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This paper puts forward suggestions that could improve the efficiency of field 
experiments as they are currently carried out in experimental economics. Two 
recommendations are made: (1) Prior to the actual study, economic field 
experiments should include sample size calculations that confirm that meaningful 
effects can be detected. (2) Economic field experiments should take advantage of the 
power of multi-factor experimental plans. 
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1 Introduction 

(1) In manufacturing, the value of well-designed and carefully-executed experiments 
has been well established. The outcomes of these experiments show which of 
several studied factors are important and how these factors relate to the response 
variables of interest. Box, Hunter and Hunter (2005) explain how to construct 
experiments efficiently and how to analyze the resulting data, and they illustrate 
their discussion with numerous case studies. (2) In medical research, investigators 
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run experiments all the time, and evidence-based medicine relies on randomized 
experiments to confirm which of several treatments are the most effective. (3) 
Experiments are not only conducted in the natural and the health sciences, but also 
in the social sciences and in economics. An extensive literature on economic field 
experiments is summarized on John List’s website 
http://www.fieldexperiments.com/. This website contains publications and 
discussion papers in experimental economics that make use of field experiments. 
The listed papers illustrate that well-designed experiments can help solve many open 
questions in economics. (4) More and more experiments address managerial 
business issues, and these experiments are not just run in laboratory settings, but in 
the real world (that is, “in the field”). The Six Sigma business management strategy, 
with its heavy focus on process improvement and experimentation, has contributed 
to an increase in the number of field experiments. Field experiments from business 
and marketing are discussed in Ledolter and Swersey (2007). 

Questions about the most effective ways to design experiments and issues of 
sample size and statistical power are commonplace in scientific experimentation, in 
evidence-based medicine, and in economic field experiments. If experiments are 
executed poorly, little or even nothing will be learned from the resulting data. While 
it is true that most experiments increase knowledge (you usually learn “something” 
through experimentation), the experimenter wants to learn as efficiently as possible. 
Relatively few experimental runs (observations) are needed in efficient experimental 
designs to get precise estimates of the factor effects. Sir Ronald Fisher, the eminent 
statistician and scientist who developed this area, said that a well-designed 
experiment may improve the precision of the results tenfold, for the same cost in 
time and labor (R.A. Fisher (1935), page 217). 

A thorough knowledge of experimental design principles can improve the 
efficiency of economic field experiments. Important principles of experimental 
design are replication, randomization, blocking, multi-factor instead of one factor at-
a-time experimentation, and the sequential approach to experimentation. Each of 
these principles is discussed in Ledolter and Swersey (2007). The sequential 
approach to experimentation is important with the results of initial experiments used 
to determine the next experimental steps. Only a portion of the overall budget should 
be spent on the initial runs.  
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It may be difficult at times to convince engineers to run on-line experiments 
and to persuade firms to experiment on actual processes. The fear is that 
experiments on the production line and “in the field” (as compared to in the lab) 
may “mess up” the status quo and reduce throughput. Practitioners must be 
convinced that knowledge gained from experimentation is worth the risk. W. 
Edwards Deming (1982) maintained that an important reason why Japanese products 
(at that time, mostly cars and electronics) were better than US products was the 
Japanese emphasis on continuous quality improvement and experimentation. By 
experimenting, Japanese firms learned how to produce better products more 
efficiently. 

Prior to running an experiment one needs to determine the sample size required 
to identify meaningful effects, that is, determine whether a certain sample size is 
sufficient to detect a specified change in the response. If the sample size is too small, 
first, observed effects may not be statistically significant and second, meaningful 
effects may not be uncovered. If the experimenter implements process changes 
based on observations that are large but not statistically significant, as Deming 
(1982) in his book Out of the Crisis has pointed out, such tampering with a stable 
system leads to an increase in variability. 

It is very important to know prior to running the experiment whether the 
resulting data have a chance of detecting meaningful changes. For example, consider 
field experiments that study the effects of monetary incentives on the academic 
success of disadvantaged high school students. These studies are expensive: 
Students are paid for their efforts, and there are additional administrative costs. In 
such studies one must calculate the statistical power of detecting (practically) 
meaningful changes before implementing the experiment, in order to avoid the costs 
of inconclusive results. 

An assessment of the literature on economic field experiments indicates that 
economic field experiments have several weaknesses. 

(1) Rarely do field experiments address the required sample sizes, and the 
resulting studies are often underpowered statistically. As a consequence, often there 
is not enough information at the conclusion of the study that allows researchers to 
determine whether A is really better than B. I recommend that prior to running field 
experiments one carries out sample size calculations that ensure that practically 
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meaningful effects can be detected. If one cannot afford the required sample sizes, 
one should restructure or abandon the problem in favor of problems that can be 
solved. If there is little chance that meaningful changes can be detected, the money 
could be better spent elsewhere. I recommend that each funding proposal for an 
economic field experiment include a section on sample size and power, similar to 
the proposals for medical/drug studies that are being evaluated for funding by NIH. 

(2) Frequently economic field experiments limit themselves to a simple 
comparison between two treatments, A and B. Usually just one factor is being 
studied. In this paper I illustrate that several factors can be studied with the same 
effort and costs, allowing for a more complete assessment of main and interaction 
effects. Economic field experiments should take advantage of the power of multi-
factor experiments. 

These two issues – sample size and statistical power, and the advantages of 
multi-factor experiments – are addressed in this paper. Section 2 expands on an 
earlier paper by List, Sadoff and Wagner (2011) and illustrates how to obtain 
appropriate sample sizes. Section 3 demonstrates that much can be gained by 
adopting multi-factor experiments. The discussion in this review is not entirely new 
as there is an extensive literature on the statistical design of experiments starting 
with the work of R. A. Fisher in the 1920s. The objective is to suggest 
improvements that could benefit researchers running field experiments. 

2 Issues of Sample Size and Power: Determining the 
Appropriate Sample Size 

In Sections 2.2, 2.3, 2.5 and 2.6 we add rigorous proofs for the sample size results 
given in the paper by List et al. (2011), and in Section 2.4 we add results that deal 
with sample sizes when comparing the means of two log-normal distributions. We 
also direct the investigator to flexible sample size/power software which makes 
sample size selection for detecting practically meaningful effects easy and 
straightforward. Having software readily available leaves no excuse for not 
addressing sample sizes prior to the start of an experiment. 



Economic Field Experiments 275 

2.1 Sample Size and Power when Testing a Single Mean 

We consider the test of 00 : µµ =H  against 01 : µµ <H , and test the research 
hypothesis of a reduction in the mean. Four quantities need to be specified: the 
standard deviation of an individual measurement Y , )(YVar=σ , the 
significance level α  (usually 05.0=α ), and the power (usually 0.80) to detect a 
specified difference of interest 001 <−= µµδ . Note that 2.01 =−= powerβ  is 
the probability of a type II error. 

We obtain the sample size n  by solving two equations as follows. 
From:  
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Y c
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We solve the two equations )()( 0 ncz σµα −=  and β−= 1zzPower  
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)()( 1 nc σµ−=  for the two unknown quantities n  and c , obtaining the 
following result for the required sample size. 

Result 1: 22 2 2
1 1 0[ - ] [( - ) ] ( ) ( )n z z z zα β α βµ µ σ δ σ−= = + . 

Example 1: 1)( == YVarσ , targeted detectable difference 3.001 −=−= µµδ , 
05.0=α  and 645.1−=αz , 20.0=β  (power = 0.80) and 8416.020.0 −=z .  

Then: 

[ ] 4.68)4816.2)(9/100(
)09.0(

)8416.0645.1( 2
22

2 ==
−−

=



+=
δ
σ

βα zzn .  

The required sample size is 69. 

Comment 1: Here we have worked with the normal distribution, assuming 
implicitly that the sample size is fairly large. Normality for averages follows from 
the central limit effect. If the sample size n  (for given σ  and δ ) is small, one 
can use the t-distribution and solve the equation 22

,1,1 )(][ δσβα −− += nn ttn , where 
( α,1−nt , β,1−nt ) are percentiles of the t-distribution. This equation has to be solved 
iteratively. Excellent computer software is available to carry out these calculations, 
and we discuss useful packages in Section 2.6. 

Comment 2: 
• The sample size increases with the power. The more power one wants, the 

larger the sample size.  
• The sample size increases with decreasing detectable difference. The 

smaller the difference one wants to detect, the larger the sample size must 
be. 

• The sample size increases proportionally to the variance. The larger the 
uncertainty, the larger the sample size. The sample size quadruples with a 
doubling of the standard deviation. 

• Two-sided tests require a larger sample size than one-sided tests. 

Comment 3: This result can be applied to the paired (blocked, or within-subject) 
test with response XYD −= . Here the same experimental unit is observed under 
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both treatments; for example, before ( X ) and after ( Y ) a certain treatment is 
applied. This type of design is common in drug studies where the effectiveness of a 
drug is assessed by comparing the response of a subject under treatment to his/her 
baseline response without treatment. This type of design is different from the fully 
randomized arrangement where the control and experimental groups are made up of 
different individuals; the data analysis that corresponds to the fully randomized 
design is given in the next section. As another illustration, imagine a study that 
compares the durabilities of two types of shoe soles. The fully randomized 
experiment assigns different subjects to the two experimental groups with a subject 
receiving either one or the other treatment, while a blocked (or within-subject) 
experiment assigns each of the two soles to the same individual (this is easy to do as 
there are two feet). The blocked experiment is more efficient as it allows us to 
isolate and remove the subject effect from the comparisons. In the paired experiment, 

)()(),cov(2)()()( XVarYVarXYXVarYVarDVar +<−+==σ  if X  and 
Y  are positively correlated and if blocking has been effective. Blocking on factors 
that have a large influence on the results is very useful; this is what Fisher had in 
mind when he said that a complete overhaul of an experimental design may improve 
the precision of the results ten- or twelve-fold, for the same cost in time and labor. 

2.2  Sample Size and Power when Comparing Means of Two 
Populations  

We compare the means of two groups and test 0: 120 =− µµH  against
0: 121 <− µµH . We test the research hypothesis of a reduction. The relevant 

function of the data to test the above hypothesis is given by
)()()( 1

2
12

2
212 nnYY σσ +− .  

For this test we need the following (now five) quantities: the two standard 
deviations 1σ  and 2σ  which don’t have to be equal; the significance level α  
(usually 05.0=α ); and the power (usually 0.80) to detect a specified difference of 
interest 012 <−= µµδ . Note that 2.01 =−= powerβ  is the probability of a type 
II error. 

We obtain the two sample sizes 1n  and 2n  by solving two equations as 
follows: 
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for the three unknowns, c , 1n  and 2n . This leads to the equation: 
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An infinite number of combinations of 1n  and 2n  satisfies this equality as 
there are three unknowns and only two equations. Among these many combinations, 
we pick the combination of 1n  and 2n  that minimizes the total sample size

21 nnN += . 

Result 2: The sample sizes of the two groups should be selected proportional to the 
standard deviations; that is 2121 σσ=nn . Under this optimal allocation the total 
sample size 21 nnN +=  is given by: 
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Proof: Let gnn =+ 1
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2 σσ . Many combinations of 21,nn  will satisfy this 

equation. We want the combination such that 21 nnN +=  is a minimum. Express 
2 2

1 2 1 2 2( )n n gnσ σ= − and 2 2
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1 2 2 21 ( )gnσ σ σ= ± − . This leads to
)( 2122 σσσ +=gn . Similarly (by setting equal to zero the derivative of 

2 2
1 1 2 1 1[ ( )]N n n gnσ σ= + −  with respect to 1n ) we obtain 2

1 2 1 11 ( )gnσ σ σ= ± −  
and )( 2111 σσσ +=gn . This leads to 2121 σσ=nn . Note that the solutions with 

21σσ−  in the numerators of the above two equations (that result from setting the 
first derivatives equal to zero) violate 0,0 21 >> nn . The result for the total sample 
size 21 nnN +=  follows by substitution. 

Comment 4: Here we have used the normal distribution assuming that the sample 
sizes are fairly large. If the combined sample size N is small, we can obtain a better 
value for N by using percentiles of the t-distribution, βα ,2,2 , −− NN tt . The equation 
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2 2 2
2 1[( ) ] 2( )N z zα β δ σ σ= + + .  

This allocation increases the optimal total sample size by the factor of 
2

12
2

1
2
2 )()(2 σσσσ ++ .  

Result 3: Assuming that the standard deviations are the same ( σσσ == 21 ), the 
sample sizes for the two groups are the same, and the sample size for each group is 

2 22[( ) ]n z zα β δ σ= + , for a combined sample size of 2 22 4[( ) ]N n z zα β δ σ= = + . 

Comment 6:  
• The sample sizes should be selected proportional to the standard deviations. 

Equal sample sizes should be selected if 12 σσ = . 
• The sample size increases with power. The more power you want, the 

larger the sample size.  
• The sample size increases with decreasing detectable difference. The 

smaller the difference you want to detect, the larger the sample size. 
• The sample size increases proportionally to the variances. The larger the 

uncertainty, the larger the sample size must be. 
• Two-sided tests require a larger sample size than one-sided tests. 
• Rule of thumb: With 025.0=α  (or 05.0=α  in a two-sided test) and 

96.1−=αz , and 20.0=β and 8416.020.0 −=z , we have 16][2 2 ≈+ βα zz . 
This leads to the following rule of thumb: Use (16)(16) = 256 subjects in 
each of two groups if you want to detect an effect that amounts to one 
quarter of a standard deviation (as then 4/ =δσ ). 

Example 2: 32 =σ  and 11 =σ  ; 05.0=α  and 645.1−=αz ; 20.0=β  (power 
= 0.80) and 8416.020.0 −=z , and detectable difference 5.012 −=−= µµδ . Then: 
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δ
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N ,  

for a total sample size of about 400. We should put 300 subjects into the group with 
standard deviation 32 =σ , and 100 subjects into the group with standard deviation 

11 =σ . 
Putting the same number of subjects into both groups (different from the 

optimal allocation) leads to a total sample size of
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2 22 2
2 1[( ) ] 2( ) [(-1.645 0.8416) (-0.5)] 2(9 1) 493N z zα β δ σ σ= + + = − + = ; and about 

250 in each group. This allocation increases the sample size by 100(20/16) = 25 
percent. 

2.3□Sample Size and Power when Comparing Two Proportions  

In many comparative studies we evaluate the success of a new strategy or a new 
method through the resulting change in a proportion. For example, we may have two 
different advertising strategies (strategies 1 and 2) and may be interested in whether 
or not strategy 2 increases the proportion of people who buy a certain product. 
Under the null hypothesis H0: πππ == 21 , the distribution of the difference of the 
two sample proportions 12 pp −  is normal with mean 0 and variance n)1(2 ππ − , 
where n is the size of the first (and second) sample, for a combined sample size 2n. 
For a test with significance level α , we reject the null hypothesis in favor of the 
one-sided alternative H1: 012 >=− δππ  whenever nzpp )1(2112 ππα −>− − ; 

α−1z  is the )1(100 α− percentile of the standard normal distribution. 
We are looking for a test with power β−1 , which implies probability β  of 

falsely accepting the null hypothesis if the alternative ( 012 >=− δππ ) is actually 
true. This requirement implies the equality: 
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The above equation can be solved for the sample size n, leading to:  
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Setting 0=δ  in the numerator, leads to the approximation: 
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see Ledolter, J. and Swersey, A.: Testing 1-2-3: Experimental Design with 
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Applications in Marketing and Service Operations. Stanford University Press, 2007 
(page 42). 

Example 3: Consider the planning value 03.0=π  for the common success 
proportion, and assume that it is important to detect an increase of one half of a 
percent ( 005.0=δ ). For 05.0== βα  and 645.195.0 =z , we must sample: 

200,25
)005.0(

]645.1645.1)[97.0)(03.0(2
2

2

=
+

≅n   

subjects in each group, for a total of 50,400 people for the two groups combined.  

Comment 7: The result is pertinent to the design of comparative experiments that 
attempt to estimate the difference between two unknown success proportions. It 
shows how to select the two sample sizes such that a certain specified difference (δ ) 
in the success proportions is detected with reasonably large power. A planning value 
for the common success proportion (π ) and a meaningful detectable difference (δ ) 
of the two success proportions need to be specified. Information on the success rate 
is usually available from prior experiments, and worthwhile changes are determined 
with economic considerations in mind. In our illustration, taken from a marketing 
study with very small response rates, 03.0=π  and 005.0=δ .  

2.4 Sample Size and Power when Comparing Two Lognormal 
Distributions 

In some situations the treatment affects the level as well as the variation, and many 
times the standard deviation of the response is proportional to the level. In such 
cases the logarithmic transformation of the response Y  stabilizes the variability; 
see Box, Hunter and Hunter (2005), Abraham and Ledolter (2006, page 205). A 
normal distribution for the transformed response YX log= , with mean µ  and 
standard deviation σ , implies that the response variable Y  follows a lognormal 
distribution.  

Usually we are given the coefficient of variation of the (untransformed) 
observations. Using results about the mean and variance of a lognormal distribution, 
the coefficient of variation is given by 1)exp()()( 2 −== σYEYVarc . We can 
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solve this equation for σ , the standard deviation of the log-transformed 
observations YX log= . It is )1log( 2c+=σ .  

We are also given the (proportionate) effect in the level of the Y-observations 
that we want to detect. This means that: 

)1)(()( 01 fYEYE +=  or )5.0exp()1()5.0exp( 2
0

2
1 σµσµ ++=+ f .  

Note that we have assumed that σ  is the same in both groups and that the 
change is only in the means of the log-transformed observations YX log= . We 
assume that the coefficient of variation is the same under the null and the alternative 
hypothesis. This important assumption certainly needs to be checked on prior data. 
Under this assumption we can solve the above equation to obtain the difference in 
the means of log-transformed observations; it is: 

)1log(01 f+=−= µµδ .  

Hence, for the power calculations, we transform the data to logs, YX log= , 
with )1log( 2c+=σ . We want to detect the difference )1log(01 f+=−= µµδ .  

We apply Result 3 for the two-sample comparison. With one-sided significance 
α  and power β-1 , the required sample size for each group is: 

)1log(
)1log(

22 2

2

2

2

c
f

zzzz
n +








+
+

=






 +
= βαβα σ

δ
.  

Comment 8: This equation is derived in Van Belle, G. and Martin, D.C.: “Sample 
size as a function of coefficient of variation and ratio of means,” The American 
Statistician. Vol. 47 (1993), pages 165-167. 

Comment 9: (Rule of thumb) With 025.0=α  (or 05.0=α  in a two-sided test) 
and 96.1−=αz , and 20.0=β  and 8416.020.0 −=z , we have 16][2 2 ≈+ βα zz . 
Furthermore, for small coefficient of variation c  and small proportional change 
f , 22 )1log( cc ≈+  and ff ≈+ )1log( . Hence, for small c  and f , 

2)/(16 fcn ≈ .  

Example 4: Assume coefficient of variation 15.0=c . Then 
149.0))15.0(1log( 2 =+=σ . Assume that we want to detect a 20 percent change 

in outcome ( 20.0=f ); then 182.0)2.01log( =+=δ . Hence: 
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29.8)149.0(
182.0

8416.0645.12)1log(
)1log(

2 2
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=



 −−

=+







+
+

= c
f

zz
n βα .  

That is, we need 9 subjects in each of the two groups.  

2.5 Sample Size and Power for Cluster Designs: Your Sample 
Sizes May Need to Be Larger than You First Thought 

Assume that we study two groups, with equal variances. Result 3 shows that the 
sample size for each of the two groups is 2 2

1 2 2[( ) ]n n n z zα β δ σ= = = + . The 
derivation assumes that the two treatments are assigned to the experimental units 
(subjects, objects, rats, etc) at random. It assumes a fully randomized arrangement in 
which the outcomes are independent across the experimental units.   

Sometimes the randomization is applied to clusters that consist of groupings of 
the experimental units. Clusters may be communities, and experimental units may 
be people. The randomization is at the cluster level; that is, the treatment groups 
(experimental and control, such as absence and presence of a certain economic 
incentive) are assigned to clusters at random. Each of the m experimental units in a 
cluster is then assigned to the same treatment. While the data of interest comes from 
experimental units in the two experimental groups, the randomization is carried out 
on the clusters.  

Usually subjects from the same cluster tend to be alike. Since observations 
from the same cluster are now correlated, with intra-cluster correlation coefficient 

0>ρ  (that is, the correlation among units from the same cluster), the m 
observations in a cluster don’t carry the same weight as m independent observations. 
Hence, in the presence of large intra-cluster correlation it is important to randomize 
over many, and preferably small clusters so as to maximize the efficiency of the 
experiment. Taking more and more replicates within a rather small number of 
clusters may get you larger sample sizes, but not the desired power.  

Here is the theoretical justification of this result. The variability of an 
experimental unit is the sum of two variances, 222

εσσσ += C : a cluster variance 2
Cσ  

and a unit-specific variance 2
εσ . The intra-cluster correlation coefficient is 

2 2 2( )C C ερ σ σ σ= + . Assume that each cluster contains m experimental units. Cluster 
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averages have variance 2 2( )C mεσ σ+ . The required number of clusters in each 
treatment group (for specified significance level, and for specified power at given 
detectable difference δ ) is: 
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Hence the required number of observations n (number of clusters, k, times 
number of observations in the cluster, m) in each treatment group is: 
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The intra-cluster correlation inflates the sample size that we obtain under 
complete random sampling, 2 22[( ) ]z zα β δ σ+ , by the factor [ ]ρ)1(1 −+ m . For 

0=ρ , we are back at our earlier result. For 1=ρ , we multiply the sample size that 
we obtain under complete random sampling by the number of experimental units in 
the cluster (m). Each experimental unit in a cluster is a carbon-copy of the other 
units in that cluster. The m experimental units in the cluster basically count as one 
unit (and not as m); it is the number of clusters that matters, and not the number of 
observations within the cluster. Hence, in the presence of large intra-cluster 
correlation, it is important to randomize over many, small clusters so as to maximize 
the efficiency of the experiment. Taking more and more replicates within the cluster 
doesn’t increase the power of the experiment. Taking more clusters does. 

2.6 □ Sample Size and Power Calculations Using Statistical 
Software  

Here we have described the sample size calculations from first principles. However 
excellent statistical software is available to carry out the sample size calculations. 
Most statistics packages have capabilities for calculating the appropriate sample 
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sizes. There are also programs dedicated to sample size exclusively such as Russ 
Lenth’s sample size/power applets, http://www.stat.uiowa.edu/~rlenth/Power/. 
Lenth’s sample size applets (they are free, good, and easy to use) cover many 
situations, such as numeric outcome variables (emphasis on means and variances), 
categorical outcome variables (emphasis on proportions), slope coefficients in 
regression models, and factorial experiments. Commercial statistical computer 
software such as Minitab and JMP also include useful programs for sample size 
calculations.  

3 The Advantage of Multi-Factor Designs: Sample Size 
and Power in 2-Level Factorial Experiments  

Consider a factorial experiment with two factors at two levels each and suppose that 
the same number of independent observations is taken at all factor-level 
combinations. The response may be weekly store sales of a product, and the factors 
may be the price of the product (low and high price) and the presence of a store 
display (no display and display at the store entrance). The grocery chain 
administering 40 stores in a metropolitan area may assign each of the four factor-
level combinations (that is, low price and no display, high price and no display, low 
price and display, and high price and display) to ten of their stores at random. For a 
fair comparison, the sales response at a store would need to be adjusted for overall 
store sales.  

The 22  factorial experiment with k  independent replicates at each of the 
four factor-level combinations requires a total sample size of k4  observations. 
Two main effects can be estimated. The main effect of each factor compares the 
average of the k2  observations at the low level of the factor with the average of the 

k2  observations at the high level; see Ledolter and Swersey (2007). For example, 
the main effect of price compares the average sales from the 20 stores where the 
price was set high with the average sales from the 20 stores where the price was set 
low. The main effect of display compares the average sales from the 20 stores with a 
store display with the average sales from the 20 stores without a display. 

In Section 2.2 we compared two levels of a single factor and we determined – 
for given significance, power, and detectable difference – the required total sample 

http://www.stat.uiowa.edu/%7Erlenth/Power/
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size for the experiment, 2 22 4[( ) ]N n z zα β δ σ= = + ; see Result 3. A 22  factorial 
experiment with 4/Nk =  replicates requires the same overall sample size, but has 
important advantages over the one-factor experiment: the factorial experiment 
provides estimates of not only one but two main effects, and it does so with the same 
precision as the one-factor experiment. Furthermore, the factorial experiment allows 
for the estimation of an interaction which expresses how the effect of one factor 
changes with the level of the other. One may want to know whether the effect of 
price depends on the presence of a display; price may matter less if people don’t 
know about the product.  

Factorial experiments are very useful. With the same number of observations 
we can study the effects of two factors, and we can do so with the same precision 
that is achieved by a one-factor experiment. However, the advantage of the factorial 
experiment diminishes when there is a strong interaction between the two factors, as 
in such a case we should not estimate an “overall” effect of one factor by averaging 
the observations over the second factor. A main effect (that is, an effect that is not 
“conditioned” on the other factor) has no meaning if the effect of one factor changes 
with the level of the other factor. While the effect of one factor at a given level of 
the second factor can always be estimated from the factorial experiment, this 
comparison involves two averages of 4/Nk =  observations and carries less 
statistical power than a single factor comparison that puts 2/N  observations into 
each group. 

Multi-factor experiments are more efficient in terms of their sample size than 
several one-factor experiments pieced together. Consider the un-replicated 32  
factorial experiment; it contrasts two averages of four observations each when 
estimating each of three main effects. In a sequence of several one-factor 
experiments pieced together we would need 8 observations for estimating the main 
effect of the first factor (contrasting 4 observations at one level with 4 observations 
at the other; here the second and third factors are fixed at levels that are deemed to 
be “best”); 4 more observations for estimating the main effect of the second factor 
(we already have 4 observations from the previous comparison that had fixed the 
second factor at one level, but we need 4 more observations that set the second 
factor at its second level), and 4 more for estimating the main effect of the third 
factor. A sequence of three one-factor experiments requires 16 observations to 
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estimate the main effects with the very same precision that is achieved by the 32  
factorial. This amounts to a doubling of the effective sample size, and the 
experiment still does not tell us anything about the presence/absence of interactions. 
Ledolter and Swersey (2007; page 98) show that a sequence of one-factor 
experiments for p factors requires more observations than a p2  factorial 
experiment, increasing the number of observations by a factor of )2/)1(1( −+ p ; 
for 3=p , this factor is 2. 

In field experiments one usually tests two levels of a single factor (the targeted 
factor) and keeps fixed several other important factors. From economic theory, one 
often knows that the fixed factors do have an impact. Their impact on the response 
can be through just their main effects or through their interactions with the targeted 
factor. If interactions between the targeted and the fixed factors are absent, the 
approach of fixing the other factors is wasteful as a multi-factor experiment with the 
same number of observations can estimate all main effects, and not just the one that 
has been targeted for study. Furthermore, a multi-factor experiment reveals 
interactions.  

If the response effect of a targeted factor at certain fixed levels of some other 
factors is the only interest, then the analysis should be “powered” for just this 
particular comparison. But one should keep in mind that one will not learn about the 
effects of factors that have been fixed and any interactions among the targeted and 
fixed factors. Running such a narrow experiment is inefficient. It is preferable to 
cast the “design net” wider so that one can learn about the effects of all factors (that 
is, also the factors that have been fixed). The factorial experiment is preferable if 
one can assume that the interactions between the factor of interest and the factors 
that have been fixed are negligible (and it makes no difference whether or not there 
are interactions among the factors that have been fixed). Using the multi-factor 
factorial design in this situation, we achieve the same power for the comparison on 
the targeted factor, plus we get an additional opportunity to learn about the effects of 
the factors that had been fixed. 

The benefits of the multi-factor plan are greatest if there are no interactions 
between the factor of interest and the factors that have been fixed. The full benefits 
of the multi-factor plan are not realized and some of its advantages are lost if there 
are interactions among the targeted and the fixed factors, as in this case it is not 
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meaningful to talk about an unconditional main effect and collapse the analysis over 
the factors that have been fixed. The results of the factorial experiment can always 
be used to compare the mean responses at the two levels of the targeted factor at 
specified levels of the other factors, and in the worst case (presence of interactions 
among the targeted factor and all fixed factors) this comparison contrasts k 
observations at one level with k observations at the second level of the targeted 
factor. But for each (formerly) fixed factor that is free of interaction with the 
targeted factor, we can get a better estimate of the effect of the targeted factor by 
collapsing the results over the (formerly) fixed factor and comparing the averages of 
2k observations at each of the two levels of the targeted variable. If two (formerly) 
fixed factors have no interaction with the targeted variable, we get a comparison of 
4k observations at each of the two levels of the targeted factor, and so on. Of course, 
at the outset of a study one usually does not know whether interactions are present 
and it is difficult to make general statements about the expected benefits of multi-
factor experiments. This brings us back to our earlier comment about the sequential 
nature of experimentation and the importance of leaving resources for follow-up 
studies. Sir Ronald Fisher once said that “the best time to design an experiment is 
after you’ve done it” (George Box (1993), who furthermore writes: “One 
manifestation of that seeming paradox is that after a preliminary experimental 
design has been run, questions are often raised about the results with an acuity of 
hindsight which is quite extraordinary”). 
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