
Solve Multiprocessor Real-Time Scheduling Using Competitive Slack
Neural Networks

Ruey-Maw Chen
Department of Electronic Engineering,

National Chin-yi Institute of Technology
raymond@ncit.edu.tw

Shih-Tang Lo
Department of Engineering Science,

National Cheng-Kung University
edwardlo@mail.ksut.edu.tw

Yueh-Min Huang
Department of Engineering Science,

National Cheng-Kung University
huang@mail.ncku.edu.tw

Chuin-Mu Wang
Department of Electronic Engineering,

National Chin-yi Institute of Technology
cmwang@ncit.edu.tw

Abstract-Neural network using competitive
learning rule provides a highly effective method of
attaining a sound solution and is capable of
simplifying the network complexity. Intrinsically, the
competitive scheme is used to solve fully utilized
real-time scheduling problem. This study extends the
competitive Hopfield neural network to solve both
non-fully and fully utilized multiprocessor real-time
scheduling problems with execution time and
deadline constraints. Extra “slack neurons” added on
to the neural network topology to represent pseudo
job were applied to ease the non-fully utilized
situation and facilitate solving the problem.
Simulation results confirm that the competitive
neural network imposed on the proposed energy
function corresponding neural networks with slack
neurons integrated ensures an appropriate approach
of solving this class of real-time scheduling problems
of single processor or multiprocessor system.

Keywords: Real-time scheduling, Slack neuron,
Competitive learning

1.Introduction

A scheduling algorithm is used to determine a

schedule for a set of tasks so that the task’s timing
constraints are satisfied. Many different schemes
have been developed for solving the scheduling
problem. Linear programming is a widely used
scheme based on the specific scheduling problem.
Willems and Rooda translated the job-shop
scheduling problem into a linear programming
format, and then mapped it into an appropriate neural
network structure to obtain a solution [1].
Furthermore, Foo and Takefuji employed integer
linear programming neural networks to solve the
scheduling problem [2]. Meanwhile, the neural
networks were applied to solve scheduling problems
extensively. Zhang, Yan, and Chang proposed a
neural network method derived from linear

programming [3]. Additionally, Silva, Cardeira and
Mammeri investigated the multi-processor real-time
scheduling by applying the Hopfield-type neural
network [4]. Honda and Ohnishi [5] developed a
parallel algorithm based on a neural network for
preemptive task scheduling problems.

Hopfield and Tank started the applications in
using the neural network to solve optimization
problems [6]. The energy function used in the
Hopfield neural network (HNN) is an appropriate
Lyapunov function. Many researchers have recently
applied this method to various applications. Our
previous work [7] solved a multi-constraint schedule
problem for a multiprocessor system using the
Hopfield neural network.

Imposing a competitive learning mechanism to
update the neuron states in the Hopfield neural
network is referred to as a competitive Hopfield
neural network (CHNN). A competitive learning rule
can not only reduces the time consumed in obtaining
coefficients but also obtains an effective and sound
solution. CHNN has been applied to various fields
Chung, Tsai, Chen, and Sun [8] proposed a
competitive Hopfield neural network for polygonal
approximation. Similarly, Uchiyama and Arbib [9]
used competitive learning as an efficient method in
color image segmentation application. The
winner-take-all rule employed by the competitive
learning mechanism ensures that only one job is
executed on a dedicated processor at a certain time,
enforcing the 1-out-of-N constraint to be held. The
maximum neuron of the Hopfield neural network is
the activated neuron. We have conducted a series of
study in solving “fully utilized” processors
scheduling problem by using HNN [7,10]. Also, a
typical CHNN scheme applied to the same problem
was conducted in [11]. Intrinsically, including
competitive architecture into the network solves the
problems, which have unique activated neuron on
each column or row of the networks. Accordingly,
competitive scheme copes with fully utilized
scheduling problems. In [12], which investigated the

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

399

multi-processor real-time scheduling to meet
deadline requirement by applying the k-out-of-N rule
to a neural network, slack neurons are extended to
agree with the inequality constraints. Tagliarini,
Christ and Page [13] demonstrated a
weapon-to-target assign problem, a resource
allocation task problem. There is a slack neuron
associated with each weapon. The slack neurons are
used only to assure that problem constraints are
satisfied. In most situations, a fully multiprocessor
utilization system is a restrictive situation. Moreover,
real-time scheduling is interesting on meeting task
timing constraints rather than optimizing a given
target.

In light of above developments, this work
investigates the job schedule problem of
multi-process on a “fully” or “non-fully” utilized
real-time multiprocessor system that includes timing
constraints. In addition, this studied problem is
presented using a 3-dimentional neural networks.
Extra slack neurons are added on to the networks to
content the non-fully utilized conditions. An energy
function designed to illustrate the timing constraints
is proposed. According to the CHNN, the scheduling
problem is considered a minimization of an energy
function. The simulations involve the fully utilize
multiprocessor real-time scheduling problems, which
were solved with competitive scheme in [11].
Furthermore, some fully and non-fully utilized
real-time scheduling problems were simulated.
Notably, the slack neurons should not be taken into
account when retrieving the solution of the problem.

2. Energy function of the scheduling
problem

The scheduling problem domain to be considered

in this paper is defined as follows. Suppose there are
N jobs (or processes) and M machines (or
processors). First, a job can be segmented and the
execution of each segment is preemptive. Second,
different segments of a job cannot be assigned to
different machines, implying that no job migration is
allowed between machines. Third, the execution time
and the deadline of each job are predetermined.
Furthermore, the processor is allowed to be
non-fully-utilized. Based on these assumptions, we
attempt to obtain a set of job schedules. Restated, the
preemptive processes in a multiprocessor real-time
system are interesting.

To resolve this problem, an energy function that
represents the scheduling problem has to be defined.
The defined energy function is transformed into an
extended 3-D HNN; then the optimization process
searches for neuron states satisfying a set of
constraints such that the energy function is
minimized. According to the problem, scheduling
involves three variables: job (or process), machine
(or processor), and time. Thus, neuron states variable
Vijk is defined. The job variable, i, indicates a specific

job with a range from 1 to N+1. The total number of
job is N. The (N+1)th job is a pseudo-job, which is a
supplementary job used to facilitate satisfying
1-out-of-N rule. Restate, by adding neurons to the
hypothesis representation neurons, we can enforce
inequality constraints. The extra neurons are referred
to as “slack neurons” herein. In this investigation,
slack neurons are those neurons in representing the
pseudo-jobs. Meanwhile, the machine variable, j,
represents a dedicated machine from 1 to M, the total
number machines to be operated. Finally, the time
variable, k represents a specific time, which is less
than or equal to T, the deadline of the job. Thus, a
state variable Vijk is representing whether or not job i
is executed on machine j at a certain time k. In
addition, the activated neuron Vijk=1 denotes that the
job i is run on machine j at the time k; otherwise,
Vijk=0. The activated neuron V(N+1)jk=1 indicates
processor j at a certain time k is free. Notably, each
Vijk corresponds to a neuron of the neural network.

The correlating energy function representing the
scheduling problem is as Eq. (1). In this equation C1,
C2, C3, C4, C5 and C6 refer to weighting factors; N
denotes the total number of processes to be scheduled;
M is the total number of machines to be operated; T
represents the maximum time quantum of a process.
These weighting factors, N, M, and T, are assumed to
be positive constants herein.

The C1 energy term confines a processor j to
executing only one process, say i or i1, at a certain
time k. This energy term has a minimum value of
zero when satisfying this constraint, which occurs
when Vijk or equals zero. jkiV

1

∑ ∑ ∑ ∑ ∑−

∑ ∑ ∑+

∑ ∑ −∑+

∑ ∑ −∑+

∑ ∑ ∑ ∑ ∑+

∑ ∑ ∑ ∑=

+

+= = =
≠
= =

+

= = =

+

= = =

+

= = =

= = =
≠
= =

+

= = =

+

≠
=

1

1 1 1
1,

11 11
11

6

1

1 1

2

1
5

1

1 1

2

1
4

21

1 1 1
3

11
1 1 1

1,
11 11

2

1

1 1 1
1

1

1,
11

1

2

)(
2

)1(
2

)(
2

2

2

N

Ni

M

j

T

k

M

jj
j

T

k
kijijk

N

i
ijk

M

j
ijk

T

k
ijk

N

i

M

j

T

k
ijk

N

i

M

j
i

T

k
ijk

kij
N

i

M

j

T

k

M

jj
j

T

k
ijk

N

i

M

j

T

k
jki

N

ii
i

ijk

VVC

GHGVC

VC

PVC

VVC

VVCE

 (1)

where

≤
>

=

−=

0.,0
0.,1

)(
ijkGif
ijkGif

ijkGH

idkijkG

The C2 energy term indicates that a process
migration is prohibited, implying that process i runs
on processor j or j1. This item also has a minimum
value of zero when Vijk or Vij1k1 is zero. In the C3
energy term, Pi denotes the total execution time
required by process i. This energy term means that

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

400

the time consumed by process i must equal Pi such
that , i.e. this term becomes zero. The

processing time of the pseudo-job (the N+1
iPijkV =∑∑

th job) is
defined as the total available time for all machines
subtracts the total processing time required by all N
jobs. Additionally, the C4 energy term is to prevent no
process being executed on a specific processor at a
certain time when 1-out-of-N rule applied. Thus, this
energy item falls to a minimum of zero when
satisfying this constraint. Meanwhile, the C5 energy
term is real-time requirement to meet the deadline of
each process i, where di is the time limitation of
process i and H(Gijk) is the Heavside function. When
a process is allocated with a run time that exceeds d,
the energy term will exceed zero, and the energy
value will grow exponentially with the associated
time lag between di and k. On the contrary, this
energy term will have a value zero as long as
Vijk=1and k-di ≤ 0. Finally, the C6 term excludes the
slack neurons from the 2nd term. Hence, this term
allows slack neuron of the N+1th job to be activated
on different processors (j and) at any time k1.
Since the slack neurons are not to be taken into
account when retrieving the solution of the problem.
Restate, the 2

jj ≠1

nd term limits exactly one processor j to
run process i, and this term allows more than one
processor to run process N+1 (i.e., pseudo-job).
Based on the above discussion, the derived energy
function has a minimum value of zero when all
constraints are satisfied. Eq.(1) can be proved to be
an appropriate Lyapunov function for the system
under discussion.

3. Competitive algorithm of neural
networks

Hopfield and Tank originally proposed the neural

network, HNN, in [14]. Essentially, the HNN
algorithm is based on the gradient technique, thus
providing rapid convergence. Moreover, the HNN
also provides potential for parallel implementation.
Based on dynamic system theory, the Liapunov
function [14] [15] expended to a 3-dimentional
model as shown in Eq. (2), has verified the existence
of stable states of the network system. This energy
function representing the scheduling problem must
be in the same format as the Lyapunov function.

ijk
i j k

ijkijkxyzijk
x y z i j k

xyz VVWVE ∑∑∑+∑∑∑∑∑∑−= θ
2
1 (2)

Where Vxyz and Vijk denote the neuron states, Wxyzijk
represents the synaptic weight indicating the
interconnection strength among neurons, and ijkθ is
the threshold value representing the bias input of the
neuron. Additionally, the HNN employs the
deterministic rule to update the neuron state change.
This deterministic rule is displayed in Eq. (3) below:

<
=

>

=+

0,0
0,

0,1
1

ijk

ijk
n

ijk

ijk
n

ijk
Netif
NetifV

Netif

V . (3)

Meanwhile, represents the total input or
net value of the neuron (i, j, k) obtained using the
interconnection strength, , and the bias input,

 displayed as follows:

ijkNet

xyzijkW

ijkθ

ijk
x y z

xyzxyzijk
ijk

ijk VW
V
ENet θ−∑∑∑=

∂
∂−= (4)

Instead of applying conventional deterministic
rules to update neuron states, competition among
neurons is used to decide the winning neuron, i.e. the
active neuron in competitive scheme. Restated, the
competitive rule is to build neural networks
satisfying constraints of the type of “exact one
neuron among N” should be activated when the
network reaches a stable state, and can be considered
as a 1-out-of-N confine rule.

Since a processor can only execute one job at a
time in subject scheduling problems, omitting the C1
and C4 energy terms from the HNN energy function
(Eq. 1) yields a simplified energy function and
satisfies the competitive constraint. Restated, the C1
and C4 energy terms are handled implicitly. The
resulting energy function for CHNN is highlighted as
follows:

∑
+

+=
∑
=

∑
=

∑

≠
=

∑
=

−

∑
+

=
∑
=

∑
=

+

−∑
+

=
∑
=

∑
=

+

∑
+

=
∑
=

∑
=

∑

≠
=

∑
=

=

1

1 1 1
1,

11 11
112

6

)(21

1 1 12
5

2)
1

1 1 1
(

2
3

11
1

1 1 1
1

11 112
2

N

Ni

M

j

T

k

M

jj
j

T

k
kijVijkVC

ijkGHijkG
N

i

M

j

T

k
ijkVC

iP
N

i

M

j

T

k
ijkVC

kijV
N

i

M

j

T

k

M

jj
j

T

k
ijkVCE

 (5)

The resulting energy function makes it apparent
that this must be an appropriate Lyapunov function.
Comparing Eq.(5) with Eq.(2) makes it possible to
determine synaptic interconnection strength, ,
and the bias input, , as illustrated below:

xyzijkW

ijkθ

)),(1(*)1,(*)1,(*6
),(*3)),(1(*),(*2
jyNiNxC

ixCjyixCWxyzijk
δδδ
δδδ

−+++
−−−= (6)

and
)(**

2
53 2 GHGCPC ixyz +−=θ (7)

respectively, where

≠
=

=
baif
baif

ba
.0
.1

),(δ is the Kronecker delta function.

The neurons on the same column of a dedicated
processor at a certain time compete with one another
to decide which specific job should be the winning
neuron. The neuron that receives the maximum net
value is the winning neuron. Accordingly, the output
of the winner neuron is set to 1, and the output states

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

401

of all the other neurons on the same column are set to
0. The winner-take-all update rule of the neuron for
the ith column is illustrated as follows:

 =

= +=
otherwise

NetMaxNetif
V ijk

Ni
xjk

xjk
0

1
1~1 , (8)

where is the maximum total neuron input as
in Eq.(4). The ith column consists of jobs 1 ~ N+1
(slack neuron). Restated, the slack neuron can be the
wining neuron while satisfying the constraints.

xjkNet

4. Convergence of the energy function

This section demonstrates a mathematical proof of
convergence in the CHNN for the investigated
problem.
According to Eq. (4), the neuron (i, j, k) obtains the
total input, i.e. net value, which is as follows (Eq.9):

)(
2
5)(3

2
2 2

1
11 11

111 ijkijkiijk
M

jj
j

T

k
kij

ijk
ijk

GHGCPVCVC
V
ENet

−−−∑ ∑−=

−=

≠
= =

∂
∂

(9)

For clarity, we separate this energy function into two
parts. The first one is for the processor m at given
time n, that is, . The second part is the

remainder, that is, . In other word, is
the summation of the energy term corresponding to
neuron state V

mnE

otherE mnE

imn. The energy function can then be
represented as follows (Eq. 10):

∑ ∑ ∑ −+

∑ ∑ ∑+

∑+

−∑ ∑ ∑+−∑+

∑ ∑ ∑ ∑ ∑+

∑ ∑ ∑=

+

+=
≠
= =

+

=
≠
=

≠
=

+

=

+

=
≠
=

≠
=

+

=

+

=
≠
=

≠
=

≠
≠
= =

+

=
≠
= =

1

1
1,

11 11
11

6

21

1 1 1

21

1

21

1 1 1

21

1

11
1

1 1 1

1
,1
,11 11

11
1

1
1

11 11

)(
2

))(

)((
2
5

))()((
2
3

)

(
2
2

N

Ni

M

jj
j

T

k
kijijk

ijkijk
N

i

M

mj
j

T

nk
k

ijk

imnimn
N

i
imn

i
N

i

M

mj
j

T

nk
k

ijki
N

i
imn

kij
N

i

M

mj
j

T

nk
k

M

mj
jj

j

T

k
ijk

kij
N

i

M

mj
j

T

k
imn

VVC

GHGV

GHGVC

PVPVC

VV

VVCE

(10)

othermn EEE += .
 Vimn is the neuron on the ith row (job) and the nth
column (time) for the specific processor m. Focusing
on these terms at the (t)th iteration, the Vlmn is
supposed to be the only active neuron (l,m,n) in the
nth column on the processor m before updating, that
is,

≠

=
= .,

,1
0)(

)(

liforV

andV
t

imn

t
lmn

Moreover, the neuron (q,m,n) at (t+1)th iteration is

supposed to be the only neuron activated with the
largest total input value after updating, that is,

≠

=
=+

+

.,

,1
0)1(

)1(

qiforV

andV
t

imn

t
qmn

The active neuron, based on the winner-take-all
update rule as in Eq.(8), is the one with maximum net
value on each column in each update, that is

. This implies that

. and are obtained
based on Eq.(9) as follows:

imn
Ni

qmn NetMaxNet
1~1 +=

=

lmnqmn NetNet > Netqmn lmnNet

)(
2
5

)(3
2
2

2
1

11 11
11

qmnqmn

qqmn
M

mj
j

T

k
kqjqmn

GHGC

PVCVCNet

−

−−∑ ∑−=

≠
= = (11)

 and

)(
2
5

)(3
2
2

2
1

11 11
11

lmnlmn

llmn
M

mj
j

T

k
kljlmn

GHGC

PVCVCNet

−

−−∑ ∑−=

≠
= = . (12)

Investigating Eq.(10), the total energy difference
of the neural network , , between the (t+1)E∆ th
iteration and the (t)th iteration is the same as the Emn
change between the (t+1)th iteration and the (t)th
iteration. Restate, the Eother is canceled out.
Since , , , and

. Thereby, the energy change difference
cab be rewritten as follows:

1)1(=+t
qmnV

)(li ≠

)(0)1(qiV t
imn ≠=+ 1)(=t

lmnV

0)(V t
imn =

))()((
2
5

))1()1((
2
3

)(
2
2

22

1

2

1

222

11

1
11 11

1
11 11

11

1

lmnlmnqmnqmn

N

li
i

i
N

qi
i

ilq

klj
M

mj
j

T

k

M

mj
j

T

k
kqj

t
mn

t
mn

GHGGHGC

PPPPC

VVC
EEE

−+

∑−∑+−−−+

∑ ∑−∑ ∑=

−=∆

≠
=

≠
=

≠
= =

≠
= =

+

 (13)

Accordingly, the energy changes between neuron
update equals the net value change minus C3. That is

3CNetNetE qmnlmn −−=∆ .
Obviously, the above equation implies that the
energy difference in the update is negative, i.e.

.Hence, the system is convergent during
network evolution. Apparently, this energy function
is an appropriate Lyapunov function.

0<∆E

5. Simulation examples and results

A number of sets of timing constraints and various

weighting factors were applied to the simulations.
The constants in Eq.(11) are set to C2=1.355,
C3=0.55, C5=1.355 and used in simulation. The C6
term exclude the slack neurons from C2 term.
Consequently, C6 value is equal to the C2 value.
Tables 1 through 4 list timing constraints of
simulation cases, respectively. The simulation
involves scheduling four or five processes (jobs) in

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

402

two processors (machines) system. Moreover, more
complicated simulation case with10 processes in
three processors system is included as well. Case 1a
and case 3a are the same conditions as in [11]. They
are added to facilitate the full processor utilization
system scheduling study by applying the proposed
scheme herein. Figs. 1 and 2 illustrate the resulting
schedules of case 1a and case 1b for proposed
algorithm. Meanwhile, Figs 4 and 5 display the
simulation results of case 3a and case 3b.. Finally,
Figs. 3 and 6 represent the resulting schedules
correlating with the case 2 and 4 respectively. The
process assignment of S as displayed in figures 2, 3,
5, and 6, indicates the active “slack” neurons. Restate,
the machine at that time does nothing. Additionally,
figure 7 displays the significant portions of the
energy curves of all cases during neural network
evolution.

6. Discussion and conclusions

The competitive mechanism eliminates the

constraint terms in the energy function, simplifying
the network by reducing the interconnections among
neurons [8], as displayed in Eq. (5). This
investigation illustrated an approach to mapping the
problem constraints into the energy function of the
competitive neural networks containing slack
neurons, they are involved so as to resolve the timing
constraints schedule problem for both “non-fully
utilized” and “fully utilized” system. The
conventional deterministic rule in determining the
neuron state was replaced by winner-take-all or
competitive rule.

The weighting factor determination is an intrinsic
shortcoming of Hopfield neural network and the
simulations also encounter this drawback. However,
the set of weighting matrix used in our simulation is
not unique. Different sets of weighting factors may
produce different neural network revolutions.

The energy function proposed herein works
efficiently and can be applied to the similar cases of
investigated scheduling problems. The competitive
scheme combined with slack neurons suggests the
way to be applied to this kind of scheduling, which
has inequality constraints. Restated, solving “fully”
or “non-fully” utilized real-time scheduling problems
can apply proposed competitive slack neural
networks.

This work focuses mainly on solving real-time
scheduling without ready or setup time consideration.
For more practical implementation, different and
more complicated scheduling problems can be
further investigated in future work by applying this
proposed algorithm. Such problems include
preemptive multi-process scheduling on
multiprocessor system with multi-constraints such as
deadline and resource constraints. The problem can
be further extended to involve the temporal
relationship of ready time or priority for each job. A

future work should address these issues more
thoroughly.

Acknowledgements: This work is supported by
National Science Council (NSC93-2213-E167-012).

Reference

[1] Willems T. M. and Rooda J. E., “Neural

Networks for Job-shop Scheduling,” Control
Eng. Practice, 2(1) (1994) pp. 31-39.

[2] Foo YPS, Takefuji Y. Integer linear programming
neural networks for job-shop scheduling. In:
IEEE Int. Conf. on Neural Networks, vol. 2,
1998, pp. 341-348.

[3] Zhang CS, Yan PF, and Chang T. Solving
Job-Shop Scheduling Problem with Priority
Using Neural Network. In: IEEE Int. Conf. on
Neural Networks, 1991, pp. 1361-1366.

[4] Silva MP, Cardeira C, and Mammeri Z. Solving
real-time scheduling problems with
Hopfield-type neural networks. In:
EUROMICRO 97 'New Frontiers of
Information Technology, Proceedings of the
23rd EUROMICRO Conference, 1-4 Sept.
1997, pp. 671 –678.

[5] Hanada A, Ohnishi K. Near optimal jobshop

scheduling using neural network parallel
computing. In: Int. Conf. on Proc.Industrial
Electronics, Control, and Instrumentation, vol.
1, 1993, pp. 315-320.

[6] Hopfield JJ, Tank DW. Neural computation of
decision in optimization problems. Biological
Cybernetics 1985; 52: 141-152.

[7] Huang YM, Chen RM. Scheduling
multiprocessor job with resource and timing
constraints using neural network. IEEE Trans.
on System, Man and Cybernetics, part B,
Aug.1999; 29(4): 490-502.

[8] Chung PC, Tsai CT, Chen EL, Sun YN. Polygonal
approximation using a competitive Hopfield
neural network. Pattern Recognition 1994; 27:
1505-1512.

[9] Uchiyama T, Arbib MA. Color Image
Segmentation Using Competitive Learning.
IEEE Trans. Pattern Analysis Machine
Intelligence. 1994; 16(12): 1197-1206.

[10] Chen RM, Huang YM. Multi-constraint task
scheduling in multiprocessor system by neural
network. In: Proc. IEEE Tenth Int. Conf. on
Tools with Artificial Intelligence, Taipei, 1998,
pp. 288-294.

[11] Chen RM, Huang YM. Competitive Neural
Network to Solve Scheduling Problem.
Neurocomputing, April 2001;
37(1-4):177-196.

[12] Cardeira C, Mammeri Z. Neural networks for
multiprocessor real-time scheduling. In: IEEE
Proc. Sixth Euromicro Workshop on

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

403

Real-Time Systems, 1994, pp. 59-64.
[13] Tagliarini GA, Christ JF, and Page EW.

Optimization Using Neural Networks. IEEE
Transaction on Computers Sep. 1991; 40(12):
1347-1358.

[14] Hopfield JJ, Tank DW. Computing with neural
circuits: A model. Science 1986; 233: 625-633.

[15] Cohen M, Grossberg S. Absolute stability of
goal pattern formation and parallel memory
storage by competitive neural network. IEEE
transaction on system, Man, and Cybernetics
Sep/Oct 1983; 13: 815-26.

Table 1. Timing constraints matrix (case 1a: A=4,B=3;

case 1b:A=3,B=2)
 Time Required Time Limit

Process 1 A 6
Process 2 3 4
Process 3 B 6
Process 4 2 3

Table 2. Timing constraints (case 2)

 Time Required Time Limit
Process 1 5 8
Process 2 4 8
Process 3 3 6
Process 4 2 3

Table 3. Timing constraints (case 3a: A=5,B=4;
case2b: A=3,B=3)

 Time Required Time Limit
Process 1 2 3
Process 2 A 8
Process 3 3 4
Process 4 B 8
Process 5 2 5

Table 4. Timing constraints (case 4)

 Time Required Time Limit
Process 1 2 10
Process 2 3 5
Process 3 3 9
Process 4 2 5
Process 5 3 9
Process 6 2 6
Process 7 3 10
Process 8 2 5
Process 9 3 9

Process 10 4 10

Machine 1
P4 P1 P4 P1 P1 P1

Machine 2

P2 P3 P2 P2 P3 P3
Figure 1. Simulation results of case 1a (fully utilized)

Machine 1

P4 P1 P4 P1 P1 S

Machine 2
P2 P2 P3 P2 P3 S

Figure 2. Simulation results of case 1b (non-fully
utilized)

Machine 1

P4 P4 S S P2 P2 P2 P2

Machine 2
P1 P3 P3 P3 P1 P1 P1 P1

Figure 3. Simulation results of case 2

Machine 1
P4 P1 P1 P4 P4 P4 P5 P5

Machine 2

P3 P3 P3 P2 P2 P2 P2 P2
Figure 4. Simulation results of case 3a (fully utilized)

Machine 1

P1 P4 P1 P4 S P4 S S

Machine 2
P3 P3 P3 P2 P5 P2 P5 P2

Figure 5. Simulation results of case 3b (non-fully
utilized)

Machine 1

P9 P8 P6 P8 P6 P9 S P9 S S

Machine 2
P10 P2 P7 P2 P2 P7 P10 P7 P10 P10

Machine 3

P3 P3 P5 P4 P4 P1 P5 P5 P3 P1
Figure 6. Simulation results of case 4

0 2 4 6 8 10 12 14 16 18 20
-2

0

2

4

6

8

10

12

case 1a case 1b

case 2

case 3acase 3b

case 4

of iterations

E
ne

rg
y

Figure 7. Energy function of case 1-4.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

404

