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Abstract - Using concepts and techniques from User 
Modeling, Fuzzy Logic and Intelligent Agents, a Self-
Adaptive Landing Signals Agent (SALSA) was developed 
at the Royal Military College of Canada for integration in 
the helicopter simulation and training facility of The 
Defense Research and Development Canada (DRDC) 
centre in Toronto. In the context of this work, self-
adaptive means the ability to assess the skill level of the 
pilot, the ship motion and the environmental conditions 
inside the simulator, and adapt its behavior accordingly, 
just as a human landing safety officer (LSO) would.  
Furthermore, SALSA can recall its last assessment of a 
pilot it has worked with, or quickly make an estimate of 
the skills of a new pilot, and use that information to 
commence training at the appropriate skill level.  
Preliminary tests indicate that SALSA is able to simulate 
a human LSO and assist in providing progressive training 
in the simulator. 
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1. Introduction 
 

The training environment discussed consists of a navy 
ship, a helicopter with a pilot and a landing safety officer 
(LSO) on board a ship. To land a helicopter on board 
could be a very tough task when the sea states are rough. 
Normally, the cost to train a pilot to land in this 
environment is very expensive; see Figure 1 for the 
training environment in real life. Alternatives using 
modeling and simulation were investigated.  

The Defense Research and Development Canada 
(DRDC) centre in Toronto has developed a virtual reality 
simulator to conduct training for Sea King helicopter 
operations aboard a Canadian Forces patrol frigate. In the 
present simulator configuration, a “Human Landing 
Safety Officer” LSO is required to conduct a realistic 

simulation involving all phases (approach to landing) of 
the helicopter. 

 
Figure 1. Shipboard Helicopter Operations[1] 
 
Using concepts and techniques from User Modeling, 

Fuzzy Logic and Intelligent Agents, a Self-Adaptive 
Landing Safety Agent (SALSA) was developed at the 
Royal Military College of Canada for the integration in 
the helicopter simulation and training facility of DRDC. 
Preliminary tests indicate that SALSA is able to simulate 
a human LSO and assist in providing progressive training 
in the simulator. 

 
 
2. A Self-Adaptive Landing Signals Officer 
 

Training a pilot, who can perform deck landing, needs 
a lot of resources and people, such as the ship, 
helicopters, and pilots, LSOs. It is natural to take an 
alternative of using modeling and simulation to fulfill the 
task. We participate in a design of helicopter deck landing 
system to make deck landings in Sea Kings aboard a 
Canadian Patrol Frigate in severe weather conditions. Our 
task is to design an agent to replace the role of a human 
LSO. The LSO is usually himself a Sea King Pilot so that 
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the cost of carrying out a full simulation is greatly 
increased by the need of such an individual. Hence the 
requirement to investigate the possibility of replacing the 
LSO by an intelligent agent with similar characteristics as 
it’s human counterpart. 

For a pilot, based on the communication between 
hiself and the human LSO, the pilot attempts to match the 
postion and velocity of the helicopter to the traps positon 
and velocity. While the LSO has a better view to the 
relevant position between the helicopter and the trap, and 
most importantly, an LSO can feel the rolls and pitches of 
the ship movement. An LSO will sit in a small room in 
the corner on the landing deck, and he will feel the rolls 
and pitches of the ship, watch a helicopter approaching 
the deck, and give command directly to the pilots when 
the helicopter tries to fly over the trap in the center of the 
deck in order to safely land on the deck eventually, see 
Figure 2. 

 

P ro b e
C a b le  -  n o t  u se d  fo r
fr e e  d e c k  la n d in gT r a p

 

Figure 2. Rapid Assist Securing and Traversing 
System (The Trap)[2] 

The design of an intelligent agent based LSO were 
fulfilled in three phases. Firstly, the architecture of an 
intelligent agent system was planned. Secondly, a 
constructive LSO was built using fuzzy logic. Thirdly, a 
self-adaptive LSO was designed and tested. In the context 
of this work, self-adaptive means the ability to assess the 
skill level of the pilot, the ship motion and the 
environmental conditions inside the simulator, and adapt 
its behavior accordingly, just as a human LSO would.  
 
 
3. The System Architecture of an Intelligent 
Agent Based LSO 
 

An agent is anything that perceives its environment 
through sensors and acts upon that environment through 
effectors[3][4].  

Figure 3 below illustrates the Constructive LSO 
Architecture.  

The prototype agent provided orders that guided an 
experienced pilot to a successful landing under a 
specified set of environmental conditions. The success of 
the prototype[2] agent does depend upon manually 
finding and setting the right set of parameters for that 
pilot in those conditions.  But it is recognized that the 
prototype LSO agent lacked the ability to adapt itself to 
environmental conditions or pilot expertise as a human 
would.  Further, the prototype agent was designed only 
for the final landing phase, the most complex part.  In 
order to replace the functions of a human LSO, an AI 
system must also be able guide the pilot through all four 
phases of the landing sequence, transitioning between 

them properly.   
 

Figure 3. the Constructive LSO Architecture 
 
 
 
4. SALSA 
 

The goal of building SALSA is to research and 
develop a means to expand the prototype LSO AI agent 
discussed above so that it can imitate the abilities of a 
human LSO to judge and adjust to pilot expertise and 
environmental conditions through all four phases of a free 
deck landing in a simulator.  

SALSA continues to decide which commands to issue 
and when.  It is, in effect, be an agent within a larger 
agent.  The larger agent includes a controller strategy 
module.  This module uses the current version of the user 
model and the current picture of the sea state to decide the 
best approach to land a pilot of this skill level in this 
weather.  The “best approach” will exist as a set of 
parameters that are transferred to the command issuing 
agent to guide it in its function.  The controller strategy 
module can also consult a domain expert database.  This 
database contains information, such as safety limits, 
which represents the current Canadian Forces standards 
for landings aboard ships.  Should these standards 
change, only this database need be modified instead of 
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searching the programs for the appropriate values.  The 
environment and pilot assessment are completed using 
two other fuzzy inference systems (FISs), which take data 
from the simulator as input.  These assessments are used 
by the user modeling bureaucracy modules, which are 
responsible for creating, updating and storing the current 
user model as well as feeding it to the strategy module 
after each update.  The conceptual architecture is shown 
in Figure 4. 

Figure 4. SALSA Conceptual Architecture 

Following sections shows more detailed techniques to 
build SALSA. 
 
 
5. Fuzzy Logic and User Modeling 
 

Fuzzy logic[3] offers many advantages to SALSA.  In 
the control aspect of the problem—where SALSA must 
decide when to issue commands and which commands to 
issue based upon the motions of the ship and helicopter—
it is difficult to assess the physical parameters associated 
with the problem.  This creates uncertainty.  It is also 
difficult to assess the sea state in which the pilot is flying.  
DRDC’s simulator tries to imitate real conditions, causing 
some of the uncertainty found in judging real weather.  
Third, the simulator is used by a human pilot.  Guiding 
that pilot and assessing his skill involve uncertainty 
because of the inherent vagueness and uncertainty in 
humans.  Lastly, the goal is to generate output that 
simulates a human LSO.  That means imitating the same 
inherent human vagueness and uncertainty in the agent’s 
decision-making and output to the pilot.  Fuzzy logic is 
well-suited to dealing with vagueness and uncertainty. 
 
 
5.1 The Environment Is Fully Accessible To an 
Agent Based LSO 
 

Because the LSO agent could access to the complete 
states of the environment through the helicopter landing 

simulation system, we claims that the environment of the 
LSO is fully accessible. The list of information needed for 
an LSO to make decision could be found from Table 1. 

Table 1. Four types of data required for the 
constructive LSO. 

 Four types of data required 
1. The position and orientation data of the ship that 

the helicopter is trying to land on. 
2. The helicopter dynamics data. 
3. Pilot landing procedure. 
4. Pilot training information. 

 
 
5.2 User Modeling (UM) 

 
One extra piece of information might be useful: the 

performance of the pilot during landing. That means even 
though a pilot was well trained, but he/she might not 
perform as one expects. In this case, this piece of 
information will not directly from the simulator. The 
constructive LSO must be able to identify the 
abnormality, and change it strategy accordingly. Here, we 
use the concept user modeling [5][6]. 

“When a computer customizes its behavior for 
individuals, it is said to be modeling its users.  The study 
of how best to accomplish this feat is called user 
modeling.” [5] 

The original academic work of UM was primarily 
concerned with modeling the cognitive characteristics of 
the user while the commercial research is concerned 
primarily with behavioral characteristics (what has he 
done, what is he doing, how does he prefer to do it)[6].  
The focus of this work, an agent responding in real time 
to the behavior of a human pilot, suggested that the 
methods developed for the behavioral approach would be 
more appropriate. 

In UM, there are two broad categories of knowledge 
acquisition: invasive and passive. Invasive means that the 
UM system directly asks the user for input or directly 
offers him alternatives to choose from. The most 
important problem with invasive measures for this 
research is that the user of the Sea King simulator has no 
means of answering invasive questions during the 
simulation.  The VR simulator contains the standard 
controls found in a helicopter, not a computer screen or 
keyboard.  Invasive questions could only be answered 
before or after the simulation.  However, prior to any user 
entering the simulator, SALSA will require the training 
officer to log the user in.  If it is a user’s first simulation, 
SALSA will invasively question the human training 
officer to obtain the user’s identifying information and a 
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general assessment of the user’s skill level.  SALSA has 
no other invasive knowledge acquisition measures[2]. 

  Passive acquisition of knowledge about the user 
relies on observing his behavior.  These observations are 
used to infer knowledge about the user.  In SALSA, this 
is accomplished by monitoring the data from the 
simulator and using the fuzzy inference systems. The 
advantages of passive techniques are that they don’t 
bother the user, they can collect information in many 
different ways and can be collected continuously for 
continuous updating of the model[5].  The disadvantage is 
that all information from them must be inferred.  And that 
inference is only as accurate as the algorithms that do the 
inferring and the knowledge or prejudices of the 
programmers that wrote them.   

 
 

5.3 The Fuzzy Inference System 
 

The behaviors of the adaptive constructive LSO are 
based on a real human LSO’s behaviors. For example, we 
could describe a level of pilot training by using a rough 
scale, say from 1 to 5, 1 would represent novice level 
without any experience on deck landing, and 5 fir an 
expert level with years of landing experience on board a 
ship.  

To build such a system as a constructive LSO, we 
interviewed pilots with various landing experiences, who 
also play role of LSO as part of their training process. To 
convert these verbal and blurred descriptions of the 
behaviors of an LSO to a precise representation into a 
simulator, a Fuzzy Logic inference system should be 
used. Figure 4 shows the basic structure of this system, 
which just uses three pieces of information: the training 
level of a pilot, the performance of a specific pilot at the 
moment of landing, and the relative positional and speed 
information of the ship and the helicopter. 

Figure 5. The basic structure of the fuzzy inference 
system. 

Figure 5 shows that the fuzzy inference system uses 
three pieces of information: the training level of a pilot, 
the performance of a specific pilot at the moment of 
landing, and the relative positional and speed information 
of the ship and the helicopter 
 
5.3 Special considerations for the performance 
factor 
 

In a rough sea state, to keep a low relative speed 
between the trap and the helicopter, to keep the probe 
close to the trap is very hard, even for an experience pilot. 
So it is necessary for the adaptive LSO to watch the 
performance of the pilot in landing. It is also crucial to 
watch the final landing phrase, which is called Low 
Hover landing, meaning: helicopter over the trap and 
altitude is about 4 feet above deck. 

What an LSO could percept from the helicopter 
landing simulator are Current Time, Helicopter Heading, 
Helicopter Position (x,y,z), Trap Position (x,y,z), 
Helicopter Velocity (x,y,z), Trap Velocity (x,y,z), Ship 
Heading, Ship Pitch, Ship Roll, Ship Pitch Velocity, Ship 
Roll Velocity, and Voice Commands. By receiving these 
pieces of information for a short period of time, the 
constructive LSO will build an understanding about the 
quality the landing. Figure 6 shows the x positions of the 
pilots over time and compare them to his target position. 
They clearly show that Pilot 1 has more experience than 
Pilot 2. In a simulated environment, it is possible to make 
the landing condition identical, so the comparison could 
be precise.  
 

-16
-14
-12
-10
-8
-6
-4
-2
0
2

1 4 7 10 13 16 19 2 2 2 31

T ime

Pilot 1
Pilot 2
Target  X-posit ion

 

Figure 6. This figure plots the pilot x positions over 
time and compare them to his target position. 

From Figure 6, we could also be able to image how to 
adjust the strategy for an adaptive constructive LSO. For 
example, a wider range of membership function could be 
given to Pilot 2, see Figure 7[1]. 

Wider “Ontop” will allow the adaptive constructive 
LSO issue a command more cautiously, and specifically 
the final landing command before the pilot could fly right 
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over the trap. So the LSO could give command even the 
helicopter’s probe is not right over the trap, a “land, 
down, down, down” command could be issued to avoid 
an unnecessary longer period of landing procedure.  

 

Figure 7. Different membership function will be given 
based on the adaptive LSO’s understanding of the 

performance of a landing from a pilot. 

Other techniques of UM are explored, for example, 
Stereotypes, Communities, and storage of the individual 
user models as files[2]. 
 
 
6.   Evaluation, Testing and Discussion 
 

To test our LSO systems, we need DRDC Toronto’s 
deck landing simulation and many human pilots. This is 
an expensive operation. To be able to test our LSO 
systems, we started with build-in-house simulation test 
bed to check the concepts of our system design, and 
human pilot test at DRDC Toronto.   
 
 
6.1 Testing the Constructive LSO 
 

For the constructive LSO, the testing configuration 
utilized at DRDC Toronto consisted of the simulator, 
pilot, instructor 's console (used to control the simulator), 
computer with the LSO agent and a serial data connection 
between the simulator and computer. Commands 
generated by the LSO agent were read from the computer 
screen and passed to the pilot via headset. 

An experienced Sea King pilot was employed to 
conduct the testing. Approximately 5 seconds before the 
pilot was anticipating ready to land the data recording 
was started. When the Ready to Land command was 
given by the pilot the start time would be recorded and 
the LSO agent was engaged to begin generating 
commands. The run was finished when the pilot landed or 
a decision was made to terminate in mid flight after 
several attempts to land were unsuccessful and it 
appeared the run was producing no new information. At 
the end of each run the data recorded was saved for post 
analysis. Originally it was envisioned that several runs 
form both port and starboard involving different types of 
ships motion small, medium, and large between 0 and 10 
degrees could be conducted. Testing did not progress as 
quickly as anticipated resulting in all but one run being 
conducted with a very small deck motion around zero 
degrees. The last run, Run 11, was conducted with 
medium motion between 0 and 7 degrees. The total 
number of recorded runs was 11. 

To assess performance of the LSO agent, feedback 
from the pilot and data analysis are utilized. The data 
collected during 11 different runs contains 71 occasions 
when the helicopter was considered over the trap. An 
occasion over the trap is defined as any time the flight 
path of the probe enters a 0.9 x  0.9 metre square by 2 m 
high box over the trap. The frequency distribution of 
average flight time over the trap indicates that 42 out of 
the 71 occasions have an average flight time over the trap 
greater than 1.5 seconds and 26 of 71 occasions have an 
average flight time over the trap greater than 2.5 seconds. 
Figure 8 shows the statistics. 
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Figure 8. Frequency Distribution of Time Over 
Trap[1] 

There are 32 occasions where the time spent over the 
trap is greater than 2 secs. None of these has an average 
velocity over the trap greater than 1 m/s. The relationship 
between the time over the trap, average velocity and the 
distance across the trap is represented by the two inverse 
curves one for a distance of 1.8 metres across the trap the 
other for 2.5 metres across the diagonal. These lines 
depict the dimensions in terms of velocity and time for a 
direct flight over the trap. 
 

 

Figure 9. Average Velocity versus Time Over Trap[1] 

An opportunity to land is an occasion over the trap 
where the flight path conditions are considered acceptable 
or almost acceptable for the LSO to give the Land 
command. It is defined as those 41 occasions over the 
trap having an average flight time greater than 1 second 
and an average velocity less than 1 m/s. Each opportunity 
to land is referenced by the run it occurred in and its 
sequence. For example Run 3 Opportunity 2 or the 
abbreviated form is Run 3 Opportunity 2.  

Observations by the pilot suggested that the land 
command was not being generated as often as he was 
anticipating. If it can be demonstrated that the LSO agent 
is capable of generating more land commands by 
changing its configuration, then it can be concluded that 
the LSO can be effectively adjusted to accommodate the 
different flight profiles that were presented during testing. 
 
 
6.2 SALSA Testing 
 

The evaluation and testing of SALSA was completed 
incrementally, testing the programs written for each phase 
prior to moving onto the development of the next phase. 

Due to the unavailability of pilots and DRDC Toronto’s 
simulator, simulations are developed in order to test and 
evaluate the SALSA programs.  Some positive results are 
generated[2].  

Although, in most cases, SALSA’s output accuracy 
was very good to excellent. So, in terms of “number 
accuracy” SALSA correctly interprets what it sees and 
creates good results, for the most part.  The question of 
accuracy and appropriateness remains partially 
unanswered for SALSA due to the lack of data[2].    
 
 
7. Conclusions and Further Work 
 

Two immediate future work must be conducted. First 
of all, more human pilots are needed for further tests of 
both the constructive LSO and SALSA. Second, more 
effective simulation method must be developed in the 
absence of human pilots and the helicopter deck landing 
simulator.  
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