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Abstract— In this paper a Genetic Functional-Link Net-
work (GFLN) that employs Gaussian functions in a feedfor-
ward functional-link network (FLN) for classifying camera
movement for compressed videos is proposed. The param-
eters in GFLN are adjusted using genetic evolutionary
approach. GFLN provides feature selection capability by
selecting the links between input layer and functional
nodes dynamically. Genetic coding is used for combining
evolution of weights and Gaussian parameters in a single
chromosome. Seven categories of camera movement:static,
pan-right, pan-left, tilt-up, tilt-down, zoom-in,and zoom-
out decoded from the MPEG-1 video stream are used
for neural classification. Our aim is to rapidly extract
and process motion vector information from MPEG video
without full frame decompression. Video streams with
aforementioned classes of camera movement have been
successfully classified.

Keywords: Camera movement classification,
Functional-link networks, Genetic Algorithms, MPEG.

I. I NTRODUCTION

The Moving Picture Expert Group (MPEG) defines
the MPEG-1 and MPEG-2 ISO/IEC standards. In order
to achieve high compression ratio, MPEG-1 uses hybrid
coding techniques to reduce both spatial redundancy and
temporal redundancy. The syntax of MPEG-1 defines
three main types of coded pictures: intra coded I frames,
forward predicted P frames, forward and backward pre-
dicted B frames arranged in a repetitive pattern called
a GOP. A GOP always starts with an I frame followed
by any number of I an P frames (referred to as anchor
frames) with any number of B frames between a pair of
anchor frames.

Many algorithms for video-shot segmentation have
been proposed in both the uncompressed domain and
compressed domain. A good survey paper on video
segmentation in uncompressed domain can be found in
[1]. In compressed domain various methods exist for
video-shot segmentation. Especially, DC coefficients in
Discrete Cosine Transform (DCT) have been extensively
used. Other categories of video segmentation include
model-based and feature-based. In model-based classifi-
cation a physical model of the camera is modelled in 3-D
space, with a mapping projection that maps the object
on to the camera’s image plane. The camera operations,
usually, can be estimated from the parameters associated
with the projected model. Tan et al. [2] estimated the
camera movement based on the model of the camera

and 3-D coordinate transforms involved in the mapping.
Feature-based methods develop an’N’ dimensional fea-
ture vector combining various statistical features based
on the motion vector orientation and magnitude along
with some other features extracted from the DCT co-
efficients [3]. Statistical information of motion vectors
such as motion smoothness [4] (ratio of blocks with
significant motion to blocks whose motion vector has
changed significantly), motion activity in video frames
[5], and motion histograms [6] have also been used in
shot detection. All the above-mentioned approaches are
limited to shot detection and do not considershot classi-
fication. Some methods also require computationally ex-
pensive reconstruction of DC terms. Furthermore, these
approaches are based on many adjustable thresholds
and hence cannot be considered robust. Hence, recently
neural methods and evolving neuro-methods have been
proposed using motion vector (MV) information which
has overcome many problems associated with adjustable
thresholds. Furthermore, neuro-methods are able to de-
tect and classify shot transitions. For example, Koprinska
et al. [7] have proposed a neural-network-based (Linear
vector quantization) classifier and an Evolving Fuzzy
Neural Network-based (EFuNN) classifier for detecting
and classifying camera motion in MPEG video streams
[8]. Seok-Woo et al. [9] have defined a rule set for
denazifying and classifying the camera shots using a
fuzzy associative memory. However, linguistic feature of
fuzzy computation takes additional step in mapping for
real-time video stream applications.

Due to the fact that neural networks have been drawing
increasing attention as powerful tools to solve differ-
ent tasks of engineering and scientific problems. In
this work, we propose using a Genetic Functional-Link
Network (GFLN) for camera movement classification.
The application can be easily applied to camera-vision-
based mobile robot navigation and security surveillance.
Functional-Link Neural Network, proposed by [10] and
improved by others [11] [12] is essentially a single-layer
functional layer, or a flat network that takes advantages
of fast learning. This paper presents a novel approach to
the learning task of traditional functional-link networks.
As referred in [11], a flat functional-link network has
the capability of rapid learning and incremental learning.
This paper extends the model presented in [11] by
incorporating efficient genetic-neuro learning algorithm.
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Fig. 1. Overview of proposed method

Here, we adapt radial basis function (RBF) such as
Gaussian function in the functional layer. In this model,
weights, i.e., links between input layer and functional
layer are adjustable in the process of training. A fine
grain continuous genetic algorithm [13] is used for train-
ing the network parameters. In GFLN the parameters
to be adjusted are weights between input layer and
functional layer, and parameters of Gaussian functions
in the functional layer.

GFLN is trained with feature vectors based on mo-
tion vectors decoded from the MPEG-1 video stream.
We have used the following seven categories of video
streams of camera movement:static, pan-right, pan-
left, tilt-up, tilt-down, zoom-inand zoom-outfor neural
classification.

The proposed approach for camera movement clas-
sification is shown in Figure 1. The structure of this
paper is as follows. Section II describes the architecture
of GFLN followed by the introduction of the genetic
evolutionary training algorithm in section III. Section
IV explains implementation of GFLN. Then section V
reports simulation results of GFLN. Finally, section VI
draws the conclusions.

II. A RCHITECTURE OFGFLN

The neural network proposed in this paper is shown
in Figure 2, which consists of three parts: input layer,
functional layer and output layer. In this model, the
process of training adjusts weights from input nodes
to functional layer. We use a Gaussian function as the
activation function in the functional neuron layer. Let
x = [x1, x2, · · · , xn] be the input vector andu =
[u1, u2, · · · , un] be the output vector of enhancement
node layer (functional layer). Output of a neuron in the
enhancement layer is given as follows.

ui = e−r2
i (ai−ci)

2
(1)

x1

x2

xn

Input layer

u1

u2

un

Y

Functional layer Output layer

Fig. 2. Architecture of GFLN

whereui is the output ofith enhancement node andai is
the linear combination of input elements forith neuron,
ci andri are the parameters of Gaussian function. Once
the output of the functional layer is computed, the output
vectoru is added as extra input layer to the network.

III. T RAINING ALGORITHM

Genetic learning is used for training the neural net-
work for number of neurons needed (i.e.,ui), the values
of weights (i.e.,wi), and the parameters of Gaussian
functions (i.e.,ci and ri ). First, we briefly introduce
genetic algorithms, and the representation followed by
the genetic operators used in the algorithm.

A. Genetic Algorithms

Genetic algorithms are a family of computational
models inspired by Darwin’s theory of evolution. Genetic
algorithms have been quite successfully applied to op-
timization problems. More precisely, genetic algorithms
maintain a population of structures that evolve according
to rules of selection and other operators such as crossover
and mutation. Each individual is evaluated, assigning a
measure of its fitness in the population. In our learning,
we use similar approach as a fine-grained continuous
genetic algorithm learning proposed in [14]. In this
model, each member of population performs crossover
with its immediate neighbors, where neighborhood is
defined by the topology and some distance parameter.
We used square topology with a distance parameter of
three.

B. Representation

Majority of traditional genetic algorithms use binary
representation for solving the problem. Here we use real
coding that is conceptually closest to the problem space
and allows for an easy and efficient implementation.
Each chromosome consists real part for evolution of
network parameters and binary part for selection of the
links between input layer and functional layer. In binary
string a ’1’ means a link is present ’0’ means absence of
link. If all the links corresponding to an input are zero
then that input is removed from the input layer. Similarly,
if all the input links corresponding to a RBF node are
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Fig. 3. Chromosome representation of GFLN

zero then output of that node will be constant. This node
does not contribute to the process of learning, hence it
can be removed from the network architecture. Figure 3
shows the representation of GFLN.

C. Genetic operators

Uniform crossover and non-uniform mutation operator
are used as genetic operators.

1) Crossover: One offspring is generated from two
parents by arithmetical crossover. It is a linear combina-
tion of the two parents. IfP1 andP2 are the two parents
to be crossed, offspring is generated as follows.

Pf = P1(1− a) + aP2 (2)

wherea is a random value in[0, 1].
2) Mutation: The generated offspring is mutated be-

fore reinsertion into the population. For the offspring,
Pf , if q is any element and let upper bound(UB) and
lower bound(LB) of q be [LB, UB]. The result after
mutation,q′ , is given by

q′ =





q + ∆(t, UB − q) if a random binary
digit is zero

q −∆(t, q − LB) if a random binary
digit is one

(3)
The function∆(t, y) returns a value in the range of

[0, y] such that probability of being close to 0 increases
as t increases (t is the iteration number). This property
causes this operator search space uniformly initially
(while t is small), and very locally at later stages. The
function ∆(t, y) is given as follows

∆(t, y) = y.r.(1− t

T
)b (4)

P1

Global selection P1 Local GRID selection P2

Cross over

P1 P2

OffspringMutationReinsertion

P1

P2

P1

P2

Fig. 4. Fine Grain Genetic Algorithm Cycle, where the original upper
right corner cell has been replaced by the new offspring

wherer is a random value in[0, 1], t is the iteration
number,T is maximum number of iterations, andb is
a parameter determining the degree of non-uniformity.
The value of 5 is used in our implementation. Above-
mentioned mutation operator is considered in [15].

3) Selection: In fine grain model selection is in two
stages as shown in the Figure 4. The first step is global
selection. An individual is selected globally based on
its fitness value. Once an individual is selected, the
second individual for crossover is selected from the
local deme given by grid shape and distance parameter
three, based on fitness value. Generated offspring after
mutation is reinserted in the same deme replacing the
worst individual in the local deme.

D. Error methods

Many different error methods can be used for training.
Most commonly used is the root mean square error
(RMSE). Other error methods frequently used are
mean square error(MSE), and average percentage error
(APE) as indicated in the following.

1)

RMSE =

√√√√ 1
N ∗O

O∑
o=1

N∑
n=1

(yon − y′on)2 (5)

where
N : Number of patterns
O: Number of outputs
yon: Desired output of pattern
y′on: Network output of pattern

2)

APE =
100
N

N∑
n=1

|yn − y′n|
yn

(6)

These error functions are used to compare the simu-
lation results with previous approaches.
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E. Fitness Function

Fitness or cost function is a measurement of per-
formance of an individual in the population. A simple
fitness function for genetic evolution of neural networks
is root mean square error (RMSE) of the corresponding
network. As indicated by [16] that the generalization
performance of a network depends on the size of the
weights rather than on the network size. Thus a cost
function that considers the size of weights in a network
guarantees better generalization performance. The cost
function proposed for GFLN is as follows.

Fitness = E +
W

α1
+ α2

n

N
(7)

where
E: Root mean square error (RMSE)
W : Cumulative of sum of network weights
α1: A constant, a range between [1000,10000] is used
α2: A constant, a range between[10−1, 10−3] is used
n: Number of links present between input layer and
functional layer i.e number of ’1’ in the binary part of
chromosome
N : Length of binary chromosome

F. Learning algorithm

Learning algorithm of GFLN is as follows.
BEGIN

1) Generate initial population of weight and RBF
parameters in their domains.

2) Compute error and fitness of each individual.
3) Run genetic evolutions for given maximum num-

ber of iterations.
4) Save the fittest individual of the evolution.

IF Goal is true, STOP.
ELSE add an extra enhancement node and go to
Step 2.

END

The algorithm mentioned above is effective as the
chromosomes are represents combination of weights and
RBF parameters. Genetic algorithm is driven to find
an optimal network that is the result of adjusting both
network weights and RBF parameters. Feature selec-
tion is possible through the evolution of input links
simultaneously. InGFLN , output network weights are
computed through the SVD (Singular value decompo-
sition). The cumulative sum of output weights found
through the SVD is considered along withRMSE of
desired and network output values in computing the
fitness of the network as shown in Eq. (7). Based on
[16], the generalization capacity of a network depends
on the size of network weights rather than the number
of weights in the network. From Eq. (7) it is clear
that the evolution is driven in a direction of finding
a network with smaller network weights consequently
better performance. Designed algorithm guarantees the

GFLN having a good generalization capability and
better performance.

IV. CAMERA MOVEMENT CLASSIFICATION USING

GFLN

A. Decoding and Preprocessing of motion vectors

Our aim is to rapidly extract and process motion vector
information from MPEG videos without full frame de-
compression. We have used MPEG -1 video streams for
camera movement classification in this work. However,
our algorithm could be readily extended to MPEG-2 and
MPEG-4 video streams. The typical GOP structure ( 15
frame sequence IPPPPPPPPPPPPPP ) as show in Figure
5 is used in the encoding at a rate of 30 frames/sec. In
this paper weonly use motion vectors from P frames
without any loss of motion information. Using both P
and B frames tends to yield better accuracy but at a
much higher computational cost. We also assume that
the camera movement is the only dominant motion in our
test video streams. We encoded JPEG ( 352X288 pixels
) image sequences using Berkely’s MPEG-1 encoder
software with the GOP structure described above at a rate
of 30 frames/sec. We then extracted the motion vectors
for each frame by partial decompression.

The extracted motion vector field portrays a character-
istic pattern in the direction corresponding to the seven
classes of camera movement:

1) Static: The MV field contains majority of zero
motion blocks. The MV field may also contain
some random MVs due to uniform background.

2) Pan-Left: The MV field predominantly consists of
motion vectors pointing to the left.

3) Pan-Right: The MV field predominantly consists
of motion vectors pointing to the right.

4) Tilt-UP: The MV field predominantly consists of
motion vectors pointing upwards.

5) Tilt-Down: The MV field predominantly consists
of motion vectors pointing downwards.

6) Zoom-In: The MV field contains a point of ex-
panding focus with motion vectors predominantly
pointing outwards from a focal point.

7) Zoom-Out: The MV field contains a point of con-
tracting focus with motion vectors predominantly
pointing inwards from a focal point.

The extracted MV fields of each frame then go through
series of data preprocessing and feature extraction to
be classified by our genetic-neuro classifier (GFLN).
Raw motion vector field is filtered using 3x3 vector
median filter. Figure 6 shows noisy and smoothed motion
vector field after filtering the noise. Figure 6a shows
the frames of zoom-in and tilt-up video, Fig 6b shows
corresponding raw motion vectors after decoding. Raw
motion vectors have some random motion vectors which
are smoothed by applying the median filter. Figure 6c
shows the filtered motion vectors free of noise.
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(b) Motion vectors before filtering the noise
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(c) Smoothed motion vectors

Fig. 6. Motion vectors before and after filtering the noise, left column
shows motion vectors of a zoom-in video and right column is of tilt-up
video

B. Extraction of feature vector

A good feature vector should reduce the dimension
of the problem data without discarding the valuable
information. Magnitude and direction of the motion
vectors are the key features for classification of
camera movement. Direction of motion vectors plays
a more significant role in MV pattern recognition than
magnitude. A 22-dimensional feature vector is extracted
from the motion vectors of each frame. First component
(V1) of the feature vector is fraction of macro blocks
that have no motion signifying staticness in the frame.

V1 =
Bz

Bn

where
Bz is number of blocks with zero motion
Bn is the total number of blocks in the frame

Motion vector field of a frame is divided into 7 vertical
slices and for each slice 3 parameters are computed
resulting in the remaining 21 components of the feature
vector as follows:

1) 1st parameter of 7 slices, (V2 − V8), i.e., average
magnitude of each slice: Represents amount of
motion in the slice.

Vk =
∑N

i=1(Ri)
N

2 ≤ k ≤ 8

where
Vk is average magnitude of MVs in the slicek − 1
N is total number of motion vectors in a slice
Ri is the magnitude ofith MV in the slicek − 1

2) 2nd parameter of 7 slices, (V9−V15), i.e., average
direction of each slice: Represents spatial distribu-
tion of MV.

Vk =
∑N

i=1(Θi)
N

9 ≤ k ≤ 15

where
Vk is the average directions of MVs in the

slice k − 8
N is total no of motion vectors in a slice
Θi is the direction ofith MV in the

slice k − 8

3) 3rd parameter of 7 slices, (V16−V22), i.e., standard
deviation of directions of each slice: Captures the
uniformity in the direction of MV.

Vk = std(Θ1,Θ2, .., Θi, ...ΘN ) 16 ≤ k ≤ 22

where
Vk is the standard deviation of directions

in the slicek − 15
N is total no of motion vectors in a slice
Θi is the direction ofith MV in the

slice k − 15

V. SIMULATION RESULTS

Simulations are performed to show the effectiveness
of GFLN for camera movement classification. We have
collected various videos with different camera movement
from open-video website (www.open-video.org). Our ex-
periment consists of classification of camera movement
into one of of 7 categories: static, pan-left, pan-right,
tilt-up, tilt-down, zoom-in or zoom-out by training the
GFLN with feature vectors obtained from the video
sequences. A total of 1400 frames are collected of which
each class contributes to 200 frames of data. Using the
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data preprocessing methods explained in the section IV,
1400 feature vectors are extracted from motion vectors
corresponding to 1400 frames. Dimension of a feature
vector is of size 23 including the class variable. Each
output class is given a value from 1 to 7 representing its
output class.

GFLN is trained with 10-fold cross validation i.e.,
feature data is split into 10 subsets of equal size and
network is trained with 10 times each time leaving one
of subsets from training but using only the omitted subset
for testing the network. Average performance of GFLN
over each subset is listed in the Table I.

TABLE I

10-FOLD CROSS VALIDATION RESULTS OFGFLN USING 15 NODES

subset Accuracy on Accuracy on
no training subset testing subset

1 79.80 73.68
2 78.93 85.52
3 78.63 75.26
4 79.89 77.10
5 79.56 77.36
6 79.23 82.10
7 79.09 80.78
8 79.86 74.73
9 80.21 70.78
10 77.45 85.00

TABLE II

RESULTS FOR DIFFERENT NUMBER OFENHANCEMENT NODES

no of Accuracy on Accuracy on
nodes training subset testing subset

5 78.80 75.68
10 79.93 83.52
15 81.63 85.26
20 82.89 87.10

Table I shows that GFLN is effective in capturing
patterns in camera movement. Performance on each
subset is consistent for different number of simulation
runs. Simulations are performed by changing the number
of enhancements nodes in the GFLN architecture. The
average performance of GFLN for different number of
enhancement nodes is evaluated and listed in Table
II. Results show that increasing the number of nodes
increases performance at the cost of time complexity.
Performance of GFLN for individual category is shown
in the Table III using 15 nodes.

TABLE III

CLASSIFICATION RESULTS

category Accuracy on Accuracy on
type training subset testing subset

static 79.80 73.68
pan-right 82.93 85.52
pan-left 81.63 75.26
tilt-up 79.89 77.12
tilt-down 89.27 77.23
zoom-in 74.36 72.41
zoom-out 72.47 73.67

VI. CONCLUSION

We have proposed a method for the classification
of camera movement in compressed domain using the
motion vector patterns in MPEG video stream. Results
show that GFLN is successful in classifying various
camera motions. Note that motion vectorsonly from
P frames is used in this paper. Using both P and B
frames will tend to yield better accuracy but with the cost
of higher computational cost. Future work will include
modelling a robust feature vector from the compressed
video frame and to include other complex camera effects
such as fade-in, fade-out, dissolve etc. for classification.
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