
Constraint-based Software Specifications for Safety-critical Applications

Chia-Kuo Wu and Chin-Feng Fan
Dept. of Computer Science and Engineering Yuan-Ze University, Chung-Li, Taiwan

csfanc@saturn.yzu.edu.tw

Abstract-Constraint-based specifications add
constraints in behavior or properties specifications.
If these constraints are violated at run time,
appropriate adjustment can be made. This research
extends SpecTRM-RL, a newest constraint-based
specification language developed by Nancy Leveson,
to incorporate graphic representation, augmented
assertions, and safety analysis. We also convert
portions of the specifications to DFM (Dynamic
Flowgraph Methodology) to generate timed fault
trees systematically at design stage. These
techniques enhance the quality and safety of safety-
critical software.
Keywords: constraints, SpecTRM-RL, DFM, fault tree,
safety analysis.

1. Introduction

Constraint-based specifications refer to the
specifications that add constraints in behavior
modeling or properties specification. They are useful
for safety-critical computing systems, such as
computing systems in the areas of aviation,
transportation, medicine, and nuclear power plants. If
the pre-specified constraints are violated at run time,
appropriate adjustment can be made to ensure system
safety. In short, constraint-based specification can
help operators to monitor whether the system is in
unsafe situation. This research aims to develop a
constraint-based software specification approach
suitable for safety-related applications. Such
specifications should support both run-time hazard
detection and static hazard/safety analysis.

SpecTRM-RL[6] is a newest constraint-based
specification language developed by Nancy Leveson
for safety-related applications. This research
proposes to extend SpecTRM-RL to improve its
visual representation, completeness and consistency
of constraints, as well as safety analysis so as to
enhance system safety.

2. Background

2.1. SpecTRM-RL

SpecTRM[6] (Specification Tools and

Requirements Methodology) is a software
specification method based on Intent structure [5].
Both are developed by Nancy Leveson. SpecTRM-
RL is SpecTRM’s constraint-based Requirements
Language. The language is used to express the
blackbox behavior at Level 3 of the Intent system
structure [5]. SpecTRM-RL uses a state machine
model. Its system diagram includes a supervisory
mode, inferred system states, input/output messages
and hardware devices. AND/OR tables are used to
represent the logic of conditions in different outputs,
inputs and state transitions. Note that the boolean
values in a column of the AND/OR tables are “AND”
together and those in different columns are “OR”
together. Most of the default constraints are related
to values, ranges, types, timing, and capacity; these
constraints are expressed in natural language.
SpecTRM-RL’s system diagram, constraints, and
AND/OR tables are shown in Figures 1 to 3.

Figure 1. System diagram in SpecTRM-RL

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

195

Figure 2. SpecTRM-RL constratins

Figure 3. AND/OR tables

2.2. DFM

Dynamic Flowgraph Methodology (DFM) [1,5]
developed by George E. Apostolakis is an approach
to modeling and analysis of the safe behavior of both
hardware and software in a computer-controlled
system. Software can be expressed in detailed
requirements or design specifications. The
methodology provides a systematical way to
generate timed fault trees from DFM specification for
safety analysis. Our research proposes to incorporate
DFM to expand a portion of the specifications into
design details so as to develop fault trees for analysis.
DFM’s system graph is shown in Figure 4.

Figure 4. DFM System graph

2.3. Fault Tree Analysis

Fault tree analysis (FTA) is a popular technique
used to statically analyze system safety in a
backward fashion. It involves specifying an
undesired event as the top event to analyze, followed
by identifying all of the associated elements in the
system that could cause that top event to occur. It is
extensively used in aviation, nuclear energy, and the
electronics industry. Fault tree analyses are
performed graphically using a logical structure of
AND and OR gates. Figure 5 is a simple fault tree
model. Timed fault trees refers to the trees generated
backward in a level by level fashion, and each level
happens at a different time, say t, t-1, etc.

Figure 5. A fault tree

3. Our approach

 SpecTRM-RL, with its associated tool and Intent
framework, is a promising method appropriate for
safety-critical applications. However, since
SpecTRM-RL is still under development, many
aspects can be enhanced. For instance, the system
diagram is the only required diagram. More graphic
representation will be desired to improve the
readability of the specifications. The completeness,
consistency, and priorities of constraints should be
further examined. Besides run-time monitoring using
constraints as safety guards, we suggest to add
template-based fault tree analysis to provide an extra
level of safety assurance. We extend SpecTRM-RL in
the steps shown in Figure 6.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

196

Steps 1.1 and 1.2 in Figure 6 add graphic
representation to the method. Statecharts [2] can be
added to show state transitions; UML sequence
diagrams can be used to explicitly show the
interaction between input devices, output devices
and software commands. On the other hand, it is also
possible to automatically generate statecharts from
the given AND/OR tables if the state that a transition
originates from is indicated in the AND/OR table.
Figure 7 gives a sample case of this automatic
conversion from AND/OR tables to a statechart.

The completeness of constraints is considered
in Step 2. To make the constraint set more complete,
we add several categories of assertions focusing on
relations among variables and states. In general, both
constraints and assertions refer to statements of
relations that we think to hold; yet, assertions are
usually used in program contexts. Here we use them
interchangeably. We propose a formal expression for
constraints so that they can be checked automatically.
Step 3 checks the consistency among
constraints/assertions. However, there may be too
many constraints to check efficiently. Thus, Step 4
provides a simple way to identify important AND/OR
tables, and consequently their constraints should
have higher priorities.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

197

1. 1. Add statecharts, sequence
diagrams

2. Add assertions

3. Check assertion consistency

1. 2 Automatically generate
statecharts.

5. Automatically construct
fault trees.

4. Use TDG to prioritize
the assertions.

6. Transform parts to DFM and
generate timed fault trees

Design
safety analysis Req. safety analysispriority

completeness

consistency

Graphic representation

Figure 6. Our Steps

Figure 7. Statechart generated from specifications

We also include safety analysis. We
developed an algorithm to generate fault trees
automatically from our extended specifications in
Step 5. Besides, we suggest to combine the extended
SpecTRM-RL with DFM in Step 6. Due to DFM’s
visible and linked model, the methodology provides a
systematic way to generate a timed-Fault tree. But the
Decision tables of DFM may be too large and their
scalability is a problem. Thus, we will transform only

the most important software functions to DFM
graphs to generate timed fault trees for design-level
safety analysis. The details of these steps are
presented in the following sections.

4. Enhanced Specifications

In order to enhance readability and writability of
the original SpecTRM-RL, we add graphic
representation and the following detailed items to the
original the SpecTRM-RL.
1. Add hardware device specifications in

SpecTRM-RL fashion.
2. Add message source and destination to

SpecTRM-RL’s “state” specification.
3. Add AND/OR tables for “failure conditions”

explaining why the system faultily enters the
specified state. It is helpful to generate the fault
tree automatically.

4. Indicate the state that a transition originates
from in AND/OR tables. It is useful for state
chart generation.

5. Add augmented assertions to the
specifications.

6. In addition to natural language expressions for
constraints, we add formal representation to
constraints. Therefore, automatic checking of
the consistency between constraints is
possible.

These cover the first 3 steps of our approach shown
in Figure 6. We will address the augmented
assertions and the consistency checking below.

There are over 60 constraints given in the original

SpecTRM-RL. The major constraints are related to
ranges, time, and values. SpecTRM-RL does not

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

198

emphasize relations between different variables. We
believe that the relations between variables, devices,
and different kinds of timing are particularly important.
Thus, we add assertions to SpecTRM-RL so that the
specified relations can be checked at run-time. If the
relations do not hold, the operator will be notified.
The suggested assertions are as follows:
1. Reverse checking of state transitions:

For critical states, the correctness of the state
transition can be checked by reverse checking.
The following is an example where (-) refers to the
previous state:
 Level_State =Too_High → (-)(Level_State =
Abnormal_High) ^ (Water_level >M2)

2. Checking of I/O boundaries, ranges, timing, and

formats:
The following is an example:

(Time since Pump_State = opened was last Received > 5
sec)^ (Water_level ≧ (-)(Water_level)) ^
(0 < Water_level < MaxWater C)

3. Invariants：

Invariants specify the relations that always hold
among process variables and devices, including
physical invariants [8]. An example is given below:
(Steam s) ≦ (MaxSteam W)

Formulae to calculate process variables can also
be viewed as invariants. For example, water
quantity change is
dq/dt = p e* P – ve*V – se

where pe, ve,se are status of the pump, valve, and
steam, respectively; while P, V are the amount of
water flow of the pump and the valve.

4. Precondition: The precondition of an action
should be checked.

5. Failure conditions:

Conditions explaining why the system faultily
enters the specified states can also be specified
in AND/OR tables. They are used to generate
fault trees. The tables indicating “fault of
Gate_Raised” and “fault of ate_Lower” in Figure
8 are such examples.

6. Recovery assertions: The original SpecTRM-RL
has constraints for reverse action. We elaborate
and specify them in a formal form, which may
relate several variables/tables, for recovery
action once the related failures occur.

The consistency checking of constraints is not
mentioned in the original SpecTRM-RL. We provide
an algorithm to check consistency in timing between
related outputs and inputs, as well as between
feedback and output commands. The Algorithm is
shown in Figure 9.

Figure 8. Fault conditions added

Figure 9. Constraint consistency checking

5. Prioritize Assertions

With the original constraints and the augmented

assertions mentioned above, there are too many
constraints/assertions to check efficiently at run time.
We have developed a method to estimate the
importance of an AND/OR table. Then, the
constraints/assertions related to important AND/OR
tables should be checked first.

We first define Table Dependence Graph (TDG).
We may draw the dependency diagram for variables
in the predicate specified by an AND/OR table of an
output command. Such a graph is called TDG. To
prioritize constraints, we first identify critical failures
as the top events and draw the related fault trees.
Then, we locate the “software code error” nodes
in the leaves of these fault trees. The results of these
software errors are incorrect output commands
shown at one level above in the fault tree. We then
construct the TDG for the logic specified by the
AND/OR table of the incorrect output commands.
This is shown in Figure 10 where triangles represent
fault trees. The weight of each fault tree will be added
to its connected nodes in the graph and then summed
up to get the priorities of the involved AND/OR
Tables (i.e., variables and devices). Assertions of the

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

199

more important tables have higher priorities than
those of the less important ones.

Figure 10. A TDG sample

6. Safety Analysis Using Fault Trees

We propose to associate static safety analysis

with the extended specification. Since the extended
specifications include “failure conditions”
information in its AND/OR tables, we have developed
a systematic way to convert the extended SpecTRM-
RL specification into a fault tree based on a given
template for an undesired event. We consider many
possible faults such as hardware errors, message
delay, computing errors, encoding errors and so on.
This requirement- stage fault tree template is shown
in Fig. 11.

Besides, we have combined DFM to generate

design-level fault trees. We have studied and
compared several popular and promising
specification methods using tables and related to
safety-critical domains. These methods include
SpecTRM-RL, DFM [4] and SCR [3]. We concluded
that an ideal approach to design-level safety
verification should take the advantages of both
SpecTRM-RL and DFM because DFM provides a
systematic fault tree construction method. We first
developed a method that transform SpecTRM-RL
specification into a DFM’s graph. Designers can then
fill in the details of DFM’s decision tables, i.e.,
software functions. However, if the detailed control
logic has already defined in SpecTRM-RL, we can
then translate the AND/OR tables into DFM decision
tables. We first identify an important output
command. Then we check triggering conditions of the
command from its AND/OR table. The involved State
values (or internal values) and Input messages in the
triggering condition will be taken and drawn as
DFM’s nodes to generate DFM graph from
SpecTRM-RL in a backward fashion. As an example,

the specification of the pump command in a Steam-
boiler case is transformed into DFM and shown in
Figure 12. Note that the decision table in the figure
expresses the software logic extracted from the
AND/OR table of SS (steam state), given the input SV
(steam quality). The details of this case can be found
in [7]. The timed fault tree of DFM can be then
generated for safety analysis.

The major difference between the proposed fault
trees in Fig. 11 and the ones generated from the
converted DFM is not only stage difference
(requirements and design stages). DFM’s fault tree
generation focuses on software part and can be
performed systematically on a step-by-step base. But
it only considers the missing of the correct behavior
of modeled components. On the other hand, our
template-based fault trees not only consider the
causes due to modeled components, but also extend
to include other possible faults , such as message
problems or software unintended functions.

Results of the suggested safety analysis using

fault trees can work as feedback to re-design and to
check the completeness of constraints. If the
relations leading to an undesired event are missing in
the original constraint pool, they can be added.
Results of safety analysis can also be used to judge
constraint priorities, or used at run time to identify
the violated relations once potential hazards occur.
We have successfully applied the above extensions
to two cases, a simple steam-boiler case and a
railroad-crossing case [7].

7. Conclusion

We extended SpecTRM-RL, Nancy Leveson’s
newest requirements specification method. This
research added graphic representation to SpecTRM-
RL to improve its understandability. We also
augmented constraints by several categories of
assertions to make the constraint pool more complete
and effective. Moreover, static analysis using fault
trees are generated systematically from the
specification to add an extra level of safety guards
besides the dynamic constraint checking at run time.
The preliminary results are encouraging. An
associated tool is under construction and more
realistic cases are currently being examined. The
results will be reported shortly.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

200

 Figure 11. A fault tree template

Figure 12. DFM model converted from steam boiler
specifications

References

[1] C. J. Garrett, S. B. Gyarro, and G. E. Apostolakis,

“The Dynamic Flowgraph Methodology for
Assessing the Dependability of Embedded
Software Systems, ” IEEE Transactions on
systems. man. and cybernetics. Vol. 25. 5, MAY
1995.

[2] D. Harel,“Statecharts: a visual formalization for
complex systems,”Sci. Comput. Program. Vol. 8,
pp. 231-274, 1987.

[3] L. Heitmeyer, D. Jeffords and G. LABAW,

“Automated Consistency Checking of
Requirements Specifications,” ACM Transactions
on Software Engineering and Methodology, Vol.
5, No. 3, July 1996, Pages 231–261.

[4] M. Houtermansa, G. Apostolakisb, A.
Brombacherc, D. Karydasd, “The Dynamic
Flowgraph Methodology as a Safety Analysis
Tool: programmable electronic system design and
verification, ” Safety Science 40 (2002) 813–833.

[5] N. G. Leveson, “Intent Specification: An
Approach to Building Human-Centered
Specifications,” IEEE Transactions on Software
Engineer, Vol. 26, No. 1, January 2000.

[6] Software Engineering Corporation, “SpecTRM
User Manual,” 2001.

[7] C. Wu, “Constraint-based Software Specifications
and Safety Verification,” master’s thesis,
Computer Science and Engineering Dept., Yuan-
Ze U., Taiwan, July 2004.

[8] S. Yih, Jeff Tian, “Developing and Checking
Prescriptive Specifications for Safety
Improvement,” Elsevier Science,
Microprocessors and Microsystems 21 (1998)
587-594.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

201

