
Novel Algorithms for Deductive Games

Shan-Tai Chen
Department of Computer Science, Chung
Cheng Institute of Technology, National
Defense University, Tao-Yuan, Taiwan,

R.O.C.
Email: stchen@ccit.edu.tw

Shun-Shii Lin

Graduate Institute of Computer Science and
Information Engineering, National Taiwan
Normal University, No. 88, Sec. 4, Ting-

Chow Rd. Taipei, Taiwan, R.O.C.
Email: linss@csie.ntnu.edu.tw

Abstract- This paper presents two novel algorithms
for deductive games. First, a k-way-branching
algorithm, taking advantage of a clustering
technique, is able to efficiently obtain an optimal
strategy in the worst case and a near-optimal
strategy in the expected case for a typical deductive
game “Bulls and Cows.” Second, a pigeonhole-
principle-based backtracking algorithm has been
successfully applied to efficiently reduce the search
space for the game. By using the algorithms, we not
only obtain the lower bound on number of guesses
required for the game in the worst case, but also
derive the main theorem: 7 guesses are necessary
and sufficient for the “Bulls and Cows” in the worst
case. This is the first paper to prove the exact bound
of this problem.

1. Introduction

Deductive games are two-player games of
imperfect information. Player I, called the
codemaker, chooses a secret code. Player II, called
the codebreaker, does not know the choice player I
made and has to guess the secret code. After each
guess, the codebreaker gets a hint about the accuracy
of the guess from the codemaker. The goal of
codebreaker is to discover the secret code, based on
the hints, in the smallest number of guesses. Merelo
et al. [10] formulated the problem as a combinatorial
optimization problem. It bears some resemblance to
other combinatorial problems, such as circuit testing,
differential cryptanalysis, on-line models with
equivalent queries, and additive search problems.
Consequently, any conclusion of this kind of
deductive game may be applied, although probably
not directly, to any of these problems, as well as to
any other combinatorial optimization problem.

Over the past three decades, much research has
been done on this kind of game. Knuth [1] stressed
two games of this kind, Mastermind and “Bulls and
Cows,” and demonstrated a strategy for the
Mastermind game that requires at most five guesses
in the worst case and 4.478 in the expected case.
Later, Irving [2] and Nerwirth [3] used sophisticated
heuristic strategies to improve the bounds in the

expected case to 4.369 and 4.364, respectively.
Finally, Koyama and Lai [4] used a recursive
backtracking method to determine the optimal
strategy for Mastermind, where the expected number
of guesses is 4.34. Also, variants of the Mastermind
game have been studied in [5, 6], and [7].
Furthermore, in [8, 9] and [10], the authors used
evolutionary algorithms and genetic algorithms to
solve related problems. Roche [11] analyzed the
generalized Mastermind and obtained asymptotical
bounds under some conditions. Kabatianski and
Thorpe [12] investigated the Mastermind game and
its related applications based on coding theory. More
recently, a graph-partition approach was introduced
to determine the optimal strategies for various games
with two-digit secret code [14, 15, 16].

The rule of “Bulls and Cows” [1] (or called AB
game in Asia) is described as follows. The
codemaker chooses a secret code, e.g., (s1, s2, s3, s4),
consisting 4 digits out of 10 symbols, whereas
repetition of symbols is prohibited. Hence, the set of
possible codes is the number of permutations,
P(10,4)= 10*9*8*7=5040. After each guess (g1, g2,
g3, g4) made by the codebreaker, the codemaker
responds with a pair of numbers [A, B], where A is
the number of “direct hits,” i.e., the number of
positions j such that sj=gj, and B is the number of
“indirect hits,” i.e., the number of positions j such
that sj≠gj but sj=gk for some position k≠ j. For
example, if the secret code is (1, 2, 3, 4), then the
responses for the guesses (3, 1, 5, 4), (3, 1, 4, 5) are
[1, 2], [0, 3], respectively. The goal of the
codebreaker is, based on the responses, to minimize
the number of guesses needed, and to find the secret
code.

Since the search space for “Bulls and Cows” is
extremely large, in the past no optimal strategy for
the game has yet been found. In this paper, we
develop new and systematic optimization approaches,
pigeonhole-principle-based backtracking and k-way-
branching approaches, to discover an optimal
strategy for the game in the worst case and a near-
optimal strategy in the expected case.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

517

mailto:stchen@ccit.edu.tw
mailto:linss@csie.ntnu.edu.tw

This paper is organized as follows. In Section 2
we describe the properties of the deductive games.
Section 3 develops the k-way-branching algorithm
for the “Bulls and Cows.” Also, we apply the k-way-
branching algorithm to the Mastermind game and
compare our results with previously published
results. In Section 4, we introduce an extended
pigeonhole principle and demonstrate the
pigeonhole-principle-based backtracking approach
to determine the minimal number of guesses required
for “Bulls and Cows” in the worst case. Section 5
presents our conclusions.

2. Properties of deductive games

In this section, we introduce some properties of
deductive games by a simple number guessing game,
denoted 1×n games. We will show how to determine
the numbers of guesses required in the expected and
the worst case for the game. By means of this
comparatively simple work, we present some
fundamental concepts that can be applied to develop
optimal strategies for generalized deductive games.

Fig. 1. A game tree for a 1×16 game, where the
binary search strategy is used.

In the 1×n games, the codemaker chooses a
secret number S, S∈{0, 1, 2,... , n-1}. After each
guess gi made by the codebreaker, the codemaker
responds with a hint Hi , Hi∈{<, =, >}, three
elements of which refer to S<gi, S=gi, and S>gi,
respectively. The goal of the codebreaker is, based
on the hints, to minimize the number of guesses
required, and to find the secret number. Obviously,
the guessing process for this game can be translated
into a search problem. We can obtain the optimum
strategy for this game by using the binary search
technique. In order to demonstrate how to calculate
the number of guesses required in the worst and
expected cases for 1×n games, we illustrate the
binary search strategy by means of a 1×16 game, the
game tree for which is shown in Fig. 1. From this
strategy, we can easily obtain the following two
observations, which can be applied to analyze
arbitrary deductive games.

Observation 1. The number of guesses required in
the worst case for a game is H, where H is the height
of the game tree, i.e., the length of a longest path

from the root to a leaf in the game tree. For example,
H=5 in Fig. 1.

Observation 2. The number of guesses required in
the expected case for a game is L/n, where L is the
external path length [13] of the game tree, i.e., the
sum of the distances from the root to each leaf in the
game tree. For example, in Fig. 1, L= 1*1 +2*2 +3*4
+4*8+5*1=54 and the number of guesses required in
the expected case is L/n=54/16 =3.375.

From Observations 1 and 2, we should minimize
the height H and the external path length L of the
game tree to find the optimum strategy for a game in
the worst and expected cases, respectively.

3. k-way-branching (KWB) approaches

For a game tree with height H and branching
factor b, the search space is bH. As the value b
becomes larger, the game tree will become too huge
to deal with. The fundamental idea of our k-way-
branching algorithm is to reduce the search space
from bH to kH. For example, the search space for
“Bulls and Cows” is reduced from (14*5040)7 to
(14*k)7.

The KWB algorithm can be implemented by a
modified exhaustive depth-first search on the game
tree. The main modification to depth-first search is
that at each visited node we consider only k guesses
that are most likely to obtain the optimal strategy,
instead of all possible guesses. We use a heuristic
procedure, shown in Fig. 2, to select the k guesses.
That is, we only explore the k “most likely” best
guesses and ignore the other (5040–k) guesses at
each stage. Depending on the execution time and
space allowed, we can increase k to obtain results
that are getting closer to the optima.

The heuristic procedure in Fig. 2 is based on the
heuristics used in [1], which chooses the guess that
minimizes the maximum number of remaining
candidates at each stage. However, our strategy
improves on the heuristics in two ways. First, we
consider the distribution of all remaining candidates
in each class, rather than only the largest class.
Second, we expand k most-likely-best guesses at
each stage to get more promising results. To choose
the “k most likely” best guesses, we introduce an
efficient clustering technique, hash collision group
(HCG).

Hash collision group (HCG). We classify the
guesses into different HCGs by a given hash
function. As an example of our procedure, if two
guesses result in the same distribution of the
numbers of remaining candidates for the 14 response
c l a s s e s , t h e y w i l l b e

Table 1. The numbers of the remaining candidates of the 14 response classes after the first guess.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

518

1. Perform each of all the 5040 possible guesses on the
visited node.
Then, all the possible candidates in the visited node
will be partitioned into 14 response classes after each
guess. Let the numbers of remaining candidates of the
14 response classes resulted from each of the guesses
be Cg,1, Cg,2, …, Cg,14, 1 ≤ g ≤ 5040.

2. Hash each of the 5040 sequences, Cg = 〈 Cg,1, Cg,2, …,
Cg,14 〉, 1 ≤ g ≤ 5040, to a nonincreasing sequence, C’g

= 〈 C’g,1, C’g,2, …, C’g,14 〉, and classify the 5040 C’gs
into Hash Collision Groups (HCGs).

3. Choose k representative HCGs with higher average
distribution.
That is, select k HCGs with the smallest |C’g|s, where
|C’g| denotes a measurement function of C’g; i.e.,
|C’r|=|C’s| denotes C’r,i = C’s,i, 1≤ i ≤14, and
|C’r|<|C’s| denotes C’r,1 <C’s,1 ,or (C’r,i = C’s,i and C’r,j

<C’s,j), 1≤ i <j for some j ≤ 14.
4. Choose a representative guess from each

representative HCG, by the following rule:
If a guess hits one of possible candidates, then choose
it as the representative guess, else arbitrarily choose a
guess from each HCG.

Fig. 2. A heuristic procedure to choose k best
guesses at each node in a game tree

classified as the same HCG. More specifically, let
the numbers of remaining candidates of the 14
response classes after a guess g be Cg= 〈Cg,1,
Cg,2, …,Cg,14〉. We define the hash function:

Hash (Cg= 〈Cg,1, Cg,2, …,Cg,14〉) = (C’g= 〈C’g,1,
C’g,2, …,C’g,14 〉), where C’g,1≥ C’g,2≥ …≥C’g,14.

That is, the hash function sorts the original sequence
Cg into a nonincreasing sequence C’g. For example,
Table 1 shows the number of remaining candidates
of the 14 response classes after the first guess g = (0,
1, 2, 3). We have Cg=〈1, 24, 6, 72, 180, 8, 216, 720,
480, 9, 264, 1260, 1440, 360〉 and C’g=〈1440, 1260,
720, 480, 360, 264, 216, 180, 72, 24, 9, 8, 6, 1〉. If
two nonincreasing sequences C’r and C’s are the
same, that is, C’r,1=C’s,1, C’r,2=C’s,2, …, and
C’r,14=C’s,14, then guess r and guess s are classified
into the same HCG.
Experimental Results. To estimate how well the k-
way-branching algorithm can perform, we first apply
it to the game of Mastermind, which is a smaller
game, since the optimum strategy for the game has
been determined in [4]. Then the experimental
results for the game of interest, “Bulls and Cows,”
will be given.
A. Mastermind. For the Mastermind game, Knuth [1]
used a heuristic strategy that chooses the guess that
minimizes the maximum number of the remaining
possibilities at every stage, for which the number of
guesses required in the expected case is 4.478.

Neuwirth [3] used a sophisticated heuristic method
to improve the bound to 4.364, which is the best
“heuristic” strategy in literature. Finally, Koyama
and Lai [4] used a recursive backtracking method to
determine the optimum result, 4.34. However, its run
time could be several days but has not been reported.

A comparison of the previous results and our
results is shown in Table 2. Our results were
obtained by running our program on a Pentium III
750 MHz computer. As seen in Table 2, when k=1,
our result is within 97.38 % of optimum and is better
than the result [1] in the expected case. Moreover,
when k=40, our results outperform the best results of
previous heuristic strategy [3]. In addition, observing
the bottom row of Table 2, even when k=40, the
execution time is still acceptable, so our KWB
algorithm is quite efficient.
B. “Bulls and Cows”: By using the efficient KWB
algorithm, we obtain a near-optimal strategy for the
game, where the number of guesses is 26605/5040≒
5.279 in the expected case and 7 in the worst case
when k=5. (The program was run on a Pentium III
750 MHz computer for about 40 minutes.) That is,
the program can build a game tree with height H=7
and external path length L=26605.
Table 2. Comparison of our results and previous
results for the Mastermind game.

4. Pigeonhole-principle based

backtracking

In this section, we will demonstrate a computer-
aided verification method to solve the problem: the
minimum number of guesses required for “Bulls and
Cows” in the worst case. To make the backtracking
algorithms more efficient, we introduce an extended
pigeonhole principle in Lemma 1. The principle can
be applied to the situation where pigeonholes have
different volumes. Let the set of the volumes V={v1,
v2, v3, …, vn} and a proper subset of V, V’={v’1, v’2,
v’3, …, v’k}, where 1≤k<n, i.e., V’⊂V. We have the
following lemma.

Lemma 1. (Extended pigeonhole principle) If m
pigeons occupy n pigeonholes with different
volumes and m > , then there exists one i

k
i v'1∑ =

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

519

pigeonhole with at least ⎡(m-)/(n-k)⎤ pigeons
roosting in it, where 1≤k<n.

i
k
i v'1∑ =

Proof. Given m > , we divide the proof into
two cases:

i
k
i v'1∑ =

Case 1. If pigeons fill up the k pigeonholes whose
respective volumes belong to V’, then (m-

) remaining pigeons have to be
distributed among the other (n-k)
pigeonholes.

i
k
i v'1∑ =

Case 2. Otherwise, there are more than (m-)
remaining pigeons that have to be
distributed among the other (n-k)
pigeonholes.

i
k
i v'1∑ =

Therefore, by the generalized pigeonhole principle,
in both cases there exists one pigeonhole with at
least ⎡(m-)/(n-k)⎤ pigeons roosting in it. This
completes the proof. ■

i
k
i v'1∑ =

We now derive the total number of guesses
required to hit two remaining candidates in Lemma 2.
This lemma not only can be applied to arbitrary
games of this kind but also is useful to derive the
exact bound for “Bulls and Cows.”

Lemma 2. If a subtree remains only two candidates,
then the minimum external path length L and the
minimal height H of the game tree will be increased
by 3 and 2, respectively.

Proof. We will illustrate the result with an example,
and omit the detailed proof here. If there are only
two candidates in a subtree, it is obvious that the
optimal strategy is to guess one of the candidates
first and then guess the other. For example in Fig.1,
if there are only two remaining candidates, say, 14
and 15, in the subtree that contains nodes 14 and 15,
an optimal strategy is to guess 14 first and then 15.
Hence, the L will be increased by 1 (for guessing 14)
+ 2 (for guessing 15) = 3, and H will be increased by
2 (for guessing 15). ■

At the first guess for “Bulls and Cows,” without
losing the generality, we can guess any one, say (g1,
g2, g3, g4), of the 5040 possible codes. All of these
guesses result in the same distribution of the
remaining candidates since all of the guesses are
equivalent. The distribution is shown in Table 1 of
Section 3, where the size of each class can easily be
calculated. For example, after the first guess
(0,1,2,3), the size of class [3,0] is 24 because the
remaining candidates in class [3,0] are (0,1,2,y),
(0,1,y,3), (0,y,2,3), and (y,1,2,3), where y ∈
{4,5,6,7,8,9}, i.e., unused digits. Note that the size of
each class shown in Table 1 is the maximum
possible size during the game-guessing process
because we obtained it from partitioning all 5040
possible candidates. Obviously, during the following
game-guessing process, at any stage each class [3,0]
will not have more than 24 remaining candidates.

Therefore, the sizes of the 14 classes can be
considered to be the volumes of the corresponding
14 pigeonholes. Now we will apply the extended
pigeonhole principle to prove that there exists one
response class that contains at least some amount of
the remaining candidates at each stage.

Lemma 3. (Lower bound Lemma) The height of the
game tree for “Bulls and Cows” is at least 6.
Proof. As shown in Table 1, after the first guess,
class [0,1] contains 1440 remaining candidates. After
the second guess, the numbers of these 1440
candidates classified to the six classes [4,0], [3,0],
[2,2], [2,1], [1,3], and [0,4] are at most 1, 24, 6, 72, 8,
and 9, respectively, as shown in Table 1. Hence, at
least one class other than the six classes contains at
least ⎡[1440-(1+24+6+8+9+72)]/(14-6)⎤ = 165
remaining candidates after the second guess.

In a similar way, we can obtain the result that at
least one class contains more than ⎡[165- (1+6+8+9)]
/(14-4)⎤ = ⎡14.1⎤ =15 remaining candidates after the
third guess.

After the fourth guess, since there are 14 classes,
at least one class contains at least ⎡15/14⎤ = 2
remaining candidates.

Finally, by Lemma 2, we need one and two extra
guesses to hit these 2 remaining candidates,
respectively. Therefore, at least 6 guesses are
required in the worst case, and hence the height of
the game tree for “Bulls and Cows” is at least 6. ■

The above lemma only shows a looser lower
bound 6 for this problem. Now we demonstrate the
pigeonhole-principle-based backtracking for
verifying that the height of the game tree is at least 7.
Fig. 3 shows the verification procedure, the
correctness of which will be proven in Lemma 4.

1. Do a depth-first search of the worst-first search

tree as illustrated in Fig. 4.
 2. After each guess, the procedure backtracks to the

node’s parent, or stops and outputs “fail!”,
according to the following 4 cases, where the
notation |[A,B]max| denotes the number of the
remaining candidates in [A,B]max.
Case 1. After the 3rd guess, if | [A,B]max | ≥ 165,

then backtrack.
Case 2. After the 4th guess, if | [A,B]max | ≥15,

then backtrack.
Case 3. After the 5th guess, if | [A,B]max | ≥ 2,

then backtrack.
Case 4. After the kth guess, k≤5, if | [A,B]max | =

1, then the procedure stops and outputs
“fail!”.

 3. If the procedure terminates and Case 4 has never
happened, then outputs “pass!”

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

520

Fig. 3. The verification procedure.

Lemma 4. If the output of the verification procedure
is “pass!”, then seven guesses are necessary for
“Bulls and Cows” in the worst case.
Proof. The main idea to prove this lemma is that the
height of the game tree is at least 7. The four
conditions used in Step 2 of the verification
procedure are from Lemma 3. That is, only for Case

4, the height of the game tree would be less than or
equal to 6. In this situation, the procedure would
stop and output “fail!” On the other hand, after the

fifth guess, if there exists a class with 2 remaining
candidates, then the height of the game tree would
be 5+2=7. In the same way, we can derive the
constraints for Cases 1, 2, and, 3. If all strategies are
constrained by Cases 1, 2, and 3, then the height of
the game tree would be at least 7. That is, the

Fig. 4. The worst-first search tree

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

521

number of guesses is at least 7 for “Bulls and Cows”
in the worst case. ■

Now, we can obtain the exact bound of the
minimal number of guesses required for the “Bulls
and Cows” in the worst case, as shown in the
following Theorem.

Theorem 1. Seven guesses are necessary and
sufficient for the “Bulls and Cows” in the worst case.
Proof. Necessary. “Bulls and Cows” has
successfully passed the verification procedure shown
in Fig. 3, in which the numbers of backtrackings
caused by Cases 1, 2, 3 and 4 were 407528,
3254981544, 59149440, and 0, respectively. The
verification program was run on a Pentium III 750
computer for about two days. From Lemma 4, we
conclude that seven guesses are necessary for “Bulls
and Cows” in the worst case.
Sufficient. In Section 3, the program, a k-way-
branching, has built a game tree with height H=7 and
external path length L=26605 for “Bulls and Cows”.
From Observation 1, we conclude that seven guesses
are sufficient for “Bulls and Cows” in the worst case.

5. Conclusions

In this paper, we propose new algorithms for
deductive games and have successfully applied it to
solve “Bulls and Cows.” By using the k-way-
branching algorithm, we can obtain an optimal
strategy in the worst case and a near-optimal strategy
in the expected case. The near-optimal result can
approach the optimal solution by increasing the
parameter k. Furthermore, we introduce the extended
pigeonhole principle and have applied it to
effectively reduce the search space of the problem.
Therefore, we are able to determine the minimum
number of guesses required for “Bulls and Cows” in
the worst case.

We use the concept of hash collision groups in
our KWB algorithm because the k groups can be
efficiently obtained and near-optimal results can be
achieved even using a small value for k. Depending
on the characteristics of each problem, the critical
issue is how to define the most adaptive hash
collision groups for the problem in hand. The
proposed algorithms can be applied to related
problems. We hope this paper will prompt
researchers to study other related problems.

Acknowledgments

The research is supported in part by NSC93-2213-E-
003-001, R.O.C.

References
[1] Knuth, D. E. (1976). “The computer as Mastermind,”

Journal of Recreational Mathematics, 9:1, pp. 1-6.

[2] Irving, R. W. (1978-79). “Towards an optimum
Mastermind strategy,” Journal of Recreational
Mathematics, 11:2, pp. 81-87.

[3] Neuwirth, E. (1982) “Some strategies for Mastermind,”
Zeitschrift fur Operations Research, 26, pp. 257-278.

[4] Koyama, K. Lai, T. W. (1993). “An optimal
Mastermind strategy,” Journal of Recreational
Mathematics, 25, pp. 251-256.

[5] Flood, M. M. (1988). “Sequential search strategies with
Mastermind variants — Part 1,” Journal of
Recreational Mathematics, 20:2, pp. 105-126.

[6] Ko, K.-I. Teng, S.-C.. (1986). “On the number of
queries necessary to identify a permutation,” Journal
of Algorithms, 7, pp. 449-462.

[7] Chen, Zhixiang and Cunha, Carlos (1996). “Finding a
hidden code by asking questions,” COCOON’96,
Computing and Combinatorics, pp. 50-55.

[8] Bento, L. Pereira, L. Rosa, A. (1999). “Mastermind by
evolutionary algorithms,” in Proceedings of the
International Symposium on Applied Computing, pp.
307-311.

[9] Bernier, J. L. Herraiz, C. I., Merelo, J. J., Olmeda, S.,
and Prieto, A. (1996). “Solving Mastermind using Gas
and simulated annealing: a case of dynamic constraint
optimization,” in Proceedings PPSN, Parallel Problem
Solving from Nature IV, in Computer Science, 1141,
pp. 554-563.

[10] Merelo, J. J. Carpio, J. Castillo, P. Rivas, V. M.
Romero, G. GeNeura Team. (1999). “Finding a needle
in a haystack using hints and evolutionary
computation: the case of Genetic Mastermind,”
Genetic and Evolutionary Computation Conference
late breaking papers books, pp. 184-192.

[11] Roche, J. R. (1997). “The value of adaptive questions
in generalized Mastermind,” in Proceedings of the
International Symposium on Information Theory IEEE,
pp. 135-135.

[12] Kabatianski, G. Lebedev, V. (2000). “The
Mastermind game and the rigidity of the Hamming
space,” in Proceedings of the International Symposium
on Information Theory IEEE, pp. 375-375.

[13] Sedgewick, R. (1988). Algorithms, second edition,
Addison-Wesley.

[14] Chen, S. T., Hsu, S. H., and Lin, S. S. (2002).“An
Optimal Strategy for 2×n AB Games,” in Proceedings
of the 2002 International Computer Symposium on
Algorithms and Computational Molecular Biology,
C2-2.

[15] Chen, S. T. and Lin, S. S. (2004). “Optimal
Algorithms for 2×n AB Games- a Graph-partition
Approach.” Journal of Information Science and
Engineering, 20:1, pp. 105-126.

[16] Chen, S. T. and Lin, S. S. (2004). “Optimal
Algorithms for 2×n Mastermind Games- a Graph-
partition Approach.” Computer Journal, 47: 5, pp.
602-611.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

522

