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Abstract-Constraint-based specifications add 
constraints in behavior or properties specifications. 
If these constraints are violated at run time, 
appropriate adjustment can be made. This research 
extends SpecTRM-RL, a newest constraint-based 
specification language developed by Nancy Leveson, 
to incorporate graphic representation, augmented 
assertions, and safety analysis. We also convert 
portions of the specifications to DFM (Dynamic 
Flowgraph Methodology) to generate timed fault 
trees systematically at design stage. These 
techniques enhance the quality and safety of safety-
critical software. 
Keywords: constraints, SpecTRM-RL, DFM, fault tree, 
safety analysis. 
 
 
1. Introduction 
 

Constraint-based specifications refer to the 
specifications that add constraints in behavior 
modeling or properties specification. They are useful 
for safety-critical computing systems, such as 
computing systems in the areas of aviation, 
transportation, medicine, and nuclear power plants. If 
the pre-specified constraints  are violated at run time, 
appropriate adjustment can be made to ensure system 
safety. In short, constraint-based specification can 
help operators to monitor whether the system is in 
unsafe situation. This research aims to develop a 
constraint-based software specification approach 
suitable for safety-related applications. Such 
specifications should support both run-time hazard 
detection and static hazard/safety analysis. 

SpecTRM-RL[6] is a newest constraint-based 
specification language developed by Nancy Leveson 
for safety-related applications. This research 
proposes  to extend SpecTRM-RL to improve its 
visual representation, completeness and consistency 
of constraints, as well as safety analysis so as to 
enhance system safety. 
 

2. Background 
 
2.1. SpecTRM-RL 

 
SpecTRM[6] (Specification Tools and 

Requirements Methodology) is a software 
specification method based on Intent structure [5]. 
Both are developed by Nancy Leveson. SpecTRM-
RL is SpecTRM’s constraint-based Requirements 
Language. The language is used to express the 
blackbox behavior at Level 3 of the Intent system 
structure [5]. SpecTRM-RL uses a state machine 
model. Its system diagram includes a supervisory 
mode, inferred system states, input/output messages 
and hardware devices. AND/OR tables are used to 
represent the logic of conditions in different outputs, 
inputs and state transitions. Note that the boolean 
values in a column of the AND/OR tables are “AND” 
together and those in different columns are “OR” 
together. Most of the default constraints are related 
to values, ranges, types, timing, and capacity; these 
constraints are expressed in natural language. 
SpecTRM-RL’s system diagram, constraints, and 
AND/OR tables are shown in Figures 1 to 3.  

 

 
Figure 1. System diagram in SpecTRM-RL 
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Figure 2. SpecTRM-RL constratins 

 
Figure 3. AND/OR tables 

 
2.2. DFM 
 

Dynamic Flowgraph Methodology (DFM) [1,5] 
developed by George E. Apostolakis is an approach 
to modeling and analysis of the safe behavior of both 
hardware and software in a computer-controlled 
system. Software can be expressed in detailed 
requirements or design specifications. The 
methodology provides a systematical way to 
generate timed fault trees from DFM specification for 
safety analysis. Our research proposes to incorporate 
DFM to expand a portion of the specifications into 
design details so as to develop fault trees for analysis. 
DFM’s system graph is shown in Figure 4. 

 

 

 
Figure 4. DFM System graph  

 
2.3. Fault Tree Analysis 
 

Fault tree analysis  (FTA) is a popular technique 
used to statically analyze system safety in a 
backward fashion. It involves specifying an 
undesired event as the top event to analyze, followed 
by identifying all of the associated elements in the 
system that could cause that top event to occur. It is 
extensively used in aviation, nuclear energy, and the 
electronics industry. Fault tree analyses are 
performed graphically using a logical structure of 
AND and OR gates. Figure 5 is a simple fault tree 
model. Timed fault trees refers to the trees generated 
backward in a level by level fashion, and each level 
happens at a different time, say t, t-1, etc.  

 

 
Figure 5. A fault tree  

 
3. Our approach 
 
     SpecTRM-RL, with its associated tool and Intent 
framework, is a promising method appropriate for 
safety-critical applications. However, since 
SpecTRM-RL is still under development, many 
aspects can be enhanced. For instance, the system 
diagram is the only required diagram. More graphic 
representation will be desired to improve the 
readability of the specifications. The completeness, 
consistency, and priorities of constraints should be 
further examined. Besides run-time monitoring using 
constraints  as safety guards, we suggest to add 
template-based fault tree analysis to provide an extra 
level of safety assurance. We extend SpecTRM-RL in 
the steps shown in Figure 6.  

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

196



Steps 1.1 and 1.2 in Figure 6 add graphic 
representation to the method. Statecharts [2] can be 
added to show state transitions; UML sequence 
diagrams can be used to explicitly show the 
interaction between input devices, output devices 
and software commands. On the other hand, it  is also 
possible to automatically generate statecharts from 
the given AND/OR tables if the state that a transition 
originates from is indicated in the AND/OR table. 
Figure 7 gives a sample case of this automatic 
conversion from AND/OR tables to a statechart. 

The completeness of constraints is considered 
in Step 2. To make the constraint set more complete, 
we add several categories of assertions focusing on 
relations among variables and states. In general, both 
constraints and assertions refer to statements  of 
relations that we think to hold; yet, assertions are 
usually used in program contexts. Here we use them 
interchangeably. We propose a formal expression for 
constraints so that they can be checked automatically. 
Step 3 checks the consistency among 
constraints/assertions. However, there may be too 
many constraints to check efficiently. Thus, Step 4 
provides a simple way to identify important AND/OR 
tables, and consequently their constraints should 
have higher priorities. 
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1. 1.     Add statecharts, sequence 
diagrams

2.       Add assertions

3.   Check assertion consistency

1. 2    Automatically generate 
statecharts.

5. Automatically construct 
fault trees.

4. Use TDG to prioritize 
the assertions.

6. Transform parts to DFM and 
generate  timed fault trees

Design
safety analysis Req. safety analysispriority

completeness

consistency

Graphic representation

Figure 6. Our  Steps

 

Figure 7. Statechart generated from specifications 
 

We also include safety analysis. We 
developed an algorithm to generate fault trees 
automatically from our extended specifications in 
Step 5. Besides, we suggest to combine the extended 
SpecTRM-RL with DFM in Step 6. Due to DFM’s 
visible and linked model, the methodology provides a 
systematic way to generate a timed-Fault tree. But the 
Decision tables of DFM may be too large and their 
scalability is a problem. Thus, we will transform only 

the most important software functions to DFM 
graphs to generate timed fault trees for design-level 
safety analysis. The details of these steps are 
presented in the following sections. 
 
4. Enhanced Specifications  
 

In order to enhance readability and writability of 
the original SpecTRM-RL, we add graphic 
representation and the following detailed items to the 
original the SpecTRM-RL.  
1. Add hardware device specifications in 

SpecTRM-RL fashion. 
2. Add message source and destination to 

SpecTRM-RL’s “state” specification. 
3. Add AND/OR tables for “failure conditions” 

explaining why the system faultily enters the 
specified state. It is helpful to generate the fault 
tree automatically. 

4. Indicate the state that a transition originates 
from in AND/OR tables. It is useful for state 
chart generation. 

5. Add augmented assertions to the 
specifications. 

6. In addition to natural language expressions for 
constraints, we add formal representation to 
constraints. Therefore, automatic checking of 
the consistency between constraints  is 
possible. 

 
These cover the first 3 steps of our approach shown 
in Figure 6. We will address the augmented 
assertions and the consistency checking below. 

 
There are over 60 constraints given in the original 

SpecTRM-RL. The major constraints are related to 
ranges, time, and values. SpecTRM-RL does not 
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emphasize relations between different variables. We 
believe that the relations between variables, devices, 
and different kinds of timing are particularly important. 
Thus, we add assertions to SpecTRM-RL so that the 
specified relations can be checked at run-time. If the 
relations do not hold, the operator will be notified. 
The suggested assertions are as follows: 
1. Reverse checking of state transitions:  

For critical states, the correctness of the state 
transition can be checked by reverse checking. 
The following is an example where (-) refers to the 
previous state: 
 Level_State =Too_High → (-)(Level_State = 
Abnormal_High) ^ (Water_level >M2) 

 
2. Checking of I/O boundaries, ranges, timing, and 

formats:  
The following is an example: 

(Time since Pump_State = opened was last Received > 5 
sec)^ (Water_level ≧ (-)(Water_level ) ) ^ 
(0 < Water_level < MaxWater C) 

 
3. Invariants：   

Invariants specify the relations that always hold 
among process variables and devices, including 
physical invariants [8]. An example is given below: 
(Steam  s)  ≦  (MaxSteam W) 
 

Formulae to calculate process variables can also 
be viewed as invariants. For example, water 
quantity change is  
dq/dt = p e* P – ve*V – se   

where  pe, ve,se are status of the pump, valve, and 
steam, respectively; while P, V are the amount of 
water flow of the pump and the valve.  
 

4. Precondition: The precondition of an action 
should be checked.  

 
5. Failure conditions: 

Conditions explaining why the system faultily 
enters the specified states can also be specified 
in AND/OR tables. They are used to generate 
fault trees. The tables indicating “fault of 
Gate_Raised” and “fault of ate_Lower” in Figure 
8 are such examples.  

6. Recovery assertions: The original SpecTRM-RL 
has constraints for reverse action. We elaborate 
and specify them in a formal form, which may 
relate several variables/tables, for recovery 
action once the related failures occur. 

The consistency checking of constraints is not 
mentioned in the original SpecTRM-RL. We provide 
an algorithm to check consistency in timing between 
related outputs and inputs, as well as between 
feedback and output commands. The Algorithm is 
shown in Figure 9. 

 
 

Figure 8. Fault conditions added 
 

 

 
Figure 9. Constraint consistency checking 

 
5. Prioritize Assertions  

 
With the original constraints and the augmented 

assertions mentioned above, there are too many 
constraints/assertions to check efficiently at run time. 
We have developed a method to estimate the 
importance of an AND/OR table. Then, the 
constraints/assertions related to important AND/OR 
tables should be checked first. 

We first define Table Dependence Graph (TDG). 
We may draw the dependency diagram for variables 
in the predicate specified by an AND/OR table of an 
output command. Such a graph is called TDG. To 
prioritize constraints, we first identify critical failures 
as the top events and draw the related fault trees. 
Then, we locate the “software code error”  nodes  
in the leaves of these fault trees. The results of these 
software errors are incorrect output commands 
shown at one level above in the fault tree. We then 
construct the TDG for the logic specified by the 
AND/OR table of the incorrect output commands. 
This is shown in Figure 10 where triangles represent 
fault trees. The weight of each fault tree will be added 
to its connected nodes in the graph and then summed 
up to get the priorities of the involved AND/OR 
Tables (i.e., variables and devices). Assertions of the 
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more important tables have higher priorities than 
those of the less important ones. 
 

 

Figure 10. A TDG sample 
 
6. Safety Analysis Using Fault Trees 

 
We propose to associate static safety analysis 

with the extended specification. Since the extended 
specifications include “failure conditions” 
information in its AND/OR tables, we have developed 
a systematic way to convert the extended SpecTRM-
RL specification into a fault tree based on a given 
template for an undesired event. We consider many 
possible faults such as hardware errors, message 
delay, computing errors, encoding errors and so on. 
This requirement- stage fault tree template is shown 
in Fig. 11. 

 
Besides, we have combined DFM to generate 

design-level fault trees. We have studied and 
compared several popular and promising 
specification methods using tables and related to 
safety-critical domains. These methods include 
SpecTRM-RL, DFM [4] and SCR [3]. We concluded 
that an ideal approach to design-level safety 
verification should take the advantages of both 
SpecTRM-RL and DFM because DFM provides a 
systematic fault tree construction method. We first 
developed a method that transform SpecTRM-RL 
specification into a DFM’s graph. Designers can then 
fill in the details of DFM’s decision tables, i.e., 
software functions. However, if the detailed control 
logic has already defined in SpecTRM-RL, we can 
then translate the AND/OR tables into DFM decision 
tables. We first identify an important output 
command. Then we check triggering conditions of the 
command from its AND/OR table. The involved State 
values (or internal values) and Input messages in the 
triggering condition will be taken and drawn as 
DFM’s nodes to generate DFM graph from 
SpecTRM-RL in a backward fashion. As an example, 

the specification of the pump command in a Steam-
boiler case is transformed into DFM and shown in 
Figure 12. Note that the decision table in the figure 
expresses the software logic extracted from the 
AND/OR table of SS (steam state), given the input SV 
(steam quality). The details of this case can be found 
in [7]. The timed fault tree of DFM can be then 
generated for safety analysis.  
 

The major difference between the proposed fault 
trees in Fig. 11 and the ones generated from the 
converted DFM is not only stage difference 
(requirements and design stages). DFM’s fault tree 
generation focuses on software part and can be 
performed systematically on a step-by-step base. But 
it only considers the missing of the correct behavior 
of modeled components. On the other hand, our 
template-based fault trees not only consider the 
causes  due to modeled components, but also extend 
to include other possible faults , such as message 
problems or software unintended functions.  

 
Results of the suggested safety analysis using 

fault trees can work as feedback to re-design and to 
check the completeness of constraints. If the 
relations leading to an undesired event are missing in 
the original constraint pool, they can be added. 
Results of safety analysis can also be used to judge 
constraint priorities, or used at run time to identify 
the violated relations once potential hazards occur. 
We have successfully applied the above extensions 
to two cases, a simple steam-boiler case and a 
railroad-crossing case [7].  
 
7. Conclusion 
 

We extended SpecTRM-RL, Nancy Leveson’s 
newest requirements specification method. This  
research added graphic representation to SpecTRM-
RL to improve its understandability. We also 
augmented constraints by several categories of 
assertions to make the constraint pool more complete 
and effective. Moreover, static analysis using fault 
trees are generated systematically from the 
specification to add an extra level of safety guards 
besides the dynamic constraint checking at run time. 
The preliminary results are encouraging. An 
associated tool is under construction and more 
realistic cases are currently being examined. The 
results will be reported shortly.
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 Figure 11. A fault tree template 
 

 
 

 
 

Figure 12. DFM model converted from steam boiler 
specifications 
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