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Abstract-In this paper, we propose a wavelet neural 
network (WNN) for nonlinear time-invariant and 
time-varying channel equalizers. The WNN model is a 
four-layer structure which is comprised of an input 
layer, a wavelet layer, a product layer, and an output 
layer. A hybrid learning algorithm consists of structure 
and parameter learning algorithms. The structure 
learning is based on a self-clustering algorithm (SCA). 
It not only considers the original dilation and 
translation but also consider every translation and 
dilation’s variation of dimension in the input data. The 
parameter learning is based on a simultaneous 
perturbation method for adjusting the parameters. 
Computer simulation results show that the bit error 
rate of the WNN equalizer is close to that of the optimal 
equalizer. 

Keywords: Cluster, wavelet neural network, digital 
communication, equalizer. 

1. Introduction 
 
During the past few years, applications of high-speed 

communication are required and fast increasing. 
Nonlinear distortion becomes a major factor which 
limits the performance of a communication system. 
High speed communications channels are often 
impaired by the channel inter-symbol interference (ISI), 
the additive white Gaussian noise (AWGN) [1]-[3] and 
the effects of time-varying channels [4]. All these 
effects are nonlinear and complex problems. 
Nevertheless, adaptive equalizers are used in digital 
communication system receivers to mitigate the effects 
of non-ideal channel characteristics and to obtain 
reliable data transmission. 

Recently, some researches have been done on  
 
*Corresponding author 

E-mail: cjlin@cyut.edu.tw 

applications of wavelet neural networks (WNN), which 
combine the capability of artificial neural networks to 
learn from processes with the capability of wavelet 
decomposition, for the identification and control of 
dynamic systems. The main characteristics of WNN are 
the capability of incorporating the time-frequency 
localization properties of wavelets and the learning 
abilities of general neural networks. Therefore, the 
WNN can be applied to complex nonlinear system 
modeling [5]-[7]. 

In these networks, the learning scheme is of much 
interest, with the back-propagation method being 
widely used. A gradient type of learning rule is not easy 
to implement in a real system, since calculation of the 
gradients for all weights in the network is very difficult. 
The finite difference is a simple example. Jabri et al. 
pointed out the usefulness of such a learning rule. 
However, that learning rule has a fault in that it does 
not take good advantage of parallel processing of NN’s. 
In the present technique, we add a perturbation to all 
weights one by one and obtain corresponding values of 
an error function, in order to use a difference 
approximation. Therefore, the learning rule using the 
finite difference approximation requires n-times 
forward operation of the network to obtain modifying 
quantities for all weights, where denotes the total 
number of weights of the network. Thus, if the NN is 
large, we cannot expect viability of the learning rule in 
the sense of the operating speed. More suitable is the 
simultaneous perturbation method [8]-[10], since the 
learning rule requires only forward operations of the 
network to modify parameters unlike the 
back-propagation method. 
 

2. The Structure of WNN 
 

The structure of the WNN model is shown in Fig.1. 
The input data in the input layer of the network 
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is [ ]ni xxxxx ,,,,, 21 KK= , where n is the number 
of dimensions. Then, the activation functions of the 
wavelet nodes in the wavelet layer are derived from the 
mother wavelet )(xφ , with a dilation of d and a 
translation of t. The mother wavelet 

)2(2 2/
, txdd
td −= φφ                (1) 

The derivation of a differentiable Mexican-hat 
function is adopted as a mother wavelet herein, 
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where xxx T=2
. Therefore, the activation function 

of the jth wavelet node connected with the ith input data 
is represented as: 
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where n is the number of input-dimensions and m is the 
number of the wavelets. The wavelet functions of (3) 
with various dilations and translations are presented in 
Fig.2. Then, each wavelet in the product layer is labeled 
Π , i.e., the product of the jth multi-dimensional 
wavelet with n input dimensions [ ]ni xxxxx ,,,,, 21 KK=  

can be defined as  
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jj td

n

ij φψ
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According to the theory of multi-resolution analysis 
(MRA), )(2 ℜ∈ Lf any can be regarded as a linear 
combination of wavelets at different resolution levels. 
For this reason, the function f is expressed as 

∑
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if [ ]mj ψψψψ ,, 21 K=  is used as a nonlinear 
transformation function of hidden nodes and weight 
vectors and [ ]mj wwww ,, 21 K= defines the 
connection weights, then Eq. (5) can be considered the 
functional expression of the WNN modeling function Y. 
 

3. A Hybrid Learning Algorithm for WNN 
 

In this section, we propose a hybrid learning 
algorithm for the WNN model. The following two 

schemes are part of this learning algorithm [11]. First, a 
structure learning scheme is used to determine proper 
input space partitioning and to find the mean of each  

 
Figure 1.The architecture of the WNN model 

Figure 2.Wavelet bases with different translations     
and dilations 

 
cluster. Second, a simple learning scheme is used to 
adjust the parameters for the desired outputs. The 
applied learning algorithm uses the self-clustering 
algorithm (SCA) to perform structure learning and the 
simultaneous perturbation algorithm to perform 
parameter learning. 
 

3.1. The Self-Clustering Algorithm 
 

In the clustering process, the data examples come 
from a data stream, and the process starts with an empty 
set of clusters. When a new cluster is created, the 
cluster center, C, is defined, and its cluster distance and 
cluster width, Dc and Wd, is initially set to zero. When 
more examples are presented one after another, some 
created clusters will be updated by changing the 
positions of their centers and increasing the cluster 
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distances and cluster width. Which cluster will be 
updated and how much it will be changed depends on 
the position of the current example in the input space. A 
cluster will not be updated any more when its cluster 
distance, Dc, reaches the value that is equal to the 
threshold value Dthr. 
Step 1: Create the first cluster by simply taking the 
position of the first example from the input stream as 
the first cluster center C1, and setting its cluster distance 
Dc1 and cluster width Wd1_x and Wd1_y to zero. 
Step 2: If all examples of the data stream have been 
processed, the algorithm is finished. Otherwise, the 
current input example, Pi, is taken and the distances 
between this example and all n already created cluster 
centers Cj, jiij CPDist −= , j=1,2,…,n, are calculated. 
Step 3: If there is any distance value Distij equal to, or 
less than, at least one of the distance Dcj, j=1,2,…,n, it 
means that the current example Pi belongs to a cluster 
Cm with the minimum distance 

( ) n1,2,...,j ,CPminCPDist jimiim =−=−=    (6) 

In this case, neither a new cluster is created, nor any 
existing cluster is updated. The algorithm then returns 
to Step2. Otherwise, go to the next step. 
Step 4: Find a cluster with center Cm and cluster 
distance Dcm from all n existing cluster centers by 
calculating the values jijij DcWdS += , j=1,2,…,n, 
and then choosing the cluster center Cm with the 
minimum value Sim: 

n1,2,...,j ),Smin(DcWdS ijmimim ==+=       (7) 

Step 5: If Sim is greater than Dthr, the example Pi does 
not belong to any existing clusters. A new cluster is 
created in the same way as described in Step 1, and the 
algorithm returns to Step2. 
Step 6: If Sim is not greater than Dthr, the cluster Cm is 
updated by moving its center, Cm, and increasing the 
value of its cluster distance, Dcm, and cluster width 
Wdm_x, Wdm_y. The parameters are updated by the 
following equation: 
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where Cm_x is a value of the x dimension for Cm, Cm_y 
is a value of the y dimension for Cm, Pi_x is a value of 

the x dimension for Pi, and Pi_y is a value of the y 
dimension for Pi. The algorithm returns to Step 2. 
 

3.2. Simultaneous Perturbation Algorithm 
 

Details of the simultaneous perturbation method as a 
learning rule of NNs have been described previously 
[8]-[10] and are reiterated in this section. 

First of all, we define the following perturbation 
vector lc  that gives small disturbances to all weights 

( )Tn
lll ccc ,,1 K=                 (13) 

where the subscript l denotes an iteration. 

The perturbation vector lc  has the following 
properties. 

1. i
lc is a uniformly random number in an 

interval [ ]maxmax,cc− except an interval [ ]minmin,cc−  
and is independent with respect to time l for 

ni ,,1K= . 

2. ( ) 0=lcE . 

3. ( )
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  ( )⋅E  denotes expectation. 2σ is a variance of the 

perturbation i
lc .  

Learning Rule 1: First, we estimate wJ ∂∂ / overall, 
then the ith component of the modifying vector of the 
weights lw∆ , translations lt∆  and dilations ld∆ are 
defined as follows: 

i
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The parameters are updated in the follows manner: 

lll www ∆−=+ α1                 (17) 

lll ttt ∆−=+ α1                 (18) 

lll ddd ∆−=+ α1                 (19) 
where α is a positive learning coefficient. 

Learning Rule 2: Next, we estimate the first 
differential coefficient of the unknown plant with 

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

185



respect to the parameters of the NN, then we can obtain 
the following modifying quantity: 
 

i
l

lll
l

i
l wc

wufwcwuf
w

_
))(())_(( −+

=∆ ε         (20) 

i
l

lll
l

i
l tc

tuftctuf
t

_
))(())_(( −+

=∆ ε       (21) 

i
l

lll
l

i
l dc

dufdcduf
d

_
))(())_(( −+

=∆ ε     (22) 

where )( dlll yy −=ε . Since the error lε  can be 

easily measured, in this learning rule, only wf ∂∂ /  is 
estimated by means of the simultaneous perturbation. 
 

4. Illustrative Examples 
 

A discrete time model of a digital communication 
system is depicted in Fig.3. A random sequence ix is 
passed through a dispersive channel of finite impulse 

response (FIR), to produce a sequence of outputs iy
^

.A 

term, ie , which represents additive noise in the system, 

is then added to each iy
^

 to produce an observation 

sequence iy . The problem to be considered is that of 
utilizing the information represented by the observed 
channel outputs 11 ,,, +−− miii yyy K  to produce an 

estimate of the input symbol dix − . A device that 
performs this function is known as an equalizer. The 
integers m and d are known as the order and the delay 
of the equalizer, respectively. Throughout, the input 
samples are chosen from {-1 1} with equal probability 
and assumed to be independent of one another.  

The equalizer performance is described by the 
probability of misclassification with respect to the 
signal-to-noise ratio (SNR). With the assumption of 
independent identically distributed (i.i.d.) sequence the 
SNR can be defined as 

2

2

10log10
e

sSNR
σ
σ
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where 2
sσ represents the signal power and 2

eσ  is the 
variance of the Gaussian noise. 
 

4.1. Application of Time-Invariant Channel  
 

The equalizer order is chosen as m=2. Let the channel 
transfer function be 
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then the output channel signal is 
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Figure 3.Schematic of the data transmission system  

 
All the combinations of x(n) and the desired channel 
states are listed in Table 1. To see the actual bit error 
rate (BER), a realization of 610  points of sequence x(n) 
and e(k) are used to test the BER of trained WNN 
equalizer. The resulting BER curve of the WNN 
equalizer under the different SNR is show in Fig. 4. 

We now compare the performance of our model with 
Bayesian equalizer. The Bayesian equalizer is near 
optimal method for communication channel equalizer. 
Computer simulation results show that the bit error rate 
of the WNN is close to the optimal equalizer.  

 

4.2. Bayesian equalizer  
 

The Bayesian decision theory provides the optimal 
solution to the general decision problem. Therefore, the 
optimal symbol-by-symbol equalizer can be formed 
from the Bayesian probability theory and is termed a 
Bayesian or maximum a posteriori probability (MAP) 
equalizer. 

This minimum error probability decision can be 
rewritten as 
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where +
iy and −

iy  refer to the channel states which 
are +1 and –1 signal states, which have estimates of the 
noise-free received signal vector. Therefore, we can 
base on this function to make the optimal decision 
boundary. Form this point of view, the equalizer can be 
viewed as a classifier, and the problem can be 
considered as a classification problem. 

For noise is 10db, 1000samples of y(n) are plot using 
dots in fig. 5. The shaded region is the region where the 
transmitted signal is classified as -1, otherwise it is 
classified as 1. This way of making decisions is optimal 
because it produces the minimum average error 
probability or bit error rate. 

NO x(n) x(n-1) x(n-2) y(n) y(n-1)
1 1 1 1 1.8375 1.8375
2 1 1 -1 1.8375 -0.5125
3 1 -1 1 -0.5125 0.5125
4 1 -1 -1 -0.5125 -1.8375
5 -1 1 1 0.5125 1.8375
6 -1 1 -1 0.5125 -0.5125
7 -1 -1 1 -1.8375 0.5125
8 -1 -1 -1 -1.8375 -1.8375

Table 1.Input and desired channel states. m=2 and d=0 

4.3. Application of Time-Varying Channel 
 

Let the nonlinear time-invariant channel transfer 
function be Eq. 25 where 1a =0.5 and 2a =1. Since we 

assume the channel is time-varying, 1a , 2a are two 
time-varying coefficients. Those time-varying 
coefficients are generated by passing the white 
Gaussian noise through a Butterworth lowpass filter 
(LPF). The example is centered at 1a =0.5 and 2a =1 
and the input for the Butterworth filter is a white 
Gaussian sequence with standard deviation (std) β . 
Applying the function provided by the Matlab Signal 
Processing Toolbox, we can generate a second-order 
lowpass digital Butterworth filter with cutoff frequency 
β =0.1. 

The main portion of the program for Matlab is shown 
as follows:  
[B, A]=butter (2, 0.1); 
a1= 0.5+ filter (B, A, beta * randn (1, 1000)); 
a2= 1+ filter (B, A, beta * randn (1, 1000)); 

 
Figure 4.Comparison of bit-error-rate curves for the 
Bayesian, WNN equalizer. 

 
Figure 5.Desired channel, data clusters, SNR=10db, 
1000 samples of y(n), and decision boundary. 
 

Adjusting the time-varying coefficients, the 
coefficients and the corresponding channel states are 
plotted in Figure 6(a) and (b) respectively.  

To see the actual bit error rate (BER), a realization of 
610  points of sequence x(n) and e(k) are used to test 

the BER of trained WNN equalizer. The resulting BER 
curve of the WNN equalizer under the different SNR is 
show in Fig. 7. We compare the performance of our 
model with Bayesian equalizer. Computer simulation 
results show that the bit error rate of the WNN is close 
to the optimal equalizer. 

In the next experiment, we fixed SNR at 20 dB and 
ran simulations for eight different β  values ranging 
from β = 0.04 toβ =0.32, with step size 0.04 (set d = 
0). The result is shown in Figure 8. We compare the 
performance of our model with Bayesian equalizer. 
Computer simulation results show that the bit error rate 
of the WNN is close to the optimal equalizer. 
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Figure 6.For the channel (a) an example of a time-varying 
channel with β =0.1. (b) Channel states (noise free) of the 
time-varying channel. 

 
Figure 7.Comparison of bit-error-rate curves for the 
Bayesian and WNN equalizer, in time-varying channel 
with β = 0.1. 

 
Figure 8.Comparison of bit-error-rate curves for the 
Bayesian and WNN equalizer, in time-varying channel 
with SNR=20dB, β = 0.04 to 0.32. 

 

5. Conclusion 
 

This paper describes the wavelet neural network with 
simultaneous perturbation, which is a stochastic 
gradient-like learning rule. The rules need only twice 
operations to obtain the modifying quantities of all 
parameters. We applied a WNN model to the 

time-invariant and time-varying channel problems. 
Simulation results show that the bit error rate of the 
proposed WNN model is close to the Bayesian 
equalizer. 
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