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Abstract-Neural network using competitive 
learning rule provides a highly effective method of 
attaining a sound solution and is capable of 
simplifying the network complexity. Intrinsically, the 
competitive scheme is used to solve fully utilized 
real-time scheduling problem. This study extends the 
competitive Hopfield neural network to solve both 
non-fully and fully utilized multiprocessor real-time 
scheduling problems with execution time and 
deadline constraints. Extra “slack neurons” added on 
to the neural network topology to represent pseudo 
job were applied to ease the non-fully utilized 
situation and facilitate solving the problem. 
Simulation results confirm that the competitive 
neural network imposed on the proposed energy 
function corresponding neural networks with slack 
neurons integrated ensures an appropriate approach 
of solving this class of real-time scheduling problems 
of single processor or multiprocessor system. 
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1.Introduction 

 
A scheduling algorithm is used to determine a 

schedule for a set of tasks so that the task’s timing 
constraints are satisfied. Many different schemes 
have been developed for solving the scheduling 
problem. Linear programming is a widely used 
scheme based on the specific scheduling problem. 
Willems and Rooda translated the job-shop 
scheduling problem into a linear programming 
format, and then mapped it into an appropriate neural 
network structure to obtain a solution [1]. 
Furthermore, Foo and Takefuji employed integer 
linear programming neural networks to solve the 
scheduling problem [2]. Meanwhile, the neural 
networks were applied to solve scheduling problems 
extensively. Zhang, Yan, and Chang proposed a 
neural network method derived from linear 

programming [3]. Additionally, Silva, Cardeira and 
Mammeri investigated the multi-processor real-time 
scheduling by applying the Hopfield-type neural 
network [4]. Honda and Ohnishi [5] developed a 
parallel algorithm based on a neural network for 
preemptive task scheduling problems.  

Hopfield and Tank started the applications in 
using the neural network to solve optimization 
problems [6]. The energy function used in the 
Hopfield neural network (HNN) is an appropriate 
Lyapunov function. Many researchers have recently 
applied this method to various applications. Our 
previous work [7] solved a multi-constraint schedule 
problem for a multiprocessor system using the 
Hopfield neural network. 

Imposing a competitive learning mechanism to 
update the neuron states in the Hopfield neural 
network is referred to as a competitive Hopfield 
neural network (CHNN). A competitive learning rule 
can not only reduces the time consumed in obtaining 
coefficients but also obtains an effective and sound 
solution. CHNN has been applied to various fields 
Chung, Tsai, Chen, and Sun [8] proposed a 
competitive Hopfield neural network for polygonal 
approximation. Similarly, Uchiyama and Arbib [9] 
used competitive learning as an efficient method in 
color image segmentation application. The 
winner-take-all rule employed by the competitive 
learning mechanism ensures that only one job is 
executed on a dedicated processor at a certain time, 
enforcing the 1-out-of-N constraint to be held. The 
maximum neuron of the Hopfield neural network is 
the activated neuron. We have conducted a series of 
study in solving “fully utilized” processors 
scheduling problem by using HNN [7,10]. Also, a 
typical CHNN scheme applied to the same problem 
was conducted in [11]. Intrinsically, including 
competitive architecture into the network solves the 
problems, which have unique activated neuron on 
each column or row of the networks. Accordingly, 
competitive scheme copes with fully utilized 
scheduling problems. In [12], which investigated the 
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multi-processor real-time scheduling to meet 
deadline requirement by applying the k-out-of-N rule 
to a neural network, slack neurons are extended to 
agree with the inequality constraints. Tagliarini, 
Christ and Page [13] demonstrated a 
weapon-to-target assign problem, a resource 
allocation task problem. There is a slack neuron 
associated with each weapon. The slack neurons are 
used only to assure that problem constraints are 
satisfied. In most situations, a fully multiprocessor 
utilization system is a restrictive situation. Moreover, 
real-time scheduling is interesting on meeting task 
timing constraints rather than optimizing a given 
target.  

In light of above developments, this work 
investigates the job schedule problem of 
multi-process on a “fully” or “non-fully” utilized 
real-time multiprocessor system that includes timing 
constraints. In addition, this studied problem is 
presented using a 3-dimentional neural networks. 
Extra slack neurons are added on to the networks to 
content the non-fully utilized conditions. An energy 
function designed to illustrate the timing constraints 
is proposed. According to the CHNN, the scheduling 
problem is considered a minimization of an energy 
function. The simulations involve the fully utilize 
multiprocessor real-time scheduling problems, which 
were solved with competitive scheme in [11]. 
Furthermore, some fully and non-fully utilized 
real-time scheduling problems were simulated. 
Notably, the slack neurons should not be taken into 
account when retrieving the solution of the problem. 

 
2. Energy function of the scheduling 
problem 

 
The scheduling problem domain to be considered 

in this paper is defined as follows. Suppose there are 
N jobs (or processes) and M machines (or 
processors). First, a job can be segmented and the 
execution of each segment is preemptive. Second, 
different segments of a job cannot be assigned to 
different machines, implying that no job migration is 
allowed between machines. Third, the execution time 
and the deadline of each job are predetermined. 
Furthermore, the processor is allowed to be 
non-fully-utilized. Based on these assumptions, we 
attempt to obtain a set of job schedules. Restated, the 
preemptive processes in a multiprocessor real-time 
system are interesting.  

To resolve this problem, an energy function that 
represents the scheduling problem has to be defined. 
The defined energy function is transformed into an 
extended 3-D HNN; then the optimization process 
searches for neuron states satisfying a set of 
constraints such that the energy function is 
minimized. According to the problem, scheduling 
involves three variables: job (or process), machine 
(or processor), and time. Thus, neuron states variable 
Vijk is defined. The job variable, i, indicates a specific 

job with a range from 1 to N+1. The total number of 
job is N. The (N+1)th job is a pseudo-job, which is a 
supplementary job used to facilitate satisfying 
1-out-of-N rule. Restate, by adding neurons to the 
hypothesis representation neurons, we can enforce 
inequality constraints. The extra neurons are referred 
to as “slack neurons” herein. In this investigation, 
slack neurons are those neurons in representing the 
pseudo-jobs. Meanwhile, the machine variable, j, 
represents a dedicated machine from 1 to M, the total 
number machines to be operated. Finally, the time 
variable, k represents a specific time, which is less 
than or equal to T, the deadline of the job. Thus, a 
state variable Vijk is representing whether or not job i 
is executed on machine j at a certain time k. In 
addition, the activated neuron Vijk=1 denotes that the 
job i is run on machine j at the time k; otherwise, 
Vijk=0. The activated neuron V(N+1)jk=1 indicates 
processor j at a certain time k is free. Notably, each 
Vijk corresponds to a neuron of the neural network.  

The correlating energy function representing the 
scheduling problem is as Eq. (1). In this equation C1, 
C2, C3, C4, C5 and C6 refer to weighting factors; N 
denotes the total number of processes to be scheduled; 
M is the total number of machines to be operated; T 
represents the maximum time quantum of a process. 
These weighting factors, N, M, and T, are assumed to 
be positive constants herein. 

The C1 energy term confines a processor j to 
executing only one process, say i or i1, at a certain 
time k. This energy term has a minimum value of 
zero when satisfying this constraint, which occurs 
when Vijk or  equals zero. jkiV
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The C2 energy term indicates that a process 
migration is prohibited, implying that process i runs 
on processor j or j1. This item also has a minimum 
value of zero when Vijk or Vij1k1 is zero. In the C3 
energy term, Pi denotes the total execution time 
required by process i. This energy term means that 
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the time consumed by process i must equal Pi such 
that , i.e. this term becomes zero. The 

processing time of the pseudo-job (the N+1
iPijkV =∑∑

th job) is 
defined as the total available time for all machines 
subtracts the total processing time required by all N 
jobs. Additionally, the C4 energy term is to prevent no 
process being executed on a specific processor at a 
certain time when 1-out-of-N rule applied. Thus, this 
energy item falls to a minimum of zero when 
satisfying this constraint. Meanwhile, the C5 energy 
term is real-time requirement to meet the deadline of 
each process i, where di is the time limitation of 
process i and H(Gijk) is the Heavside function. When 
a process is allocated with a run time that exceeds d, 
the energy term will exceed zero, and the energy 
value will grow exponentially with the associated 
time lag between di and k. On the contrary, this 
energy term will have a value zero as long as 
Vijk=1and k-di ≤ 0. Finally, the C6 term excludes the 
slack neurons from the 2nd term. Hence, this term 
allows slack neuron of the N+1th job to be activated 
on different processors (j and ) at any time k1. 
Since the slack neurons are not to be taken into 
account when retrieving the solution of the problem. 
Restate, the 2

jj ≠1

nd term limits exactly one processor j to 
run process i, and this term allows more than one 
processor to run process N+1 (i.e., pseudo-job). 
Based on the above discussion, the derived energy 
function has a minimum value of zero when all 
constraints are satisfied. Eq.(1) can be proved to be 
an appropriate Lyapunov function for the system 
under discussion.  

 
3. Competitive algorithm of neural 
networks  

 
Hopfield and Tank originally proposed the neural 

network, HNN, in [14]. Essentially, the HNN 
algorithm is based on the gradient technique, thus 
providing rapid convergence. Moreover, the HNN 
also provides potential for parallel implementation. 
Based on dynamic system theory, the Liapunov 
function [14] [15] expended to a 3-dimentional 
model as shown in Eq. (2), has verified the existence 
of stable states of the network system. This energy 
function representing the scheduling problem must 
be in the same format as the Lyapunov function.  

ijk
i j k

ijkijkxyzijk
x y z i j k

xyz VVWVE ∑∑∑+∑∑∑∑∑∑−= θ
2
1  (2) 

Where Vxyz and Vijk denote the neuron states, Wxyzijk 
represents the synaptic weight indicating the 
interconnection strength among neurons, and ijkθ  is 
the threshold value representing the bias input of the 
neuron. Additionally, the HNN employs the 
deterministic rule to update the neuron state change. 
This deterministic rule is displayed in Eq. (3) below: 
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Meanwhile,  represents the total input or 
net value of the neuron (i, j, k) obtained using the 
interconnection strength, , and the bias input, 

 displayed as follows: 
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Instead of applying conventional deterministic 
rules to update neuron states, competition among 
neurons is used to decide the winning neuron, i.e. the 
active neuron in competitive scheme. Restated, the 
competitive rule is to build neural networks 
satisfying constraints of the type of “exact one 
neuron among N” should be activated when the 
network reaches a stable state, and can be considered 
as a 1-out-of-N confine rule. 

Since a processor can only execute one job at a 
time in subject scheduling problems, omitting the C1 
and C4 energy terms from the HNN energy function 
(Eq. 1) yields a simplified energy function and 
satisfies the competitive constraint. Restated, the C1 
and C4 energy terms are handled implicitly. The 
resulting energy function for CHNN is highlighted as 
follows: 
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The resulting energy function makes it apparent 
that this must be an appropriate Lyapunov function. 
Comparing Eq.(5) with Eq.(2) makes it possible to 
determine synaptic interconnection strength, , 
and the bias input, , as illustrated below: 

xyzijkW

ijkθ

)),(1(*)1,(*)1,(*6
),(*3)),(1(*),(*2
jyNiNxC

ixCjyixCWxyzijk
δδδ
δδδ

−+++
−−−= (6) 

and  
)(**

2
53 2 GHGCPC ixyz +−=θ     (7) 

respectively, where  





≠
=

=
baif
baif

ba
.0
.1

),(δ  is the Kronecker delta function.  

The neurons on the same column of a dedicated 
processor at a certain time compete with one another 
to decide which specific job should be the winning 
neuron. The neuron that receives the maximum net 
value is the winning neuron. Accordingly, the output 
of the winner neuron is set to 1, and the output states 
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of all the other neurons on the same column are set to 
0. The winner-take-all update rule of the neuron for 
the ith column is illustrated as follows: 





 =

= +=
otherwise

NetMaxNetif
V ijk

Ni
xjk

xjk
0

1
1~1 ,   (8) 

where  is the maximum total neuron input as 
in Eq.(4). The ith column consists of jobs 1 ~ N+1 
(slack neuron). Restated, the slack neuron can be the 
wining neuron while satisfying the constraints. 

xjkNet

 
4. Convergence of the energy function 
 
This section demonstrates a mathematical proof of 
convergence in the CHNN for the investigated 
problem. 
According to Eq. (4), the neuron (i, j, k) obtains the 
total input, i.e. net value, which is as follows (Eq.9): 
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For clarity, we separate this energy function into two 
parts. The first one is for the processor m at given 
time n, that is, . The second part is the 

remainder, that is, . In other word,  is 
the summation of the energy term corresponding to 
neuron state V

mnE

otherE mnE

imn. The energy function can then be 
represented as follows (Eq. 10):  
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othermn EEE += . 
 Vimn  is the neuron on the ith row (job) and the nth 
column (time) for the specific processor m. Focusing 
on these terms at the (t)th iteration, the Vlmn is 
supposed to be the only active neuron (l,m,n) in the 
nth column on the processor m before updating, that 
is,  
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Moreover, the neuron (q,m,n) at (t+1)th iteration is 

supposed to be the only neuron activated with the 
largest total input value after updating, that is, 
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The active neuron, based on the winner-take-all 
update rule as in Eq.(8), is the one with maximum net 
value on each column in each update, that is 

. This implies that 

.  and  are obtained 
based on Eq.(9) as follows: 

imn
Ni

qmn NetMaxNet
1~1 +=

=

lmnqmn NetNet > Netqmn lmnNet

)(
2
5

)(3
2
2

2
1

11 11
11

qmnqmn

qqmn
M

mj
j

T

k
kqjqmn

GHGC

PVCVCNet

−

−−∑ ∑−=

≠
= =   (11) 

 and 

)(
2
5

)(3
2
2

2
1

11 11
11

lmnlmn

llmn
M

mj
j

T

k
kljlmn

GHGC

PVCVCNet

−

−−∑ ∑−=

≠
= = .  (12) 

Investigating Eq.(10), the total energy difference 
of the neural network , , between the (t+1)E∆ th 
iteration and the (t)th iteration is the same as the Emn 
change between the (t+1)th iteration and the (t)th 
iteration. Restate, the Eother is canceled out. 
Since , , , and 

. Thereby, the energy change difference 
cab be rewritten as follows:  
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Accordingly, the energy changes between neuron 
update equals the net value change minus C3. That is 

3CNetNetE qmnlmn −−=∆ . 
Obviously, the above equation implies that the 
energy difference in the update is negative, i.e. 

.Hence, the system is convergent during 
network evolution. Apparently, this energy function 
is an appropriate Lyapunov function. 

0<∆E

 
5. Simulation examples and results 

 
A number of sets of timing constraints and various 

weighting factors were applied to the simulations. 
The constants in Eq.(11) are set to C2=1.355, 
C3=0.55, C5=1.355 and used in simulation. The C6 
term exclude the slack neurons from C2 term. 
Consequently, C6 value is equal to the C2 value. 
Tables 1 through 4 list timing constraints of 
simulation cases, respectively. The simulation 
involves scheduling four or five processes (jobs) in 
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two processors (machines) system. Moreover, more 
complicated simulation case with10 processes in 
three processors system is included as well. Case 1a 
and case 3a are the same conditions as in [11]. They 
are added to facilitate the full processor utilization 
system scheduling study by applying the proposed 
scheme herein. Figs. 1 and 2 illustrate the resulting 
schedules of case 1a and case 1b for proposed 
algorithm. Meanwhile, Figs 4 and 5 display the 
simulation results of case 3a and case 3b.. Finally, 
Figs. 3 and 6 represent the resulting schedules 
correlating with the case 2 and 4 respectively. The 
process assignment of S as displayed in figures 2, 3, 
5, and 6, indicates the active “slack” neurons. Restate, 
the machine at that time does nothing. Additionally, 
figure 7 displays the significant portions of the 
energy curves of all cases during neural network 
evolution.  

 
6. Discussion and conclusions 

 
The competitive mechanism eliminates the 

constraint terms in the energy function, simplifying 
the network by reducing the interconnections among 
neurons [8], as displayed in Eq. (5). This 
investigation illustrated an approach to mapping the 
problem constraints into the energy function of the 
competitive neural networks containing slack 
neurons, they are involved so as to resolve the timing 
constraints schedule problem for both “non-fully 
utilized” and “fully utilized” system. The 
conventional deterministic rule in determining the 
neuron state was replaced by winner-take-all or 
competitive rule. 

The weighting factor determination is an intrinsic 
shortcoming of Hopfield neural network and the 
simulations also encounter this drawback. However, 
the set of weighting matrix used in our simulation is 
not unique. Different sets of weighting factors may 
produce different neural network revolutions.  

The energy function proposed herein works 
efficiently and can be applied to the similar cases of 
investigated scheduling problems. The competitive 
scheme combined with slack neurons suggests the 
way to be applied to this kind of scheduling, which 
has inequality constraints. Restated, solving “fully” 
or “non-fully” utilized real-time scheduling problems 
can apply proposed competitive slack neural 
networks. 

This work focuses mainly on solving real-time 
scheduling without ready or setup time consideration. 
For more practical implementation, different and 
more complicated scheduling problems can be 
further investigated in future work by applying this 
proposed algorithm. Such problems include 
preemptive multi-process scheduling on 
multiprocessor system with multi-constraints such as 
deadline and resource constraints. The problem can 
be further extended to involve the temporal 
relationship of ready time or priority for each job. A 

future work should address these issues more 
thoroughly.  
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Table 1. Timing constraints matrix (case 1a: A=4,B=3; 

case 1b:A=3,B=2) 
 Time Required Time Limit

Process 1 A 6 
Process 2 3 4 
Process 3 B 6 
Process 4 2 3 

 
Table 2. Timing constraints (case 2) 

 Time Required Time Limit
Process 1 5 8 
Process 2 4 8 
Process 3 3 6 
Process 4 2 3 

Table 3. Timing constraints (case 3a: A=5,B=4; 
case2b: A=3,B=3) 

 Time Required Time Limit
Process 1 2 3 
Process 2 A 8 
Process 3 3 4 
Process 4 B 8 
Process 5 2 5 

 
Table 4. Timing constraints (case 4) 

 Time Required Time Limit
Process 1 2 10 
Process 2 3 5 
Process 3 3 9 
Process 4 2 5 
Process 5 3 9 
Process 6 2 6 
Process 7 3 10 
Process 8 2 5 
Process 9 3 9 

Process 10 4 10 
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Machine 2 
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Figure 1. Simulation results of case 1a (fully utilized) 
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Figure 2. Simulation results of case 1b (non-fully 
utilized) 
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Figure 3. Simulation results of case 2 
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Figure 4. Simulation results of case 3a (fully utilized) 
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Figure 5. Simulation results of case 3b (non-fully 
utilized) 
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Figure 6. Simulation results of case 4 

0 2 4 6 8 10 12 14 16 18 20
-2

0

2

4

6

8

10

12

case 1a case 1b

case 2

case 3acase 3b

case 4

# of iterations

E
ne

rg
y

 
Figure 7. Energy function of case 1-4. 
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