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Abstract- This paper presents a contourlet based 
approach for speckle reduction of ultrasound image. 
The discrete wavelet transform provides a 
transformation of a signal from the time domain to 
the scale-frequency domain. However, they do not 
handle high order singularities as well. Curvelets and 
ridgelets take the form of basis elements which 
exhibit very high directional sensitivity and high 
anisotropic. But, it is time consumption to digitize 
the curvelet transform. This will conduce to a serve 
limitation on curvelets in certain applications, such 
as ultrasound imaging and compression.  

The contourlet transform have a double iterated 
filter bank structure and a small redundancy at most 
4/3. Based on contourlet transform, two thresholding 
methods are used. The experiment shows great 
promise for speckle reduction of breast ultrasound 
images. 
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1. Introduction 
 

There are many methods be used for early 
detection of disease diagnosis. But, ultrasound is 
relatively inexpensive, non-invasive, and can be 
performed in a regular clinical office outside of 
hospital settings. However, ultrasound image are 
often difficult to interpret because of the presence of 
speckle noise. Speckle is multiplicative noise and is 
mainly reason to make ultrasound image degenerate. 
We adopt Jain’s [1] speckle noise model to carry out 
our scheme. There has been active research on 
denoising with the wavelet transformation. Donoho 
[2] had suggested that thresholding of wavelet 
coefficients would denoise signals. However, in 2-D 
the wavelet transform do not handle higher order 
singularities as well. Because the 2-D wavelet 
transform is a separable transform, a tensor product 
of two 1-D wavelet transforms. Thus, we can not 
expect that will have any directional sensitivity in 2-
D wavelet domain. Recently, curvelet [3] has been 
proposed, that offers a sparse expansion for 2-D 
piecewise smooth functions in  where the 

discontinuity curves are smooth. But curvelets are 
based on multiscale ridgelets combined with a spatial 
bandpass filtering operation in order to isolate 
different scales. Hence, it is time consumption to 
digitize the curvelet transform. This will conduce to 
a serve limitation on curvelets in certain applications, 
such as ultrasound imaging and compression.  

2ℜ

Minh and Vetterli [4] proposed contourlet 
transform that have a double iterated filter bank 
structure and a small redundancy at most 4/3. In this 
paper, we based on contourlet transform and two 
thresholding methods are used in speckle reduction. 
The experiment shows great promise for speckle 
reduction of breast ultrasound images. 

The outline of the paper is as follows. Section 2 
introduces the contourlet transform. Section 3 
describes the speckle reduction algorithm. Finally, 
Section 4, 5 represented experimental results and 
conclusion respectively. 
 
2. Contourlet Transform 
 

The discontinuities of natural images where are 
generated by edges-referred to points in the image 
with sharp contrast in the intensity, whereas edges 
are often gathered along smooth contours that are 
created by typically smooth boundaries of physical 
objects.  

The efficient representation of signal is the 
critical part of many image processing tasks, 
including denoising, compression, feature extraction, 
and enhancement problems. Efficient representation 
of signal means that we can use sparse description to 
capture the significant information about an object of 
interest. Several approaches in developing efficient 
representations of geometrical regularity been 
proposed. Candes and Donoho [5] proposed curvelet 
that offers a sparse expansion for 2-D piecewise 
smooth functions in  where the discontinuity 
curves are smooth. The curvelet transform was 
developed in the continuous domain via multiscale 
filtering and then applying a block ridgelet transform 
[6] on each bandpass image. Candes and Donoho [7] 
proposed refinement edition of curvelet transform 

2ℜ
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that was defined via frequency partitioning without 
using the ridgelet transform. However, curvelet 
construction require a rotation operation, it is a 
challenging for implementation for discrete images. 
Minh and Vetterli [6] proposed contourlet transform 
in 2002. The different between the contourlet and 
others methods of multiscale and directional image 
representation is contourlet transform offers different 
number of directions at each scale while achieving 
nearly critical sampling. 

 
2.1 Contourlet Scheme 
 

Minh and Vetterli [6] proposed the approach of 
Contourlet transform called pyramidal directional 
filter bank (PDFB). In PDFB, the Laplacian pyramid 
[7] is first used to capture the point discontinuities, 
then followed by a directional filter bank (DFB) [8] 
to link point discontinuities into linear structures as 
shown in Figure 1. 

 

 
Fig. 1. The diagram of contourlet transforms. 

 
2.2 Laplacian Pyramid 
 

Burt and Adelson [7] proposed Laplacian 
pyramid to achieving multiscale decomposition. The 
Laplacian pyramid decomposition at each step 
generates a lowpass (coarse) version of the original 
and the different (detail) version between the 
original and the prediction, resulting in a bandpass 
image (Figure 2). The process is then iterated on the 
coarse version. The Laplacian pyramid 
decomposition scheme is very like wavelet 
decomposition scheme. Wavelet decomposition is 
critically sampled, but at each Laplacian pyramid 
decomposition level generates only one bandpass 
image that does not have “scrambled”. This 
frequency scrambling happens in the wavelet filter 
bank when a highpass channel, after down sampling, 
is folded back into the low frequency band, and thus 
its spectrum is reflected. In the Laplacian pyramid, 
this effect is avoided by down sampling the lowpass 
channel only. 

 

    
(a) 

 

 
(b) 

Fig. 2. Laplacian Pyramid. (a) One level of the 
Laplacian pyramid decomposition. (b) One level of 

the Laplacian pyramid reconstruction. 
 

2.3 Directional Filter Banks 
 

Bamberger and Smith [8] proposed 2-D 
directional filter banks (DFB). The DFB is 
efficiently implemented via an l-level binary tree 
decomposition that leads to subbands with wedge-
shaped frequency partitioning as shown in Figure 3. 
Minh and Vetterli [6] simplified DFB by two 
building blocks. The first building block is two-
channel quincunx filter banks [9] with fan filters (see 
Figure 4) that split a 2-D spectrum into two 
directions: horizontal and vertical. The second 
building block are shearing operators, which amount 
to just reordering of image samples. Figure 5 shows 
an application of a shearing operator where a vertical 
edge becomes a 45º direction edge. By adding a pair 
of shearing operator and its inverse (“unshearing”) to 
before and after, respectively, a two-channel filter 
bank in Figure 4, we obtain a different directional 
frequency splitting while maintaining perfect 
reconstruction. Thus, the key in the DFB is to use an 
appropriate combination of shearing operators 
together with two-direction splitting of quincunx 
filter banks at each node in a binary tree-structured 
filter bank, to obtain the desired 2-D spectrum 
division as shown in Figure 3. 

 

 
Fig. 3. The frequency partition of directional 

filter bank, where l=3 and there have 23=8 wedge-
shaped frequency subbands.  
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Fig. 4. 2-D spectrum splitting by quincunx filters 
banks.  

where Q is a quincunx sampling matrix. 
 

  
 (a) (b) 

Fig. 5. Example of shearing operations in DFB 
decomposition. (a) Original image. (b) The original 

after shearing operation. 
 

2.4 Pyramidal Directional Filter Banks 
 

Figure 6 shows a multiscale and directional 
decomposition using a combination of a Laplacian 
pyramid (LP) and a directional filter bank (DFB). 
Bandpass images from the LP are fed into a DFB so 
that directional information can be captured. The 
scheme can be iterated on the coarse image. The 
combined result is a double iterated filter bank 
structure, named pyramidal directional filter bank 
(PDFB) [10] or discrete contourlet transform, which 
decomposes images into directional subbands at 
multiple scales̀.  

 

 
 

Fig. 6. Pyramid directional filter bank. A 
multiscale decomposition into octave subbands by 

the Laplacian pyramid and a directional filter bank is 
applied to each subband.  

 
Since the multiscale and directional 

decomposition steps are decoupled in the PDFB or 
discrete contourlet transform, we can have a 
different number of directions at different scales, 

thus offering a flexible multiscale and directional 
expansion.  

 
3. Speckle Reduction 
 

Ultrasound imaging techniques are widely used 
in medical diagnosis. One of the limitations of 
ultrasound images is poor image quality affected by 
speckle noise. Speckle is a statistically complex 
phenomenon [11]. One source of speckle is 
interference of back-scattered signals, which in turn 
is caused by tissue inhomogeneity [12]. Other 
sources include the type of probe used (sampling 
frequency and quantization, etc), the part of the body 
imaged, and discontinuities in tissue caused by 
disease. Thus, speckle is usually the result of tissue 
ultrasound interaction, and not of noise originating at 
some external source, as it is the case with additive 
Gaussian noise [12].  One of the first statistical 
classifications of speckle noise was introduced in the 
area of laser scattering, where the noise was 
determined to follow a negative exponential 
distribution [13]. In synthetic aperture radar (SAR) 
images, speckle is often modeled as multiplicative 
noise following a Rayleigh distribution. Speckle in 
Ultrasound images has also been assumed to be 
multiplicative [14], following a Rayleigh distribution 
[12]. In another model for noise in SAR images, 
speckle approximately follows an additive Gaussian 
distribution after logarithmic transformation. In this 
paper, we apply Jain [1] speckle noise model for 
speckle reduction.  

 
3.1 Speckle Noise Model 
 

Jain [1] presented a kind of accurate and reliable 
model for speckle noise as: 

),(),(),(),( yxnyxnyxgyxf am +⋅=  (1) 
where g(x,y) is such as a noise-free original image, 
to be recovered, f(x,y) is a noisy observation of 

,  and  are multiplicative 
and additive noise respectively. Since the effect of 
additive noise (such as transducer noise) is 
considerably small compared to that of multiplicative 
noise (coherent interfering) in ultrasound system, 
that is .  (2) 

),( yxg ),( yxnm ),( yxna

),(),(),( yxnyxgyxf m⋅≅
To separate the noise from the original image, we 
take a logarithmic transform on both sides of (1) and 
rewrite the equation (2) as: 

),(),(),( ''' yxnyxgyxf m+=  (3) 
 
3.2 Speckle Reduction Algorithm 
 

Figure 7 shown the block diagram of 
proposed speckle reduction algorithm. 
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Fig. 7. Block diagram of the proposed speckle 

reduction algorithm. 
 

Wavelet shrinkage methods, such as hard 
thresholding and soft thresholding, have been 
investigated for speckle reduction of images on a 
logarithmic scale. An advantage of soft thresholding 
is that it provides smoothness while hard 
thresholding preserves features. We apply soft 
thresholding at fine scales and hard thresholding at 
high scales to eliminate noise. The soft thresholding 
is defined by 
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In general, a threshold λ related to the noise level, 
orientation, and scale. Donoho’s [2] uses a single 
global threshold. But noise coefficients under a 
contourlet transform have average decay through 
fine-to-coarse scales. Hence, we regulate soft 
thresholding by applying coefficient dependent 
thresholds at different scales. 

The regulated threshold  can be computed 

through linearly decreasing function: 
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where is the standard deviation, j and d 

corresponding level and direction, respectively. 

d
jσ

α is 
a decreasing factor between two consecutive levels. 

 , are maximum and minimum value of 

, respectively. Figure 8 shows the regulated 

thresholds. 

maxT minT
d
jσ

 

 
Fig. 8. A linear function of regulated thresholds. 

 

Hard thresholding is defined by 
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The threshold λ was chosen as  where 
 is an estimate of the noise variance and c is a 

constant. 

2σλ c=
2σ

 
4. Experimental Results 
 

The proposed speckle reduction algorithm was 
evaluated to 256 by 256 gray scale ultrasound 
images. To evaluate the performance of the proposed 
algorithm, a measurement SNR (signal to noise ratio) 
be used.  

Figure 9(a) is a ROI of breast ultrasound image 
that have SNR 9.58. Figure 9(b) is the result of 
speckle reduction algorithm that has SNR 12.07. In 
the Laplacian Pyramid stage in the PDFB, we use the 
“9-7” biorthogonal filters. And in the DFB stage, we 
use the”23-45” biorthogonal quincunx filters 
designed by Phoong et al. [15].  

 
5. Conclusions 

In this paper, we presented a multiscale approach 
for speckle reduction. Speckle noise in ultrasound 
images has very complex statistical properties that 
depend on several factors. We applied the Jain’s 
speckle noise model. Through a fine-to-coarse scale 
analysis of a speckled image on a logarithmic scale, 
distinct behaviors of noise can be differentiated. We 
took advantage of both soft and hard thresholding 
wavelet shrinkage techniques. The proposed 
methods significantly reduce the speckle while 
preserving the resolution and the structure of the 
original ultrasound images.  
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(a) speckle image  
 

 
(b)Speckle reduction image 

 
Fig. 9. Breast ultrasound tested image. (a) speckle 
image with SNR=9.58, (b) speckle reduction of (a) 
with SNR=12.07.  
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