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Abstract 

This paper proposes a copula that has versatile properties. We apply grouped t and 
versatile t copulas to estimate Value at Risk and expected shortfall using a sample of firms 
in the US property-liability insurance industry. We perform goodness-of-fit tests to assess 
the adequacy of the copula models selected. We find that a versatile copula is effective in 
estimating dependence structures of non-homogeneous multivariate risks. 
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1. Introduction 

The financial markets have evolved dramatically over time, and financial firms 
are expanding their range of financial services, leading to a large discrepancy 
between the reality of the business today and its regulation. Recently, European 
Union (EU) financial supervisory authorities have developed the new regulatory 
capital requirement known as Solvency II for the insurance industry. The new 
regulatory framework would fix deficiencies in the current risk-based capital system 
and introduce more risk-sensitive and sophisticated solvency requirements in which 
insurers should take into account all types of risk to which they are exposed. The 
regulatory capital requirement obliges insurers to hold an amount of capital adequate 
to the amount of risk that individual firms are taking. To fully capture the level of 
risks inherent in the insurer’s asset and liability portfolios, one has to understand the 
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importance of measuring dependence structure among different risk factors. The 
traditional method of measuring portfolio risks is based on the assumption, among 
other assumptions, that financial asset returns follow a multivariate normal 
distribution. However, recent studies show that dependence structure between assets 
returns tend to be nonlinear (e.g., Longin and Solnik, 2001; Trivedi and Zimmer, 
2009). Thus, the assumption of Gaussian dependence is likely to underestimate the 
actual risks if return distributions exhibit tails that are fatter than those implied by 
normal distributions. 

Recently, copulas have become popular in modeling multivariate dependencies 
in the finance, risk management, and insurance literature (e.g., Frees and Valdez, 
1998; Li, 2000; Embrechts et al., 2002; Ane and Kharoubi, 2003; Nelsen, 2006). In 
particular, the t  copula is widely used in practice due to its ability to capture 
extreme tail dependence and its flexibility in terms of simulation and calibration 
(Embrechts et al., 2002; Demarta and McNeil, 2005). Mashal and Zeevi (2002) find 
that international equity market indices exhibit extremal behavior in a statistically 
significant manner and t  dependence structure is superior to the Gaussian, 
correlation-based, dependence structure in representing extreme co-movements 
between financial assets. Breymann et al. (2003) show that the t  copula provides a 
better empirically fit to high-density financial return data. There are several studies 
that explore the impact of the dependence structure between risks on the capital 
requirement using t  copula functions. Tang and Valdez (2006) investigate the 
sensitivities of the capital requirement to the choice of the t  copula using data from 
an Australian insurance company that writes multiple lines of businesses. Based on 
the class of elliptical copulas, such as Gaussian, t , and Cauchy, Shim et al. (2010) 
examine how different dependence structures between insurance underwriting risk 
and market risk have a substantial impact on the insurer’s total required economic 
capital for a sample of US property-liability insurance firms. 

Daul et al. (2003) suggest an extended model of the standard t  copula, which is 
called the grouped t  copula. The grouped t  copula is suitable to describe the 
dependence structure for a mixture of different types of risk factors because it 
incorporates the dependence structure of non-homogeneous risk factors. In the 
grouped t  copula, risk factors of similar type are grouped and each component 
group selects its own t  copula with possibly different degrees of freedom, allowing 
for different levels of tail dependence in each component group. The grouped t  
copulas might be appropriate to describe the dependence structure in an insurance 
setting, where different types of risk factors, such as asset risk and liability risk, 
coexist. However, the grouped t  copula has some drawbacks. For example, the 
grouped t  copula requires an a priori choice of grouping among different types of 
risk factors. In certain cases where multiple risk factors of similar but different types 
coexist, it may not be clear about how to divide risk factors into distinctive groups. 
It may not be easy to divide risk factors into adequate sub-groups if there is no 
natural grouping (Luo and Shevchenko, 2010). The possibility of inadequate 
grouping may exist because grouping is determined by the researcher’s subjective 
decision. Inadequate choice of grouping could yield undesirable outcomes. In 
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addition, additional computing cost is required to generate random return series 
separately on each component group for the calculation of risk measures. 

To remedy these problems, we propose a copula that has versatile properties, 
which we call the versatile copula. The versatility has been given a great deal of 
attention in the statistical literature, especially in the area of survival analysis (e.g., 
Lee, 2007). This versatile approach incorporates various dependencies of the 
component groups with one copula selected. The versatile t  copula can be 
computationally more efficient for the purpose of calculating risk measures than the 
grouped t  copula since one specific copula is applied simultaneously to all groups. 
Unlike the standard t  copulas obtained under the assumption of homogeneous tail 
dependence, the versatile t  copulas can be applicable to a various range of 
dependence structures because the versatile t  copula is built using the degrees of 
freedom values used in the grouped t  copula. Based on the combination of the 
degrees of freedom of t  copulas selected from the grouped t  copula, we construct 
versatile t  copulas with the minimum, median, mean, and maximum degrees of 
freedom, and the middle of the degrees of freedom of Gaussian and Cauchy copulas. 

We apply these copula functions to model dependence structure between risks 
using data from the US property-liability insurance industry. We estimate risk 
measures value at risk (VaR) and expected shortfall (ES) under the grouped t  and 
the versatile t  copulas developed in this paper. VaR and ES are the most popular 
risk measures that summarize the levels of firm risk in a common dimension. To 
check the adequacy of the copula models selected, we perform goodness-of-fit tests 
using the method proposed by Genest and Rémillard (2008) and Genest et al. (2009). 

The paper is organized as follows. Section 2 provides a brief introduction of the 
multivariate t  distribution and t  copula. Section 3 discusses measures of linear 
dependence and characteristics of tail dependence of t  copulas. Section 4 introduces 
the grouped t  copula and develops versatile t  copulas. Data, inputs used in the 
simulation algorithm, and the process of copula selection are described in Section 5. 
The estimation of VaR and ES and the procedures of the goodness-of-fit tests are 
also presented in Section 5. Section 6 concludes. 

2. Model 

2.1 Multivariate t  Distribution 

We begin with a short introduction to the distribution for random vectors of 
correlated variables where each element has a univariate t  distribution. This is the 
multivariate t  distribution, which is a generalization of the univariate t  distribution 
to two or more variables. The p -dimensional random vector ),...,( 1

 pXXX  is 
said to have a multivariate t  distribution with   degrees of freedom, mean vector 
 , and p p  symmetric positive definite matrix   if the density is given by: 
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and it is denoted ),,( pt  or pt , , where   is interpreted as the shape parameter 
of the distribution of X . Note that the covariance of X  is  2  and is only 
defined for 2 . See Johnson and Kotz (1973) for further discussions. 

It is well-known that the p -dimensional family of normal variance mixture 
models is equal in distribution to the product of a (scalar) random variable 0S   
and a normal random vector ),0(),...,( 1  pp NZZZ  plus  : 

d

X SZ  , (2) 

where S  and Z  are independent. For example, the multivariate t  distribution with 
  degrees of freedom belongs to the class of multivariate normal variance mixture 
distribution if: 

W
S


 ,  

where W  has a chi-squared distribution with   degrees of freedom. Let 1f  and 2f  
be the marginal distribution functions of 1x  and 2x , respectively. When 2p  and 
with the identity covariance matrix, the multivariate t  distribution in (1) becomes 

)()(),( 2121 xfxfxxf  .  

Figure 1 shows the probability density of this bivariate t  distribution with the 
identity covariance matrix where two variables are independent and identically 
distributed. Figure 2 displays the probability densities of the bivariate t  distribution 
where the covariance matrix is chosen such that the correlation matrix between two 
random variables, 1X  and 2X , is: 
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The correlation coefficient is a measure of the strength of relationship of two 
variables. In this situation, two variables are positively correlated, having a linear 
trend. Figure 2 shows that the bivariate t  distribution when the correlation 
coefficient is radially symmetric. In summary, the multivariate t  distribution not 
only shares many tractable properties of the multivariate normal distribution but also 
enables modeling of multivariate extremes that take non-normal dependencies. 
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Figure 1. Bivariate t  Density Function with Identity Covariance and 5   (left) or 20   (right) 

Figure 2. Bivariate t  Density Function with 7.0  and 5   (left) or 20   (right) 

2.2 The t  Copula 

A copula, expressed as C , is a p -dimensional distribution function on p]1,0[  
with standard uniform marginal distributions. If 1, , pF F  are univariate distribution 
functions, then 1 1( ( ), , ( ))p pC F x F x  represents a multivariate distribution function 
with margins 1, , pF F  and is a joint probability distribution of random vectors with 
uniform marginal distributions. Sklar’s theorem (Nelson, 2006) states that every 
multivariate distribution function F  can be written as 

))(),...,((),...,( 111 ppp xFxFCxxF  , (3) 
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for some copula C . The copula C  is uniquely determined on p]1,0[  for F  with 
absolutely continuous margins. Conversely, if C  is a copula and 1, , pF F  are 
marginal distribution functions, then the distribution F  given by (3) is a joint 
distribution function with 1, , pF F . This implies that any copula C  can be used to 
join univariate distributions to create a multivariate distribution function with 
margins. 

Let the random vector 1( , , ) 'pX X X   have marginal distribution functions 
that are continuous and strictly increasing. A unique copula function of their joint 
distribution can be extracted from a multivariate distribution function F  from (3) by 
calculating: 

))(),...,((),...,( 1

1

1

11 ppp uFuFFuuC  ,  

where 11

1 ,..., 
pFF  are inverses of pFF ,...,1  and are referred to as the quantile 

functions of the margins. The copula of F , C , can be thought of as the distribution 
function of componentwise transformations of the random vector X , and it remains 
invariant under strictly increasing transformations of its components. This is an 
appealing feature of copula over the correlation coefficient. 

Elliptical copulas are generally defined as copulas of elliptical distributions 
(Embrecht et al., 2003; Demnarta and McNeil, 2005). An example is the t  copula. 
The t  copula is useful when data do not take normal distributions and tend to have 
marginal distributions with heavier tails. The t  copula of X  given by (2) is derived 
from the multivariate t  distribution defined in (1) and has the following 
representation: 
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where 1
t  denotes the quantile function of a univariate t  distribution and the 

parameter   controls the heaviness of the tails. As  , the t  copula approaches 
the Gaussian copula, which is based on multivariate normal distribution. The useful 
property of the copula is its invariance under strictly increasing transformations of 
the margins. When the correlation matrix   is used in the integral, the copula of 

),,( pt  is identical to ),0,( pt , where the copula of ),0,( pt  is: 
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In the bivariate case, the copula expression can be written as: 
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where 22111212   is the usual correlation coefficient of the bivariate t  
distribution if 2 . 

The simulation of the t  copula, t

RC , , is easily implemented. Equation (2) 
provides an algorithm for generating a multivariate t  distributed random vector X  
and returning a vector ))(),...,(( 1 pXtXtU  , where t  denotes the distribution 
function of a univariate t . Any univariate marginal distributions can be imposed 
over a t  copula. For example, if we combine several margins such as gamma, 
lognormal, and logistic using a t  copula with 2 , we can generate a random 
vector from a multivariate distribution with gamma, lognormal, and logistic margins. 
This is termed a meta t  distribution function (Embrechts et al., 2002; Fang et al., 
2002). Of course, this includes the case of univariate t  distribution margins with 
different degrees of parameters. 

3. Dependence Structure 

3.1 Linear and Rank Correlation 

Linear correlation is a measure of linear dependence. Let 1X  and 1X  be 
random variables with finite variances. The linear correlation coefficient is: 

21

21 ),(


 XXCov
 ,  

where )()()(),( 212121 XEXEXXEXXCov   and 1  and 2  are the standard 
deviations of 1X  and 2X , respectively. The popularity of linear correlation stems 
from its simple calculation and its naturalness as a measure of dependence in 
elliptical distributions such as the multivariate normal and the multivariate t  
distributions. However, linear correlation has some deficiencies. For example, linear 
correlation is not invariant under nonlinear strictly increasing transformations and is 
not even defined in the case of t  distribution with 2 , which is a heavy-tailed 
distribution (Embrechts et al., 2002). 

An alternative dependence measure for non-elliptical distributions is Kendall’s 
rank correlation named Kendall’s tau. Kendall’s tau is a measure of dependence 
based on concordance. In some cases the concordance between extreme (tail) values 
of random variables is of interest. For example, one may be interested in the 
probability of the event that price changes in gold and oil exceed (or fall below) 
given levels (Trivedi and Zimmer, 2009). This requires a measure of dependence for 
lower and upper tails of the distribution, rather than a linear correlation. Kendall’s 
tau is given by (Embrechts et al., 2002; Nelson, 2006): 



International Journal of Business and Economics 

 

220

  
1

0

1

0
212121 1),(),(4),( uudCuuCXX .  

The above equation implies that Kendall’s tau depends only on copula C  and 
not on the margins of 1X  and 2X . Note that this is the expected value of the random 
variable ),( 21 uuC , where 1u  and 2u  are uniform random variables on )1,0(  with 
joint distribution C . Recall that   is the usual linear correlation matrix in (4). This 
  can be estimated by a robust linear correlation estimator. The main advantage of 
using Kendall’s tau is that it is invariant under monotonic transformations of the 
variables for a random vector. Thus, an estimate of   in (4) is obtained from the 
following representation: 




 arcsin
2

),( 21 XX .  

For a proof, refer to Lindskog et al. (2003) and Fang et al. (2002). The t  copulas 
considered here incorporate an estimate of   using the above relationship. 

3.2 Tail Dependence 

Tail dependence relates to the level of dependence that may exist in the upper 
or lower tails of the multivariate distribution. The coefficient of tail dependence is 
expressed as the limiting conditional probability of joint quantile exceedances. 
Specifically, for a pair of random variables, 1X  and 2X , the coefficient of upper tail 
dependence is: 
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provided the limit exists, and the coefficient of lower tail dependence is: 

))(|)((lim 1

11

1

220
qFXqFXP

qL




 ,  

provided the limit exists. See Embrechts et al. (2003) for details on these 
expressions. For the family of elliptical copulas where distributions are symmetric, 
the two measures U  and L  coincide and are denoted  . If 1X  and 2X  have the t  
copula t

PC , , the coefficient of tail dependence is given by: 

)111(2 1    t ,  

where   is the off-diagonal element of P . Based on this formula, Embrechts et al. 
(2002) calculate the coefficients of tail dependence for various values of   and  . 
Table 1 presents their results, which illustrate varying degrees of tail dependence 
with the t  copula. The t  copula shows asymptotic dependence in the upper tail even 
for negative and zero correlations. The value of the coefficient for the t  copula is 
positive and is zero for the Gaussian copula (  ). Note that the strength of tail 
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dependence increases as   decreases and values of correlation increase. 

Table 1. Coefficient of Tail Dependence of t  Copula (Embrechts et al., 2002) 

 0.5    0   0.5   0.9   1   

2   0.06 0.18 0.39 0.72 1 

4   0.01 0.08 0.25 0.63 1 

10   0.00 0.01 0.08 0.46 1 

    0.00 0.00 0.00 0.00 1 

The t  copulas have an interesting property that generates a different level of 
extreme values according to the degrees of freedom, although they have the same 
marginal distributions and the same rank correlation between variables. Figure 3 
shows a scatterplot of 2000 simulations of random variables using t  copulas with 

1v  , 3, 7, and 10 degrees of freedom. All plots have the same rank correlation 
between variables ( 5.012  ) and the same margins ( 10t ). Vertical and horizontal 
lines mark the 0.005 and 0.995 quantiles of simulated distributions. Figure 3 clearly 
demonstrates that there is stronger evidence of upper and lower tail dependence as 
the degrees of freedom decreases. The form of tail dependence is not pronounced in 
the scatterplot with 10  compared to the plots of 1  and 3 . However, 
more pairs of joint extreme value observations are produced in the upper-right and 
lower-left quadrants of the scatterplot with 1 . This result implies that the 
dependence structure of multivariate distributions may not be well defined only by 
their marginal distributions and their correlations. 

Figure 3. Scatterplots of 2000 Simulations of Random Variables Using t  Copulas with 12 0.5   
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4. Grouped t  Copulas and Versatile t  Copulas 

Let ),...,( 1 pXXX   be given by ZSX
d

  with  , where S  and Z  are 
defined in Section 2.1. Recall that by Sklar’s theorem the copula of X  can be 
written as: 

))(),...,(()( 1

1

1

,, p

pt ututtuC   ,  

where }{ ij   for pji ,...,1,  , jjiiijij  , and pt  ,  is the distribution of 
WZ , where 2~ W  and ),0(~ pNZ  are independent. The pt  ,  is the 

multivariate t  distribution function and t  denotes the usual univariate t  
distribution function. Let pFF ,...,1  be a continuous and strictly increasing 
distribution function. Then we obtain a t  copula with margins pFF ,...,1 : 

))(()),...,((( 1
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1 pp XtFXtFY 
 . (5) 

As mentioned in Section 2.2, the distribution of Y  is referred to as the meta t  
distribution, and it has a t  distribution if and only if pFF ,...,1  are univariate t  
distribution functions. 

The grouped t  copula was proposed by Daul et al. (2003). Let ),0(~ pNZ  
and divide the variable X  indexed by p,,1  into m  subgroups of sizes mdd ,...,1  
such that pdd m 1  and write: 

),...,( 1 mXXX  ,  
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Note that kX , mk ,...,1 , has an kd -dimensional t  distribution with k  
degrees of freedom. Accordingly, we obtain the following: 

))),(()),...,((( 1

11

1

1 ppp YFFYFFY  ,  

which is a generalization of the meta t  distribution called the grouped t  copula 
(Daul et al., 2003). Because the grouped t  copula allows individual groups to 
possibly have different degrees of freedom parameters, each group may have a 
different level of tail dependence. As a special case, when 1m  and  1 , X  has 
a meta t  distribution, which is equal to (5) when  . The above procedures lead 
to a random variate: 
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))(),...,(,),(),...,(( 11 11111 pddd XtXtXtXt
mmm    , (6) 

where variables are partitioned into multiple subgroups and each subgroup has its 
own t  copula with possibly different degrees of freedom. The grouped t  copula 
may require various copulas to describe the distributional characteristic of individual 
subgroup variables. However, there is a possibility that poorly chosen groups may 
provide misleading information about the dependence structure of the variables 
considered since group classification is made by researcher’s judgment. Additional 
computing cost is also required to perform Monte Carlo simulation that generates 
random returns separately for each component group in a multi-group case. 

To overcome some of the drawbacks of the grouped t  copula, we propose a 
versatile t  copula in a nonparametric setting. Based on the combination of the 
degrees of freedom of t  copulas that come from the grouped t  copula, we first 
construct a versatile copula with the minimum of the degrees of freedom. Thus, (6) 
becomes: 

))(),...,(,),(),...,((
min11min1minmin 11 pddd XtXtXtXt

m    ,  

where ),...,min( 1min mv  . The Cauchy copula is a special case where the degrees 
of freedom is 1min  . The versatile copula with minimum degrees of freedom is 
able to express extreme tail dependence and also may overstate the level of tail 
dependence for the given application. Second, we form the versatile copula with the 
maximum of the degrees of freedom. Then, (6) becomes: 

))(),...,(,),(),...,((
max11max1maxmax 11 pddd XtXtXtXt

m    ,  

where ),...,max( 1max m  . The tail dependence structure is less pronounced in this 
copula. As max , the copula approaches the Gaussian copula where it does not 
allow for extreme events to be dependent. For comparison, we also add three 
different types of combined copulas that still retain versatile properties. The first is 
the median of the degrees of freedom in the grouped t  copula. Thus, (6) becomes: 

))(),...,(,),(),...,( 11 111 pddd XtXtXtXt
medmmedmedmed    ,  

where med  is the median of the degrees of freedom in (6). Note that the median 
value is a robust measure of center, which is less affected by extreme values than the 
average. Thus, we expect the copula with the median of the degrees of freedom to be 
more versatile than the minimum- and maximum-based copulas. The average of the 
degrees of freedom is used to construct a new versatile copula: 

))(),...,(,),(),...,(( 11 111 pddd XtXtXtXt
avgmavgavgavg    ,  

where 1( )avg m m     . Similar to the median, the average is a measure of 
center. The average value is more reliable than the median value when there are no 
extreme values in a sample. Finally, we propose a versatile copula that averages the 
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number of the degrees of freedom of the Cauchy and Gaussian copulas. For 
simplicity of computation, we take the degrees of freedom for Gaussian copula to be 
100 in this work. Thus, (6) becomes: 

))(),...,(,),(),...,(( 11 111 pddd XtXtXtXt
CGmCGCGCG    ,  

where CG  is the average value of 1 and 100. 

5. An Application to Insurance Underwriting Risk and Asset Risk 

5.1 Data, Marginal Distributions, and Correlations 

We use data from the US property-liability insurance industry to apply the 
grouped t  and versatile t  copulas to the problem of describing the dependence 
structure between risk factors. We divide the risks of a property-liability insurer into 
two groups: underwriting risk and asset risk. It is reasonable to classify an insurer’s 
risks into these two groups for this study because its main profits (or losses) stem 
from underwriting (underwriting risk) and investment (asset risk) activities. 
Underwriting risk measures the risk that arises from under-estimating the liabilities 
from business already written or inadequately pricing current or prospective 
business. Underwriting risk is the largest portion of the risk-based capital charge for 
property-liability insurers. Asset risk is a measure of an asset’s default of principal 
or interest or fluctuation in market value as a result of changes in the market. We 
also consider four business lines to represent underwriting risk: special property 
(SP), commercial multiple peril (CMP), medical malpractice (MM), and workers 
compensation (WC). Underwriting risk is measured using quarterly industry-wide 
underwriting returns by line of insurance business. The underwriting return is 
defined as premiums written net of the present value of incurred losses for each 
quarter divided by premiums written for the quarter. We obtain the quarterly data on 
losses and premiums from the National Association of Insurance Commissioners. 
We include four categories of assets to characterize the insurer’s asset risk: stocks, 
mortgages, corporate bonds (CBond), and government bonds (GBond). The 
quarterly time series of returns are taken from a previous study (Shim et al., 2010) as 
proxies for asset risks: stocks (the total return on the S&P500 stock index), 
mortgages (Merrill Lynch mortgage-backed securities total return), CBonds 
(Moody’s corporate bond total return), and GBonds (Lehman Brothers intermediate-
term total return). Summary statistics for the return series of underwriting and asset 
classes over the sample period 1991–2004 are presented in Table 2. 

To compare the performance of the grouped t  and versatile t  copulas, we also 
divide insurance underwriting and asset risks into four groups. Underwriting risk is 
divided into short-tail lines, which include SP and CMP and are more standardized 
with shorter loss payment duration, and long-tail lines, which include MM and WC 
and are more complex with longer loss payment duration. Asset risk is also 
categorized into two subgroups: stocks and mortgages are grouped together because 
have higher variability of returns (Browne et al., 2001) and CBonds and GBonds are 
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grouped together since they are less volatile investments. 
The marginal distributions of the underwriting and asset class returns and 

correlations between those classes are important inputs into the simulation algorithm 
using copulas. The distributional behavior of each business and asset class returns 
will differ with one another since the risks that each business and asset class covers 
vary to a great extent. Thus, we determine the best fitting marginal distribution on an 
individual business line and asset class basis using various graphical and numerical 
methods. Each of the selected distributions is fully specified by two parameters, and 
the maximum likelihood method is used to estimate these parameters. In Table 2, we 
present the appropriately selected marginal distribution and their estimated 
parameters given the data for each risk class. The correlation matrix between 
underwriting and asset portfolio classes is shown in Table 3. 

Table 2. Summary Statistics and Marginal Distributions 

Risk Classes Mean SD Distribution Parameter1 Parameter2 

SP 0.3625 0.2293 Cauchy 0.4338 0.0482 

CMP 0.3629 0.0694 Normal 0.3629 0.0694 

MM 0.2918 0.1118 Logistic 0.2918 0.0616 

WC 0.3026 0.0812 Lognormal –1.2381 0.3087 

Stock 0.0233 0.0792 Gumbel(Min) 0.0589 0.0617 

Mortgage 0.0192 0.0172 Gumbel(Max) 0.0114 0.0134 

CBond 0.0193 0.0341 Logistic 0.0193 0.0188 

GBond 0.0180 0.0186 Normal 0.0179 0.0186 

Table 3. Estimated Correlation Matrix between Underwriting and Asset Classes 

 CMP MM WC Stock Mortgage CBond GBond 

SP 0.6746 0.0840 –0.1130 0.1264 0.4044 0.2557 0.3186 

 (<0.0001) (0.5746) (0.4495) (0.3973) (0.0048) (0.0828) (0.0291) 

CMP 1.0000 0.2621 0.0837 0.1983 0.2877 0.3838 0.1509 

  (0.0751) (0.5761) (0.1816) (0.0499) (0.0077) (0.3113) 

MM  1.0000 0.3219 0.3933 0.0932 0.2574 0.0163 

   (0.0274) (0.0062) (0.5331) (0.0807) (0.9136) 

WC   1.0000 0.2702 –0.2469 –0.0986 –0.2496 

    (0.0662) (0.0944) (0.5096) (0.0907) 

Stock    1.0000 –0.0908 0.5570 –0.2833 

     (0.5441) (<0.0001) (0.0537) 

Mortgage     1.0000 0.1354 0.9250 

      (0.3643) (<0.0001) 

CBond      1.0000 –0.0146 

       (0.9222) 

Notes: P-values are in parentheses. 
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5.2 Copula Selection 

The selection of the component copula for each subgroup is an important issue 
in the study of the grouped t  copula. In this section, we demonstrate how to choose 
an appropriate copula for our given subgroups using the method employed by 
Durreleman et al. (2000) and Palaro and Hotta (2006). Their procedures are based on 
the comparison of parametric and nonparametric values of a copula. For the 
nonparametric values, we use an empirical copula which is close to the theoretical 
copula when the sample size is large. The best copula is selected in such a way that 
the distance between the theoretical and empirical copulas is minimized. This 
method is generalized to high dimensions of our application data. 

Similar to the usual empirical distribution functions that assign equal 
probability to each observation in a sample, we define the empirical copula function 
for a random sample jnj XX ,,1 ,... , Kj ,...,1 , from a multivariate distribution: 
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where I  is the indicator function and )(, ijiX , ni ,...1 , Kj ,...,1 , denote the ij th 
order statistic of the i th variable. The sum of the indicator function over j  indicates 
the number of observations in a sample when the indicator function is 1. The best 
copula is chosen as the one that minimizes the distance between the theoretical 
copula ( C ) and the empirical copula ( Ĉ ). As a numerical measure of the distance, 
the 2L -norm criterion is given by (Durrleman et al., 2000): 
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We determine the appropriate component copulas for subgroups in the grouped 
t  copula using the above formula. As discussed in Section 5.1, our application data 
are divided into two groups—underwriting risk and asset risk—and further divided 
into subgroups, namely short-tail lines, long-tail lines, high volatile investments and 
low volatile investments. The results in Table 4 show that t  copulas with 2 and 1 
degrees of freedom best fits the underwriting risk and asset risk factors, respectively. 
Similarly, the Gaussian and t  copulas with 10, 1, and 2 degrees of freedom are 
selected to appropriately represent the dependence structure of short-tail lines, long-
tail lines, high volatile investments, and low volatile investments, respectively. 

5.3 Value at Risk and Expected Shortfall 

VaR is the most popular risk measure in recent financial risk management. VaR 
is the maximum likely loss from holding a portfolio over some target period at a 
specified confidence level (Crouhy et al., 2000). For instance, if a portfolio has a 
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VaR of $5 million at the 99% confidence level, VaR then is the cutoff loss such that 
the probability of experiencing loss greater than $5 million is less than 1% over a 
given time period. VaR summarizes all risks of current portfolio positions into a 
single number. This explains why VaR is a crucial tool for conveying risk 
information to senior management and shareholders (Jorion, 2006). We also 
measure the significant loss beyond the quantile point by using the expected 
shortfall (ES). ES tells us the average size of the loss in excess of the cutoff value. 

Table 4. Selected Copulas and Values of the Distances for Each Subgroup 

No. of Groups Subgroups Selected Copula KCC ˆ  

2 Underwriting risk t ,  =2 0.0102 

 Asset risk t ,  =1 0.0108 

4 Short-tail lines Gaussian 0.0120 

 Long-tail lines t ,  =10 0.0101 

 High volatile investments t ,  =1 0.0076 

 Low volatile investments t ,  =2 0.0067 

To estimate VaR and ES under the grouped t  copulas and various subsets of 
versatile t  copula functions, we simulate 500,000 observations of return series for 
each underwriting and asset class using the parameters of the marginal distributions 
and correlations as inputs for specifying the copulas. We aggregate the simulated 
returns of an individual business line and asset class using its weights to construct a 
portfolio distribution. The VaR measure is simply computed from the quantiles of 
the aggregated portfolio returns distribution and the ES is obtained by calculating 
the sample mean of the simulated values above the corresponding quantile. 

The results of VaR and ES estimated with the grouped (2) and (4) t  copulas 
and various versatile t  copulas are presented in Table 5. For comparison, three 
confidence levels (99.5%, 99.9%, and 99.96%) are selected. The VaR at the 99.5% 
confidence level is the risk measure required by Solvency II capital requirements, 
99.9% is consistent with the Basel Committee on Banking Supervision, and 99.96% 
is the AA rating target. Since risk managers are concerned about negative returns, 
VaR and ES are evaluated at the lower tail of aggregated returns distribution. We 
immediately observe that there is a significant difference in the value of risk 
measures according to the type of copula model selected. Interestingly, the grouped 
(4) t  copula provides consistently lower VaR and ES than the grouped (2) t  copula, 
displaying a range of risk measures between 68.3% and 79.5%. It is also observed 
that versatile t  copulas with minimum 1  and median 10 , which allow for 
high tail dependence, lead to higher risk measures than does versatile t  copula with 
the maximum of degrees of freedom, which does not account for tail dependence, 
indicating that tail dependence is increasing as the degrees of freedom are 
decreasing in the sets of versatile t  copulas. The results underscore the importance 
of choosing the appropriate dependence structure in modeling risk measures. 

The choice of the adequate versatile t  copula is an important issue to ensure 
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that tail dependences between portfolio risks are properly identified. We assume that 
it is reasonable to classify insurer risks into two groups in this sample. Thus, the 
results of grouped t  copula with 2 groups can be used as a benchmark to compare 
the performance with the results of versatile t  copulas. Judging from estimates of 
VaR and ES in Table 5, the versatile t  copula with the minimum of degrees of 
freedom is an appropriate choice for our given application data. Table 5 
demonstrates that the estimates of VaR and ES computed from the versatile t  
copula with the minimum of the degrees of freedom are consistently closest to those 
of the group t  copula with 2 groups across all confidence levels for both grouped 
(2) and grouped (4) t  cases. The results indicate that the performance of the 
versatile t  copula selected is comparable to that of a benchmarked grouped t  
copula, or could be superior to that of the less correctly specified grouped t  copula. 
Note that it is also possible that, as a special case, the similar results can be observed 
with the well-chosen standard t  copula obtained under the assumption of 
homogeneous tail dependence. 

Table 5. Risk Measures of Aggregate Portfolio Returns Using Grouped t  and Versatile t  Copulas 

VaR ES VaR ES VaR ES 
Copula 

99.5% 99.5% 99.9% 99.9% 99.96% 99.96% 

Grouped (2) t 

Versatile (Min  =1) 

Versatile (Max  =2)  

–0.0762 

–0.0728 

–0.0712 

–0.1476 

–0.1435 

–0.1394 

–0.1693 

–0.1788 

–0.1635 

–0.3340 

–0.3191 

–0.3128 

–0.3484 

–0.3584 

–0.3275 

–0.4875 

–0.4561 

–0.4489 

Grouped (4) t –0.0569 –0.1114 –0.1232 –0.2539 –0.2380 –0.3873 

Versatile (Min  =1) –0.0718 –0.1467 –0.1811 –0.3253 –0.3126 –0.4641 

Versatile (Med  =10) –0.0682 –0.1339 –0.1498 –0.3024 –0.2821 –0.4571 

Versatile (Avg  =29) –0.0657 –0.1243 –0.1356 –0.2796 –0.2631 –0.4236 

Versatile (CG  =50) –0.0649 –0.1220 –0.1377 –0.2679 –0.2455 –0.4040 

Versatile (Max  =100) –0.0645 –0.1201 –0.1341 –0.2607 –0.2383 –0.3941 

We also perform goodness-of-fit tests to assess the adequacy of the copula 
model selected. Specifically, the procedures are based on the distance of the 
empirical copula and the copula distribution proposed by Genest and Rémillard 
(2008) and Genest et al. (2009). Consider the Cramér-von Mises type statistic: 

  
K

CdCCnTn
]1,0[

2 ˆˆ ,  

where Ĉ  is the empirical copula defined in Section 5.2 and C  is the assumed 
copula. The statistic, nT , is used to assess the adequacy of the given model. A large 
value of nT  indicates model misspecification. In particular, a p -value can be used 
as a numerical measure of how well a copula model fits data, and we can determine 
which copula is better based on this p -value. The p -value is defined as )( tTP n  , 
where t  is an observed value of nT , and it can be approximated by the standard 
bootstrap method. Note that the lower the p -value, the less likely the fit is good. 
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The results show that p -values of the grouped t  copula with 2 groups, the grouped 
t  copula with 4 groups, and the versatile t  copula with the minimum of degrees of 
freedom values are 0.6095, 0.2140, and 0.4760, respectively, indicating that these 
copula models cannot be rejected to describe the dependence structure of the given 
sample. In particular, the results are consistent with earlier findings that the 
performance of the versatile t  copula with the minimum of the degrees of freedom 
is competitive with that of a benchmarked grouped (2) t  copula or that the versatile 
t  copula could outperform the grouped t  copula that is imperfectly specified. It also 
shows that, although the grouped t  copula with 4 groups fits our sample, its 
performance is inferior to the grouped t  copula with 2 groups. 

6. Conclusion 

The theory of copulas has received much attention in modeling joint 
distributions because copulas provide a method of generating a multivariate joint 
distribution by combining the marginal distributions and the dependence structure 
between variables. The copula has become a useful tool in modeling multivariate 
dependencies since it allows a wide of range of dependence structure according to 
the choice of copula functions. The t  copula is commonly used to capture the 
extreme tail dependence of homogeneous risk factors. The recent literature suggests 
a grouped t  copula to take the dependence structure of non-homogeneous risk 
factors into account. The grouped t  copula focuses on issues related to the 
breakdown of risk factors of similar type and specification of its component copula 
by group. The grouped t  copula might be a natural choice to describe a range of 
dependence structures of different risk factors present in the financial institutions. 
However, it may be challenging to split risk factors into appropriate groups in 
practice. Inadequate grouping could lead to inaccurate assessment of portfolio risks. 

In this paper, we propose a versatile copula that can be applicable to any set of 
risk factors regardless of whether they possess homogeneous or non-homogeneous 
characteristics. Versatile copulas are constructed based on the degrees of freedom in 
the grouped t  copula. Using a sample of US property-liability insurance firms, we 
estimate VaR and ES under the grouped t  copula and the versatile t  copula. We 
find that the performance of the versatile t  copula with the minimum of the degrees 
of freedom is competitive with that of a benchmarked grouped t  copula with 2 
groups. We check the appropriateness of the copula models selected with a 
goodness-of-fit test, and the results strengthen our findings. Thus, the versatile t  
copula represents an alternative dependence measure that overcomes some 
downsides of the grouped t  copula. 
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