 
applied to the higher communication 
heterogeneity.  To simplify the explanations, 
some examples about the experimental results 
generated by other types of the task graphs are 
shown in Fig. 6.  In Fig. 6(a), the DTS 
algorithm performs better than other algorithms 

when β=100. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Schedule length of the Gaussian 
elimination task graph generated by every 
algorithm with varying β values and PE 

numbers. 
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 (a) FFT task graph, PE=4. 

(b) LU-decomposition task graph, PE=8. 

(c) Fork task graph, PE=32. 

(d) Join task graph, PE=16. 

(e) Fork-join task graph, PE=32. 
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Fig. 6. Experimental results of different types of 

the task graphs with varying β values and PE 
numbers. 

 
In Fig. 6(b), the DTS algorithm performs 

better than other algorithms when β=200.  
Similarly, in Fig. 6(c), the DTS algorithm 
performs better than other algorithms when β=10.  
Also, in Fig. 6(d), the DTS algorithm performs 
better than other algorithms when β=10, 100 to 
200.  This shows that the DTS algorithm could 
be applied to the higher communication 
heterogeneity.  In Fig. 6(e), the HEFT 
algorithm and the CPOP algorithm perform 
better than the DTS algorithm by using 
insertion-policy.  In the fork-join task graph, a 
lot of schedule-holes are caused.  Although, 
with insertion-policy, the HEFT algorithm and 
the CPOP algorithm exploit schedule-holes 
better than the DTS algorithm in the fork-join 
task graph, but in other types of task graph, the 
DTS algorithm perform better than them. 

Another experiment is to evaluate the 
performances of four algorithms with varying 
the heterogeneity of the computation.  The 
number of PE varies from 2, 4, 8, 16 to 32.  
The mean of communication rate, β, is equal to 
10.  The computation rate, α, varies from 10, 
100 to 200.  The experimental results of 
average schedule length generated by every 
algorithm with varying α values and different 
numbers of processors are shown in Fig. 7. 

Obviously, with increasing α values, the DTS 
algorithm and the HEFT algorithm perform 
better than the CPOP algorithm and the DLS 
algorithm.  This shows that the DTS algorithm 
and the HEFT algorithm could be applied to the 
higher heterogeneity of computation. 

 
 

5 Conclusions 
This study proposes a list-scheduling algorithm, 
the dominant tasks scheduling (DTS) algorithm.  
In the DTS algorithm, the communication 
contention is considered.  It makes scheduling 
strategies more suitable for real machines.  The 
global scheduling information could be 
considered by the condition A.  It makes the 
selection of CP nodes more correct.  Moreover, 
the DTS algorithm could exploit schedule-holes 
efficiently by using condition B.  The 
experimental results show that the DTS 
algorithm reduces the completion time well by 
using condition B.  The experimental results 
show that the DTS algorithm performs better 
than others algorithms in the system with the 
higher communication heterogeneity.  Also, the 
DTS algorithm and the HEFT algorithm perform 
better than others algorithms in the system with 
the higher computation heterogeneity.  In the 
systems with the high communication 
heterogeneity or the high computation 
heterogeneity, the DTS algorithm could perform 
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better than other algorithms by considering 
global scheduling information and exploiting 
schedule-holes. 
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Fig. 7. Experimental results of average 
schedule length generated by every algorithm 

with varying α values and PE numbers. 
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