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Abstract-Support Vector Machines (SVM) have 
become increasingly popular tools for many data 
mining tasks. It can be used in classification, novelty 
detection, regression, and clustering. It has been 
successfully applied to a lot of applications about 
text categorization, handwritten character 
recognition, medical diagnosis, bioinformatics and 
database marketing. However, the application of 
SVM to large datasets is limited because of the high 
computational cost involved in solving quadratic 
programming problem arising in training. To solve 
this problem, this research tried to develop a 
heuristic model to reduce the computational and 
space cost. 

The model is composed of three parts. 1. Finding 
the principal attributes by PCA. 2. Error-tolerance 
constraints for lossy compression. 3. Replaced 
values computation and similar records deletion. 
Then we apply SVM on the compressed database. 
The experimental results have proved that the 
heuristic model will reduce the input features to save 
the memory and the computation time. And the 
accuracy is acceptable even improved. 
 
Keywords: Data Mining, Machine Learning, SVM, 
Heuristic Model. 
 
1. Introduction 
 

Recently, the support vector machines (SVMs) 
are more and more spectacular. SVMs are a family 
of learning algorithms, which introduced by Vapnik 
in 1995 [7] for solving two-class pattern recognition 
problems. They are well founded in terms of 
computational learning theory and very open to 
theoretical understanding and analysis. The 
formulation embodies the Structural Risk 
Minimization (SRM) principle.  

The original idea of SVMs is to use a linear 
separating hyperplane (linear decision surface) to 
create a classifier. The power of its idea is getting the 
non-linearly input vectors mapped to a higher 
dimension feature space; and it will easily construct 
the hyperplane and which ensures high 
generalization ability to classify new objects. 

SVMs have been proven to exhibit several 
attractive theoretical properties [2]. In addition, 
SVMs have been empirically shown to outperform 

conventional classifiers on variety of benchmarks. In 
the decision problem we have a number of vectors 
divided into two sets, and we must find the optimal 
decision frontier to divide the sets. This optimal 
election will be the one that maximizes the distance 
from the frontier to the data. In the two dimensional 
case, the frontier will be a line, in a multidimensional 
space the frontier will be a hyperplane.  

However, the application of SVMs to large 
datasets is limited because of the high computational 
cost involved in solving quadratic programming 
problem arising in their training. And we just use 
few vectors (support vectors) of a lot of vectors in 
the input space to find the hyperplane, so our motive 
is how to reduce the vectors and find the exact 
support vectors. Thus, we can reduce the stored 
memory and decrease the execution time for solving 
quadratic programming problem. 

Data compression can be described as 
"representing the information in a message using 
fewer bits." The information conveyed by a sequence 
of bits depends on what those bits represent, and that 
information may be expressible using fewer bits. The 
essential figure of merit for data compression is the 
"compression ratio", or ratio of the size of a 
compressed file to the original uncompressed file. 

Since we want to reduce the vectors of input 
space, compression is the important method that we 
want to adopt. There are "lossless" and "lossy" forms 
of data compression. Lossless data compression is 
used when the data has to be uncompressed exactly 
as it was before compression. Lossy compression, in 
contrast, works on the assumption that the data 
doesn't have to be stored perfectly. But the lossless 
compression is not to suit to our model. Since it can 
reduce the stored memory, but till the execution, it 
has to decompress to recover original data. It is no 
use for our goal, so we want to use the concept of 
lossy compression to develop a heuristic model to 
achieve our goal in this study to improve the speed 
of the execution time and save the stored memory. 
 
2. Literature Review 
 
   Support vector machines (SVMs) are a family of 
learning algorithms, which is currently considered as 
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one of the most efficient method in many real-world 
applications. 
 
 
2.1 Support Vector Machines (SVMs) 
 

Support Vector Machines (SVM) is a relatively 
new learning approach introduced by Vapnik in 1995 
[7] for solving two class pattern recognition 
problems. Not only it has a better theoretical 
foundation, practical comparisons have also shown 
that is competitive with existing methods such as 
neural networks and decision trees [4], [5]. 

The original idea of SVM is to use a linear 
separating hyperplane to create a classifier. The idea 
of the support vector network implementation is that 
maps the input vectors into some high dimensional 
feature space Z through some non-linear mapping 
chosen a priori. In this space a linear decision surface 
is constructed with special properties that ensure 
high generalization ability of the network. The goal 
is to produce a classifier that will work well on 
unseen examples, i.e. it generalizes well [3], [9]. 

In general, theoretical results suggest that the 
efficiency of SVM is mainly due to its capacity to 
find rules, which classify objects with high 
confidence to prevent them from overfitting. 
Overfitting is an important issue for learning 
algorithm. When a training set is presented to a 
learning algorithm, the algorithm usually tries to find 
a rule, which explains well the observation in the 
training set. Sometimes the algorithm can find a very 
complicated rule, which perfectly classifies the 
objects in the training set, but this rule could be 
useless to classify new observations because it is too 
related to the training set. The situation is called 
“overfitting”, and such a rule does not generalize 
well. 

 
2.2. Problems of SVMs 
 

Two problems arise in the SVMS. One is 
conceptual and the other is technical. The conceptual 
problem is how to find a separating hyperplane that 
will generalize well. The dimensionality of the 
feature space will be huge, and not all hyperplanes 
that separate the training data will generalize well. 
There exist many hyperplanes, which can separate 
the data, but the there is no criterion to choose. It was 
solved in 1965 for the case of optimal hyperplanes 
(maximal margin) for separable classes. 

The technical problem is how computationally to 
process such high-dimensional spaces. If to construct 
polynomial of degree 4 or 5 in a 200 dimensional 
space it may be necessary to construct hyperplanes in 
a billion dimensional feature spaces. It was solved by 
making a non-linear transformation of the input 
vectors followed by dot-products with support 
vectors in feature space, one can first compare two 
vectors in input space (by e.g. taking their 

dot-product or some distance measure), and then 
make a non-linear transformation of the value of the 
result, for example polynomial decision surfaces of 
arbitrarily degree [7]. 
 
2.3 Advantages of SVMs 
 

SVMs have several attractive characteristics as 
following [3], [8]: 
1. Good generalization performance: Once the 

SVM is presented with a training set, it is able to 
learn a rule, which often can correctly classify 
any new object. 

2. SVMs have the computational efficiency. The 
algorithm is efficient in terms of speed and 
complexity; it has no problem with local minima 
(unlike neural networks). 

3. SVMs are robust in high dimensions. Dealing 
with large dimensional objects is usually 
difficult for learning algorithm, because of the 
overfitting issue. SVMs seem to be more robust 
than other methods in most cases. 

4. SVMs are a rare example of a methodology 
where geometric intuition, elegant mathematics, 
theoretical guarantees, and practical algorithms 
meet. 

5. SVMs represent a general methodology for 
many types of problems. It can be applied to a 
wide range of applications, such as classification, 
regression, and novelty detection tasks. 

6. The method is relatively simple to use. You will 
successfully apply existing SVM software, even 
if you are not a SVM expert. 

 
2.4 Basic Concept of SVMs 

Let us consider a binary classification task with 
data points xi (i=1,…,m) having corresponding labels 
yi = ± 1. Each data-point is represented in a d 
dimensional input space. Let the classification 
function be: f(x,w,b) = sign (w . x – b). The vector w 
determines the orientation of a discrimination plane. 
The scalar b determines the offset of the plane from 
the origin. If there are two sets are linearly separable, 
there are infinitely many possible separating planes 
that correctly classify the training data. How can we 
construct the plane “furthest” from both classes? We 
can examine the convex hull of each class’s training 
data and then find the closest points in the two 
convex hulls (c and d). If we construct the plane that 
bisects these two points (w = d - c), the resulting 
classifier should be robust in some sense. The closest 
points in the two convex hulls can be found by 
solving the following quadratic problem. 

αmin    
2

2
1 dc −  

c = ∑
∈ 1Classyi

iiχα   d =  ∑
−∈ 1Classyi

iiχα
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s.t.       

( , i = 1,….,m)  

∑
∈

=
1

1
Classyi

iα

0≥iα

∑
−∈

=
1

1
Classyi

iα

 
Then, we want to maximize the margin 

between two parallel supporting planes. A plane 
supports a class if all points in that class if all points 
in that class are no one side of that plane. For the 
points with the class label +1 we would like there to 
exist w and b such that w. xi > b or w. xi – b > 0 
depending on the class label. We can simply 
maximize the distance or margin between the support 
planes for each class. The distance or margin 
between these supporting planes w. x = b and w. x = 
b – 1 is γ  = 2/

2
w . Thus maximizing the margin 

is equivalent to minimize 
2

w /2 in the following 
quadratic program: 

 

 min     
bw,

2

2
1 w  

 s.t. w. xi ≥  b + 1   1 Classyi ∈
W . xi ≤  b + 1   -1 Classyi ∈

The constraints can be simplified to 
. ( ) 1≥−⋅ bxwy ii

 
 

2.5 Summary 
 

The SVMs have been introduced for almost 10 
years. There are many studies focus on its concepts 
and principle [3], [7]. Some studies research the 
applications of its [8]. And some studies explore the 
ability of multi-category for SVM [6]. 

The SVMs are not always the best, it still 
requires skill to apply them and other methods may 
be better suited for particular applications. There are 
more and more studies confer the kernels [1]. It is 
not easy to develop a good kernel, and it is hard to 
find the suitable kernel (including its parameters) for 
different cases. 

There are fewer studies considering the data 
preprocessing of SVMs. In the study, we hope to find 
a way that can effectively and efficiently reduce the 
input space for the characteristics of SVMs. 

 
3. Methodology 
 

The theme of the methodology includes three 
parts. Figure 3.1 is the framework of the Heuristic 
Model.  
 
 

Use PCA to Find the
Principal Attributes

Set Error-Tolerance
Constraints

Compute the Replaced
Values and Delete the

Similar Records

Input
Training data

Heuristic
Model

Classify with SVM

Testing
Data

Classifier

 
Figure 3.1 The framework of the Heuristic Model 
 
3.1 Finding the Principal Attributes by PCA 
 

In data mining, there will be usually large 
number of variables in the database. The accuracy 
and reliability of a classification or prediction model 
will suffer if you include highly correlated variables 
or variables that are unrelated to the outcome. 
Superfluous variables increase the data-collection 
and data-processing costs to deploy a model on a 
large database. The dimensionality of a model is the 
number of independent or input variables used by the 
model. One of the key steps in data mining is finding 
ways to reduce dimensionality without sacrificing 
accuracy. 

Principal component analysis (PCA) is a 
mathematical procedure that transforms a number of 
(possibly) correlated variables into a (smaller) 
number of uncorrelated variables called principal 
components. The main use of PCA is to reduce the 
dimensionality of a data set while retaining as much 
information as is possible. It computes a compact 
and optimal description of the data set. The first 
principal component is the combination of variables 
that explains the greatest amount of variation. The 
second principal component defines the next largest 
amount of variation and is independent to the first 
principal component. There can be as many possible 
principal components as there are variables. 

In this research, we use Weka to find the 
principal attributes and it will be described later. 

 
3.2 Error-Tolerance Constraints 
 

After finding out the principal attributes, we can 
set the error-tolerance constraints if needed. In 
general, if the principal attributes all belong to 
discrete types, and the categories are not many, we 
don’t need to set the error-tolerance constraints. But 
if some principal attributes belong to continuous 
types or the categories are many, we have to set the 
error-tolerance constraints. 

Who will set the error-tolerance constraints? That 
is the man who has the specialized knowledge for the 
domain of the database. For this research, there will 
be five different datasets from UCI database. The 
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found principal attributes of three of them need not 
to set the error-tolerance constraints, because the 
principal attributes all belong to discrete types and 
the categories are not many. The other two datasets 
are medical; therefore we have been to hospitals to 
consult the doctor. Then set the error-tolerance 
constraints according to the suggestion of the doctor. 
 
3.3 Replaced Values Computation and 
Similar Records Deletion 
 

After setting the error-tolerance constraints, we 
can compute the replaced value for found principal 
attributes. Then, we search and delete the similar 
records which have the same replaced values of 
selected principal attributes. The algorithm as 
following: 
Step1.  Select the next principal attribute, if none, 

go to Step 4. 
Step2.  For the selected principal attribute (step1), 

sort the records by values of the attribute 
increasingly. 

Step3.  Compute the replaced values. 
Step 3.1 Select the next value, if none, go to 

Step1. 
Step 3.2 Add (2 * error-tolerance) to the 

current value. 
Step 3.3 Select the next value. 
Step 3.4 If the value (Step3.3) < the sum 

(Step3.2) /* within the 
error-tolerance 

Use the sum replaced the 
value (3.3), and go to Step 
3.4 

Else go to Step 3.1. 
Step4.  Search the similar records which have the 

same replaced values of selected principal 
attributes. 

Step5.  Select the ordinal of (n+1)/2 record from the 
similar records and delete the other 
redundant similar records.  

Step6.  Restore the values of all selected records. 
 
3.4 A Simple Example 
 

Now we use a simple example to illustrate how 
we process with the proposed heuristic model. The 
data of the example is shown as Table 3.1. The class 
attribute is Internet Protocol. 

 
Table 3.1  The Data of the Example 

IP Address Proxy Duration Byte-count Packets Protocol
149.xx.xx.xx Yes 12 2000 1 Http 
163.xx.xx.xx No 16 24000 5 Http 
178.xx.xx.xx Yes 27 100000 19 Ftp 
129.xx.xx.xx Yes 15 20000 8 Http 
133.xx.xx.xx Yes 32 300000 35 Ftp 
190.xx.xx.xx No 19 40000 9 Http 
168.xx.xx.xx No 26 58000 18 Http 
177.xx.xx.xx Yes 18 80000 15 Ftp 

 

3.4.1 Finding the Principal Attributes by 
PCA for Example 
 

There are a lot of software for the data mining, 
such as ID3, C4.5, S plus, and Weka. They almost 
can help us to find the principal attributes of 
databases but for the consistency of software, we 
select the Weka, which can support the packages of 
SVM. 

Weka reads database in ARFF format. It is 
necessary to have type information of each attribute 
because that can’t be automatically deduced form the 
attribute values. So we must convert our data to 
ARFF form. The ARFF file consists of a list of all 
the instances with the attribute values being 
separated by commas. The most important thing is 
we have to add the dataset’s name using the 
@relation tag, the attribute information using 
@attribute, and a @data; then save the file as 
filename.ARFF. 

After converting our data to ARFF form with 
necessary tags, we can use the package of Principle 
Components in Weka Explorer to find the principle 
attributes. 
 
3.4.2 Error-Tolerance Constraints for 
Example 
 

The found principle attributes for our example 
are Byte-count and Packages that belong to the 
continuous type of data. Therefore we have to set the 
error-tolerance constraints. We assume the 
error-tolerance of byte-count is 25000, and the 
error-tolerance of packet is 4. 

 
3.4.3 Replaced Values Computation and 
Similar Records Deletion for Example 
 

After setting the error-tolerance constraints, we 
can compute the replaced value for found principal 
attributes – byte-count and packet. After the program 
processing, the replaced values are shown at Table 
3.2. 

 
Table 3.2 Computed Replaced Values 

Byte-count Packets Protocol
2000  52000 1  9 Http 

24000  52000 5  9 Http 
100000  108000 19  19 Ftp 

20000  52000 8  9 Http 
300000  350000 35  44 Ftp 

40000  52000 9  9 Http 
58000  108000 18  19 Http 
80000  108000 15  19 Ftp 

 
Then, we search the similar records with the 

same replaced values of selected principal attributes. 
For easily to illustrate, we sort and re-categorize the 
records as shown at Table 3.3. 
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Table 3.3 Re-Categorized Result 

Byte-count Packets Re-categorize
2000  52000 1  9 A 

20000  52000 8  9 A 
24000  52000 5  9 A 
40000  52000 9  9 A 

58000  108000 18  19 B 
80000  108000 15  19 B 

100000  108000 19  19 B 
300000  350000 35  44 C 
 

According to the Table 3.3, we select the 
ordinal of (n+1)/2 records from the similar records 
and delete the other redundant similar records. The 
result was shown as Table 3.4. By the example, we 
successfully reduce the records within the set 
error-tolerance. 

 
Table 3.4 Result of Deleted the Similar Records 

Byte-count Packets Re-categorize
24000  52000 5  9 A 

80000  108000 15  19 B 
300000  350000 35  44 C 
 
At last, we restore the values of all selected 

records (see Table 3.5) and we will put the data to 
train the classifier of SVM by Weka. We will do 
some experiments by Weka with the UCI Database 
and compare with three different classification 
methods (RBFNetwork, Naïve Bayes, and SVM) in 
next section. 

 
Table 3.5 Final Data 

IP Address Proxy Duration Byte-count Packets Protocol
163.xx.xx.xx No 16 24000 5 Http 
133.xx.xx.xx Yes 32 300000 35 Ftp 
177.xx.xx.xx Yes 18 80000 15 Ftp 

 
4. Experimental Results 
 

We use full-training-set in Weka and the results 
manifest that the precision of SVM are actually 
better than Naïve Bayes and RBF Network by using 
the five different datasets (see Table 4.1). 

 
Table 4.1 Summary of Results of First Experiment 

Precision 
(%) 

Breast 
Cancer 

Credit 
Screening Hepatitis Liver 

Disorder Pima 

SVM 98.9986 85.942 88.3871 58.2609 77.474
Naïve Bayes 97.4274  78.2609 85.8065 56.8116 76.3021
RBFNetwork 95.7082  64.2029 80.6452 58.1304 65.8854

 
In Table 4.2, we can see the precision of SVM 

are better than Naïve Bayes and RBFNetwork by 
using the five different datasets (see Table 4.2). For 
training, SVM is the best; for testing, SVM is only 
little loser than Naïve Bayes on Breast Cancer 
Dataset. Through the Table 4.2, we also find the 
generalization of SVM is better. Since the precision 
of SVM is not all the best for testing, but the range of 
rise (Training -> Testing) is better. 

 
Table 4.2 Summary of Results of Second Experiment 

Precision (%) 
Breast

Cancer

Credit 

Screening 
Hepatitis 

Liver 

Disorder
Pima 

Training 98.0134 82.8241 92.3077 55.9846 77.7658
SVM 

Testing 98.6879 83.2326 71.0526 66.2791 81.7435

Training 96.7181 77.9923 88.8889 55.8774 77.3234Naïve 

Bayes Testing 98.8439 81.9767 71.0526 43.0233 76.9565

Training 94.6768 52.8958 84.6154 59.4595 65.6134RBF 

Network Testing 95.9538 63.9535 65.7895 62.7907 66.5217

 
Then, the most important is that we focus on the 

performance of the heuristic method, which was 
proposed in the research, and the Table 4.3 is the 
summary of results of experiment. We can see the 
heuristic method actually reduced the instances and 
execution time. And we still find the precision of the 
heuristic method is better than expected. In the 
beginning, we just want to make the precision can be 
in an acceptable range, but the results shown that the 
objective is actually can be achieved. Otherwise, it 
maybe makes the precision to be enhanced (With the 
Hepatitis and Pima Indians Diabetes Datasets). 

 
Table 4.3 Summary of Results of Third Experiment 

Precision (%) Breast 
Cancer

Credit  
Screening Hepatitis Liver 

Disorder Pima

Training
Instances 526 518 117 259 576 

Time 
(sec.) 0.62 1.7 0.48 1.02 0.52 

Original 
Input 
space 

Testing 
Precision 98.69 83.23 71.05 66.28 81.74

Training
Instances 143 173 67 121 165 

Time 
(sec.) 0.23 0.38 0.2 0.41 0.24 

Improved 
Input 
space 

Testing 
Precision 97.69 82.99 74.49 65.87 82.18

5. Conclusions and Future Works 
 

By using the SVM with Weka to make a 
classifier, we can use the classifier to predict the 
given testing data. In this research, we propose the 
heuristic model and test it by using real database 
from UCI database practically. We do some 
experiments in previous section, and verify that the 
performance of SVM is well and the heuristic model 
can achieve the objective. 
 
5.1 Conclusions 

Through the experimental results, we can see the 
performance of SVM is better than Naïve Bayse and 
NBF Network by using full-training-set for the five 
different datasets. The performance of SVM is still 
the best by using training-testing-set. No matter for 
the training or testing, SVM has the better precision 
for any datasets. For generalization, SVM seems to 
be good than NBF Network, but is not distinctly 
better than Naïve Bayse. 

And we find that the chosen datasets will affect 
the experimental results seriously. Like for the 
Breast Cancer Datasets, the SVM, Naïve Bayse and 
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NBF Network all have the greatest precision no 
matter for the training or testing; and for the Liver 
Disorder Datasets, they all have the worst precision 
during the training and testing.  

The performance of the heuristic method, which 
was proposed in this research, we can see the 
heuristic method actually reduced the instances and 
execution time. For the instances, the average of 
reduced ratio is about 61.38%, and the average of 
reduced ratio is about 62.4% for the execution time. 
The reduced ratio is correlated with the principal 
attributes of datasets that found by Weka (see Table 
5.1). We found that the principal attributes of Breast 
Cancer, Credit Screening, and Pima Indians Diabetes 
Datasets are all four items, and therefore the reduced 
ratio of instances can be obvious. 
 

Table 5.1 Summary of the Reduced Ration for Instances and Execution Time 

 
Breast 

Cancer 

Credit 

Screening 
Hepatitis 

Liver 

Disorder 
Pima Ave. 

PA Counts 4 4 8 6 4 5.2 

Inst. 72.8 66.7 42.73 53.3 71.36 61.38 Reduced 

Ratio (%) Time 62.9 77.6 58.33 59.8 53.8 62.49 

 
And we found that after our heuristic model 

processing, the reduced ratio for the precision is 
satisfied with us. For Breast Cancer, Credit 
Screening and Liver Disorder Datasets, the 
precisions are all worst than before, but the ratio is 
not more than 1%  (see Table 5.2). Even for 
Hepatitis and Pima Indians Diabetes Datasets, the 
precisions are both better than before. It is beyond 
our expectations. 

 
Table 5.2 Summary of the Reduced Ratio for Precision 

 
Breast 

Cancer 

Credit 

Screening 
Hepatitis 

Liver 

Disorder
Pima

Reduced 

Ratio (%) 
-0.73 -0.29 4.8 -0.62 0.53 

 
We think the reason might be the original input 

space with a little impure data. In the training phase 
of SVM, SVM will automatically use a tradeoff 
parameter with penalty functions to deal with the 
noises. If the noises are too many, it might affect the 
produce of classifier with SVM. But after processing 
of our heuristic model, it could be reduced the 
impure data and resulted in the raise of precision. 

 
5.2 Future Works 
 

The compression technique in the phase of 
replaced values computation is based on heuristic 
relation. We’ll refer to some robust methods to 
improve the performance, such as: vector 
quantization, entropy, and other data compression 
technology. We believe the experience in the area of 
data compression can give help in our research. 

In practice, there are many kernels applied in 
various areas. Weka just provides the polynomial 

kernel. Therefore, we can find better software or wait 
Weka to update that can support more kernels to do 
experiments. After all, the Weka is actually easy to 
use and powerful. In addition to test it for more 
kernels, we still can test for the classification of 
multi-class.  
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