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Abstract. The Object Constraint Language OCL is 
a textual notation that can be used for making UML 
models more precise by expressing formal 
constraints on the modelling elements that occur in 
UML diagrams. OCL can be used to specify 
invariants on classes and preconditions and 
postconditions of operations and methods. The Java 
Modeling Language JML is a behavioural interface 
specification language for specifying Java classes 
and interfaces. Like OCL, JML can be used to specify 
invariants and preconditions and postconditions. 
However JML explicitly targets Java, whereas OCL 
is not specific to any one programming language. 

This paper deals with the translation of some 
aspects of UML design models with OCL constraints 
to Java classes and interfaces annotated with JML 
assertions. Rather than giving a particular 
translation, the paper proposes different translation 
strategies that would be possible. A set of defaults for 
all the decisions would be adopted which would 
allow translation to be automated, for example by a 
tool that could take the UML/OCL model and 
translate it directly into an initial JML/Java design 
that could later be modified as desired. 
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1. Introduction 

The Unified Modeling Language UML [2] is 
widely accepted as the standard for object-oriented 
modelling and is supported by a number of CASE 
tools. The Object Constraint Language OCL [8] is a 
part of UML, and was introduced to formally express 
additional constraints on object-oriented models that 
diagrams cannot convey by themselves. OCL can be 
used to specify invariants on classes and 
preconditions and postconditions of operations. 

The Java Modeling Language JML [5][6] is a 
formal specification language specifically developed 
for specifying and describing the detailed design and 
implementation of Java modules (classes and 
interfaces) [1]. It is model-based supporting, in 
particular, class invariants, and method specification 
by precondition and postcondition to document 
required module behaviour. There are various tools 

that support the checking and manipulation of JML 
specifications including a run-time assertion checker. 
A description of the different tools available can be 
found in [3]. 

Following the lead of Eiffel [7], the assertion 
language of JML is based on side-effect free Java 
expressions. The language is extended with few       
operators and constructs including operators for          
universal and existential quantifications that are 
essential for making the language more expressive. 
JML also   provides a library of mathematical models 
(sets, bags, sequences, etc.) defined as pure Java 
classes that are intended to be used in specifications. 

This paper presents and discusses different 
strategies for translating UML/OCL design models 
into JML/Java designs consisting of Java classes and 
interfaces annotated with JML assertions. The paper 
also adopts a set of defaults for the translation. This 
makes it possible for the translation to be automated 
by a tool that could take the UML model with OCL 
constraints and translate it directly into an initial 
JML/Java design that could later be modified as 
desired. The main focus will be on translating the 
modelling elements of class diagrams with 
associations that are directed. The translation 
facilitates reasoning about the specification and the 
verification and testing of the Java classes using a 
wide range of tools that manipulate JML. And 
because JML/Java preserves most features of the 
object-oriented structure of UML/OCL models, 
errors detected within the JML/Java specification 
produced by the translation could more easily be 
traced back into the initial UML/OCL model. 

The rest of the paper is organised as follows. 
Section 2 presents various choices for translating 
classes, attributes, and invariants. Section 3 shows 
how associations with various multiplicities are 
translated. Section 4 shows how aggregation and 
composition are translated. Section 5 shows how 
association classes are translated. Section 6 shows 
how generalisation is translated. Section 7 shows 
how operation specifications are translated. Section 8   
provides the conclusion. 
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2. Translating UML classes 

In this section we discuss various options for      
translating UML class diagrams into JML. A class in 
a class diagram is mapped to a Java class of the same 
name, annotated with JML assertions. 

2.1 Class attributes 

 The attributes of a class are mapped to fields of 
the same name and with the appropriate types. 
Attribute type declarations are required for 
translation to JML/Java. Figure 1 shows a class 
named A with attribute att of type T, where T is 
assumed to be a basic value type, i.e. one of the 
following types: Boolean, Integer, Real, or String. 

 
A

- att : T

 
 
public class A { 
 private /*@ spec_public @*/ T’ att;} 

Figure 1. A class and its translation to JML 
 
The class A is mapped to a Java class with the 

same name A and the attribute att is mapped to a 
field of the same name att of type T’, where T’ is 
the translation of type T. JML specifications are 
included in the code as annotations which are 
comments starting with //@ or starting with /*@ and 
ending with @*/. For example, the annotation      
/*@ spec_public @*/ indicates that for the 
purpose of specification the field att is public. The 
type of the corresponding Java field depends on the 
type T. If T is Boolean, the corresponding field type 
is boolean. If T is Integer, the corresponding field 
type is one of the following types: byte, short, 
int, or long. Given that Integer is the type of 
mathematical integers, it is appropriate to translate it 
as long, by default. If T is Real, the corresponding 
field type is one of the following types: float or 
double. We also translate Real as double, by 
default. If T is String, the corresponding field type is 
String. And because the type String is an object       
(reference) type, an additional constraint is needed on 
the field att that says att cannot take the value 
null since it is declared to be total. This constraint 
can be expressed using either the annotation         
/*@ non_null @*/ on the declaration as follows: 

public class A { 

  private /*@ spec_public   non_null @*/  
                            String att; } 

or as an explicit invariant as follows: 

  public class A { 

    private /*@ spec_public @*/ String att; 
          //@ public invariant att != null;} 

JML invariants are boolean expressions and 
follow the keyword invariant. The modifier public   
indicates that the invariant is public. Using 
annotations on the declaration makes the 
specification simpler and easier to read. For this 
reason, this translation will be the default. 

The disadvantage of using private fields as public 
for specification purposes is that the specification is 
coupled with these fields so that any changes to them 
will affect the specification. This can be overcome by 
using model fields which are used only in the 
specification. This is shown in Figure 2 where a 
represents clause is added which indicates how the 
value of the model field att is obtained from the 
concrete field att_c. 

 
A

- att : T

 
    public class A { 

   //@ public model T’ att; 
       private T’ att_c; 
   //@ private represents att<- att_c;} 

Figure 2. An alternative translation for class A 

 
If the type T is an enumerated type with values v1 

and v2, the corresponding type is simply the Java 
type T declared as enum T {v1, v2}. 

If the attribute att is optional, i.e. declared as     
att : T[0..1], the corresponding type is the wrapper 
class for the basic types. For example, if T is Integer, 
the corresponding type would be one of the following 
types: Byte, Short, Integer, or Long. By 
default, Integer is translated as Long. If T is Real, 
the corresponding type would be one of the 
following: Float or Double. Again by default, 
Real is translated as Double. If T is String, the 
field type would be String in which case there is 
no additional constraint on the field att since it can 
already have the value null. 

Using wrapper classes for the translation may 
make the corresponding JML assertions more 
complicated because one needs to unwrap the objects 
in order to get the actual value. However, this is no 
longer a problem since the new version of Java 
makes the unwrapping process automatic. 

If the attribute att is marked with UML’s 
{frozen} property as shown in Figure 3, the 
corresponding field att is declared with the 
modifier final. 

 
A

- att : T       {frozen}

 
public class A { 
 private final /*@ spec_public @*/ T’ att;} 

Figure 3. A frozen attribute and its translation 
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An alternative way is to translate the frozen 
property of the attribute using a history constraint as: 

//@ constraint att == att@pre; 

That is, once the object is initialised the value of att 
will be the same in every state. 

2.2 Class invariants 

Class invariants involving attributes are translated 
to JML invariants constraining the corresponding 
fields. Invariants in OCL are expressed as follows: 

context A 
inv: att-invariant 

where the keyword context indicates the context of 
the invariant which is the class A in this case, and inv      
indicates the type of the constraint which is an 
invariant. The invariant itself att-invariant is a 
boolean expression which may involve the attribute 
att. This invariant translates to a JML invariant on 
the corresponding field att as shown in Figure 4, 
where att-invariant is the corresponding JML 
boolean expression. If a model field is used in the 
translation, the invariant constrains it. 

A

- att  : T context A inv:
att-invariant  

   public class A { 
   private /*@ spec_public @*/ T’ att; 
   //@ public invariant att-invariant; } 

Figure 4. A class invariant and its translation 
 
OCL assertions are boolean expressions built 

using the boolean operators and, or, not, and 
implies. Quantified expressions are built using the 
quantifiers forAll and exists. The expressions p and 
q, p or q, not p, and p implies q are translated to the 
corresponding JML expressions p’&&q’, p’|| q’, 
!p’, and p’==>q’ respectively, where p’ and q’ 
are the translation of the expressions p and q 
respectively. Quantified expressions are translated 
using the JML quantifiers \forall and \exists. 

Equality between expressions of the basic types 
Boolean, Integer, and Real are translated using the 
Java equality operator ==. That is e1 = e2 is 
translated to e1’ == e2’, where e1’ and e2’ are 
the translations of e1 and e2 respectively.  However, 
if e1 and e2 are of type String, e1=e2 is translated 
to e1’.equals(e2’). More details about 
translating OCL expressions and operations into JML 
can be found in [4]. 

As an example, Figure 5 shows a class Person 
with attributes name and weight, and an invariant 
that says the name cannot be empty and the weight 
must be greater than or equal to zero. The mapping to 
JML/Java is also shown in Figure 5, where the name 

and weight are translated to the fields name and 
weight respectively. The inequality name <> ”” is 
translated to !name.equals(““). 

Person

name  : String
weight : Integer

context Person inv:
name <> "" and weight >= 0

 
public class Person { 
  private /*@ spec_public   non_null @*/ String name; 
  private /*@ spec_public @*/ int weight; 
  //@ invariant !name.equals(“”) && weight >=0;} 

Figure 5. Class Person and its translation 

3. Translating associations 

This section considers associations with various 
multiplicities and how they are mapped to JML/Java. 
Associations are used to show how classes are related 
to each other. Associations are drawn as lines 
between pairs of classes. The association line may be 
annotated with role names and multiplicity 
constraints that indicate how many instances of one 
class can be linked to an instance of another class. 
Associations are translated through declared fields in 
Java classes depending on the navigability specified 
across the association line. This paper only handles 
associations that are directed. Bi-directional 
associations are translated as if they were two 
separate uni-directional associations with additional 
constraints. 

3.1 Associations with ‘one’ multiplicity 

Figure 6 shows a directed association between 
classes A and B with role name r at the B’s end. This 
says that an instance of class A is associated with 
exactly one instance of class B. Translating the 
association involves translating the classes and the 
role r. Since the multiplicity of the association is one, 
r is translated to a field r of type B that is declared in 
A. An additional constraint is needed to say that r 
cannot be null. The mapping is shown in Figure 6 
where field r is declared as public for specification 
purposes. This is similar to the attribute case where 
the attribute type is an object type. 

1
rA B

 
public class A { 
 private /*@ spec_public non_null@*/ B r;} 

Figure 6. Association translation 
 

The translation can also be achieved using a 
model field r and a concrete field rc, together with a 
represents clause that defines the model field in terms 
of the concrete one, as follows: 
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public class A { 

    //@ public model non_null B r; 
    private B rc; 
    //@ private represents r <- rc;} 
 
The advantage here is that the specification is not tied 
to the implementation of the class. 

The mapping provides a general case for the       
translation of associations that can be instantiated to 
specific classes and role names. 

3.2 Associations with ‘0..1’ multiplicity 

Figure 7 shows an optional (i.e. 0..1 multiplicity) 
directed association between classes A and B with 
role name r. This says that an instance of class A 
might or might not be   associated with an instance of 
class B. In this case the role r is translated to a private 
field r of type B with no additional constraints 
because it can already take the value null. The 
mapping is also shown in Figure 7. 

 
0..1
rA B

 
public class A { 
 private /*@ spec_public @*/ B r;} 

Figure 7. Optional association translation 
 
The translation can also be achieved using a 

model field r and a concrete field rc, with a 
represents clause. The translation in this case is 
similar to that of the association with ‘1’ multiplicity 
where the non_null constraint is removed. 

3.3 Associations with ‘many’ multiplicity 

A very common multiplicity in modelling is 
‘many’, which is indicated by an asterisk, and means 
any integer greater than or equal to zero. Figure 8 
shows an association between classes A and B with 
‘many’ multiplicity and role name r. Each instance of 
class A is associated or related to a set of instances of 
class B. JML supports modelling types that can be 
used in specifications. These include sets, bags and 
sequences. In order to translate associations with 
‘many’ multiplicity, these modelling types are used. 

The translation is shown in Figure 8 where the 
role r is translated to a model field r of type 
JMLObjectSet. The type JMLObjectSet is the 
type of finite sets containing objects rather than 
values. That it treats its elements as object references 
(addresses) and does not care about the values of 
these objects. The equality test used by the 
membership method has uses Java's == operator to 
compare addresses of these objects. Since 
JMLObjectSet is defined as a Java class, a 
constraint is required that restricts the value of the 

field r to be not null. An additional constraint is also 
required to say that the elements of r are instances of 
class B. This is expressed using the universal 
quantifier \forall, as (\forall Object e; 
r.has(e);e instanceof B). Note that this 
translation does not specify how the role r is 
implemented. 

 
*

rA B
 

public class A { 
//@ public model non_null JMLObjectSet r; 
/*@ invariant  (\forall Object e;r.has(e); 
  @               e instanceof B); 
  @*/  } 

Figure 8. A translation of an association with * 
multiplicity 

 
Another possible translation is to use the private   

representations of role r as public for the 
specification. However, the use of model variables 
provide abstract and more concise specifications. 

If the association is also annotated with {bag} or 
{seq}, the translation is similar to the set case but 
uses the types of bags JMLObjectBag and 
sequences JMLObjectSequence respectively. 

Associations with other ‘many’ multiplicities are 
translated in a similar way, where the multiplicities 
are reflected in additional constraints constraining the 
size of such collections. For example Figure 9 shows 
an association annotated with multiplicity m..n, 
where m and n are positive integers. In this case the 
role r is translated to a field r of type 
JMLObjectSet where the size of r is restricted to 
be between m and n. The translation is given in 
Figure 9. The case where the multiplicity is a fixed 
integer is subsumed within range multiplicity where 
m and n are equal. 

 
m..n
rA B

 
public class A { 
//@ public model non_null JMLObjectSet r; 
/*@ public invariant  
  @(\forall Object e;r.has(e);e instanceof B) 
  @  && m <= r.size() && r.size() <= n; 
  @*/ } 
Figure 9. A translation of an association with 

m..n multiplicity 

4. Translating aggregation/composition 

Aggregations in UML are special associations 
that represent ‘part-whole’ relationships. The ‘whole’ 
side of the relationship is often called the aggregate 
or assembly. Aggregations are specified using a 
diamond symbol, which is placed next the aggregate. 
Aggregation is translated as an ordinary association. 

Composition is a stronger form of aggregation 
and implies that instances of the part class may 
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belong to just one instance of the compound class. A 
composition is shown using a solid (filled-in) 
diamond, as opposed to an open one. The translation 
of composition is similar to translating aggregation 
with an additional constraint to enforce unshared 
containment.  This translation is shown in Figure 10 
where the last constraint is used to prevent sharing. 

 

*
r

A B

 
public class A { 
//@ public model non_null JMLObjectSet r; 
/*@ invariant  (\forall Object e;r.has(e); 
  @                   e instanceof B); 
  @  (\forall A a1, a2;a1 != a2; 
  @       a1.r.intersection(a2.r). 
  @            equals(new JMLObjectSet()); 
  @*/ } 

Figure 10. Composition translation 

5. Translating association classes 

An association class enables class like features to 
be added to UML associations. An association class 
is connected to its association by a dashed line. Such 
classes may be translated to JML/Java as described 
above, but with the addition of two fields 
corresponding to rolenames and types of the classes 
participating in the association. Depending on the 
navigability specified across the association line, the 
participating classes constructs will contain 
additional fields whose type is a power set of the 
association class and constrained in size by the 
multiplicity specified at the opposite association end. 

 

A BC * 11 *
r

*

*
r

A B*

C

 
Figure 11. Association class and its 

transformation to one-many associations 
 
Any pair of classes with a many-to-many 

association with an association class can be 
transformed into a model that uses only one-to-many 
associations as shown in Figure 11. In this case the 
translation deals only with ordinary associations as 
covered above. An additional constraint is also 
needed which says that given an object of type A and 
another of type B, there is a unique object of C 
associated with those objects. 

6. Translating generalisation 

The translation of UML generalisation is         
straightforward in that Java supports inheritance.       

Specialised subclass features may then be translated 
as described earlier. However since Java does not 
support multiple inheritance, models with such 
features have to be translated using interfaces. If an 
operation is redefined in a subclass, its specification 
in the superclass is inherited. This is indicated in 
JML by using the keyword also as in Figure 12. 
That is class B only shows part of the specification 
for operation op, the other part is specified within 
class A. 

 

context B::op()
pre: precondition
post: postcondition

B
op()

A
op()

 

public class B extends A { 
   /*@ also 
     @ requires precondition; 
     @ ensures postcondition; 

     @*/ } 

Figure 12. Translation of a subclass 

7. Translating operation specifications 

In OCL operations are specified using 
preconditions and postconditions which are boolean 
expressions. The general form of an operation 
specification is given as follows: 

 
context A::op(p1:T1, ..., pn:Tn) 
pre: op-precondition 
post: op-postcondition 
  
The first line of the specification defines the class 

in which the operation is defined, and this is 
indicated by the keyword context, followed by the 
signature of the operation. The precondition and 
postcondition follow the keywords pre and post 
respectively. This specification is translated to a JML 
specification of the corresponding method op of 
class A as follows: 

 
public Class A { 
 //@ requires op-precondition; 
 //@ ensures op-postcondition; 
public void op(T1’ p1,...,Tn’ pn){...};} 
 
The types T1’,..., Tn’ in the signature of the 

method op are the translation of T1, ..., Tn 
respectively. The precondition op-precondition of 
method op which follows the keyword requires 
is the translation of the OCL precondition op-
precondition and the postcondition op-
postcondition which follows the keyword 
ensures is the translation of op-postcondition.  

This will be the default translation of the 
operation specification. OCL does not support frame 
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conditions that indicate which properties an operation 
is allowed to modify. However JML supports the 
description of frame conditions using the assignable 
or modifies clause. The user can then strengthen the 
method specification by adding an assignable or 
modifies clause that indicates which variables the 
method is allowed to change.  In some simple cases 
this can be deduced by   inspecting the postcondition 
of the operation. However in other cases it is difficult 
to decide which properties are being modified in 
order to satisfy the postcondition. In order to make 
the translation simpler, it is proposed that OCL be 
extended with a new keyword modifies used in the 
context of operations to express frame conditions. 
Query operations that do not alter the state of an 
object may be indicated by modifies: nothing. 

In a postcondition, the expression can refer to 
values of object properties at the start of the 
operation or method and upon completion of the 
operation or method. The value of a property in a 
postcondition is the value upon the completion of the 
operation. To refer to the value at the start of the 
operation, OCL postfixes the property name with the 
keyword ‘@pre’ as the following example shows: 

 
context Person::weightIncreased(n : Integer) 
pre: n >= 0 
post: weight = weight@pre + n 
 
The property weight@pre refers to the value of 

the property weight of the person object that executes 
the operation, at the start of the operation. 

In JML the operator \old is used to refer to the 
value of an expression at the start of a method. Thus 
\old(exp) denotes the value of the expression 
exp at the start of a method. 

In general expressions of the form 
self.property@pre in postconditions where property 
is either an attribute or association role are translated 
to \old(this.property). OCL expressions of 
the form self.operation@pre(p:T) where operation 
is a query operation are translated to 
\old(this.operation(T’ p)). 

The operation oclIsNew is used in postconditions 
to assert that an object is newly created. That is the    
expression o.oclIsNew() is true if o is created by the     
operation and did not exist at precondition time. Such 
expressions are translated using the JML operator 
\fresh so that exp.oclIsNew() is translated to 
\fresh(exp’) where exp’ is the translation of 
exp. This indicates that the object denoted by exp’ 
is newly allocated. 

8. Conclusion 

This paper presented and discussed different         
strategies for translating some aspects of UML/OCL 
design models to JML/Java designs, that is Java 
classes and interfaces annotated with JML assertions. 

The paper dealt with the translation of classes, 
attributes, invariants, directed associations with 
various multiplicities, and operation specifications. A 
set of defaults for the translation has been adopted 
that would allow it to be automated by a tool that 
could take the UML/OCL model and translate it 
directly into a JML/Java design that could later be 
modified as desired. 

One of the benefits of this translation is that it 
enables the use of JML for the specification of object 
constraints especially in the detailed design stage of 
the development of a Java application using UML 
and OCL. Other benefits include the use of a wide 
range of tools that support JML for reasoning about 
specifications, testing and verification of Java 
programs. 

The translation presented in this paper could 
further be extended to cover the translation of more 
complex UML constructs such as interfaces, abstract 
classes, qualified associations and static class 
features. This should be possible since all these 
constructs have corresponding representations in 
JML/Java. Further research needs to be carried out to 
check whether OCL action constraints can be 
mapped to JML/Java. 
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