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Abstract 

 
Networks-on-a-chip (NoC) is a new 

architectural template, which helps to meet 
many of challenges of designing a complex 
system-on-a-chip (SoC). In the paper, we 
introduce the on-chip network and propose 
the pipelined router for a NoC template 
called adaptive NoC (aNoC). In the network, 
we focus on the topology and the switching 
technique which provide scalability and low 
latency as the system expands, and they are 
key issues for the NoC; in the router design, 
we propose the generalized routing 
algorithm: routing and arbitration 
mechanisms to solve contentions. The 
proposed routing and arbitration units in the 
router can be easily modularized when we 
adopt different routing and arbitration 
algorithms. Furthermore, we accomplish the 
hardware design of a router containing the 
mechanism of pipelining to accomplish the 
transmission of a packet. The proposed 
router was developed as an IP of NoC which 
can be easily modularized for users adopting 
different number of ports, virtual channels, 
channel width, buffer size and different 
routing (including dynamic and static 
routing) and arbitration algorithms. The 
benchmark router with 5 ports, each port 
constants 4 32-bit virtual channels, can 
operate at 200MHz and the data rate can be 
up to 1.6Gbps. The performance of the 
router is enough for an HDTV application 
on NoC. 
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1. Introduction 
 
Recently, a single chip may contain up 

to one billion transistors; with such massive 
resources, SoC designers face many 
challenges, including component-level issues 
such as performance and power, and system-
level issues: reusability, adaptability, and 
scalability.  

An efficient solution to these problems 
is to treat SoCs as micronetworks, and that is 
what our adaptive Network-on-Chip (aNoC) 
[2] does. An example of aNoC in Figure 1 
has a regular structure and it provides 
network interfaces for easier component 
reuse and plug-n-play. The aNoC template 
decouples the computation (each processing 
elements, i.e. IPs, including all kinds of 
processor cores, memory, DSPs or FPGAs) 
and the communication (the communication 
between IPs via networks and routers) so that 
the design and synthesis of each part is 
simpler and can be done separately. 

 
2. Networks of aNoC 

 
2.1 Network Topology 

 
From the perspective of network, we 

regard the composition of a computation 
component, a router and a network interface 
which binds the above 2 components as a 
node or point of the network. The topology 
of the network in aNoC is 2D mesh topology, 
which is a kind of direct network (point-to-
point network). Comparing with other 
topologies of the interconnection network, 
the 2D mesh has a regular structure and is 
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easier to map into a 2D layout than other 
topology. For the scalability of nodes and 
reducing the complexity of the connection 
between 2 nodes, we don’t adopt the 
topology of bus network (shared-medium 
network) and indirect network such as 
crossbar, tree and multistage networks. 
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Figure 1: aNoC topology: 2D mesh 
 
There are 2 hierarchical networks in the 

aNoC template, which are called local 
network and the global network from the 
lower to higher hierarchy respectively. The 
local network connects all adjacent nodes in 
the mesh and is used for the data 
transmission in the local area. For the 
scalability of the network and for reducing 
the latency of the transmission between 2 
distant nodes, we add the extra global 
network between non-adjacent nodes [1]. 
The hop counts of the global network can be 
determined according to the size and the 
latency requirement of the system. Both in 
the local and the global network, there is a 
set of bidirectional full-duplex channel to 
connect 2 nodes. Take Figure 1 as an 
example, this is a 16-node 2D mesh network 
and the pair of (x, y) represents the address 
of nodes in the network. The hop count of 
the global network is 4. 
 
2.2 Switching Technique 

 
The switching technique of the aNoC 

network is the wormhole routing. In the 
regular packet switching, we divide a 
message into several packets. To decrease 

the latency of packet transmitting between 
the source and the destination node, we 
further divide each packet into several 
smaller flow control digits called flits, and 
only the head flit (i.e. the first flit of a packet) 
records the destination address of the packet 
for routing. Other flits in the same packet 
follow the path established by the head flit 
and these flits are transmitted in a pipelined-
fashion. Besides, to increase the utilization 
of channels and to avoid deadlocks of the 
wormhole routing, we adopt a technique 
called virtual channel [5] which divides a 
single unidirectional physical channel into 
several virtual channels. 

 
3. Proposed Routing and 
Arbitration Mechanism 

 
Before introducing the mechanism we 

adopt, we first introduce the flow of a packet 
transmitting through our virtual channel 
router. Based on [4], the transmission of a 
packet through a virtual channel router can 
be divided into 4 steps shown in Figure 2: 
routing, virtual channel allocation, switch 
allocation and switch traverse. 
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Figure 2: The flow of a packet transmitting 

through a virtual channel router 
 

3.1 Routing Mechanism 
 
According to the destination address 

recorded in the head flit of a packet, we will 
get all possible output paths to the next 
router by the routing algorithm. The routing 
algorithm can be deterministic, adaptive, 
minimal path or non-minimal path. In the 



 3

deterministic routing, we will get the fixed 
output path by the position of the destination 
node; however, in the adaptive routing, we 
will get the output path further by the 
workload of a channel. Minimal routing 
algorithm can route a packet along the 
shortest path, and a non-minimal routing 
algorithm can pass away the hot spots or 
broken nodes of the network. Besides the 
dynamic routing approach above, table 
lookup is a strategy of static routing for a 
known application mapped in the NoC 
system. In any case, the routing module in 
our proposed router only has to fit in with 
the following criterion: generating possible 
output virtual channels (i.e., a set of possible 
output virtual channels called sovc generated 
by the routing module) to the next router. In 
2D mesh application of aNoC, we adopt the 
XY routing which is proven deadlock-free in 
2D mesh topology and the routing module 
will generate all output virtual channels of a 
single output port as the sovc signal. 

 
3.2 Proposed Virtual Channel 
Allocation Mechanism 

 
When there are several individual 

virtual channels requesting the same output 
virtual channel for their individual packet 
transmission, we need a mechanism to solve 
the contention and the result of the allocation 
keeps during the transmission of an entire 
packet. 

The virtual channel allocation can be 
regarded as a matching problem and it can be 
divided into 3 phases: request, grant and 
accept. For easier explanation of our 
mechanism and our definition of the priority 
on the arbiters, we consider the following 
example: 3 of 4 input virtual channels 
request their individual output virtual 
channels shown in Figure 3. 

For easier identification of these input 
and output virtual channels, each input and 
output virtual channel has its own virtual 
channel number from 1 to 4. There is a pair 
of arbiters called accept arbiter and grant 
arbiter at each input virtual channel and 
output virtual channel respectively to 

accomplish matching. Each grant arbiter at 
each output virtual channel maintains the 
priority of all input virtual channels that 
want to request this output virtual channel. 
The initial priority of a grant arbiter in 
Figure 3 is determined by the order of the 
input virtual channel number. Each accept 
arbiter maintains the priority of all output 
virtual channels that this input virtual 
channel can request. The initial priority of an 
accept arbiter in Figure 3 is determined by 
the order of the output virtual channel 
number.  
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Figure 3: Concept of virtual channel 
allocation 

 
The arbitration algorithm used in both 

of the grant arbiter and the accept arbiter in 
Figure 3 is determined by a round-robin rule 
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(which is a kind of fair scheme) for fairness. 
In order to avoid the starvation situation, we 
can adopt all kinds of fair arbitration 
algorithm in grant arbiters to find a maximal 
matching. In the example of Figure 3 we 
assume that priority of output virtual 
channels in each accept arbiter is 1>2>3>4, 
and the initial priority of input virtual 
channels in each grant arbiter is 1>2>3>4. 3 
head flits in input virtual channel 1, 3 and 4 
have gotten possible output virtual channels 
from the corresponding routing modules. 

In the request phase, input virtual 
channel 1 requests for output virtual channel 
1 and 2, input virtual channel 3 requests for 
output virtual channel 2 and 4, and input 
virtual channel 4 requests for output virtual 
channel 4 according to the output of the 
corresponding routing modules respectively. 
In the grant phase, output virtual channel 1 
grants the request of input virtual channel 1. 
In Figure 3, there are 2 input virtual channels 
requesting for output virtual channel 2 and 4 
respectively, and the grant arbiters of these 
2 output virtual channel only grant 1 request 
by the priority. Because the priority of input 
virtual channel 1 is grater than 3 in the grant 
arbiter of output virtual channel 2, and the 
priority of input virtual channel 3 is grater 
than 4 in the grant arbiter of output virtual 
channel 4, that’s why the result of the grant 
phase. Please note that the change of priority 
in grant arbiters is round-robin for fairness. 
In the accept phase, input virtual channel 3 
accepts the grant of output virtual channel 4. 

Because there are 2 output virtual 
channels granting the same input virtual 
channel 1, the accept arbiter of input virtual 
channel 1 only accepts 1 request by the 
priority. Because the priority of output 
virtual channel 1 is grater than 2 in the 
accept arbiter of input virtual channel 1, 
that’s why the result of the accept phase. 
With the 3 phase, we accomplish the virtual 
channel allocation of the first iteration. 
Those input virtual channels which fail to 
allocate any output virtual channels will re-
allocate in the next iteration until they 
succeed. 

 

3.3 Proposed Switch Allocation 
Mechanism 

When there are several allocated input-
output virtual channel pairs belonging to the 
same input physical channel or the same 
output physical channel, which are also the 
same input port or the same output port of a 
crossbar switch for flit transmission, we need 
a mechanism to solve the contention and the 
result of the allocation keeps during the 
transmission of each flit. 

For easier explaining our mechanism 
and definition of the priority on arbiters for 
switch allocation, we consider the following 
example shown in Figure 4: 10 of 20 virtual 
channels (5 physical channels, Ei/Eo, Wi/Wo, 
Si/So, Ni/No, and fromIP/toIP, 4 virtual 
channels of each) requesting the usage of the 
crossbar switch. 
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Figure 4: Example of switch allocation 

(5 physical channels, 4 virtual channels of 
each and 10 allocated input-output virtual 

channel pairs) 
 
The switch allocation also can be 

regarded as a matching problem divided into 
3 phases shown in Figure 5: request, grant 
and accept. 

There is n pairs of accept arbiter and 
grant arbiter in a switch allocater, where n is 
the number of input/output port of a router. 
Each accept and grant arbiter maintains the 
priority of each input virtual channel and 
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output virtual channel on the same physical 
channel respectively.  
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Figure 5: Concept of switch allocation of the 

example of Figure 4 

In order to avoid the starvation situation, 
we can adopt all kinds of fair arbitration 
algorithm in these grant and accept arbiters 
to find a maximal matching. The priority of 
these arbiters is determined by a round-robin 
rule. In the example of the Figure 5 we 
assume that the initial priority of input 
virtual channel in each accept arbiter is 
1>2>3>4, 5>6>7>8…, and 17>18>19>20 
respectively, and so are the initial priority of 
output virtual channels in each grant arbiter. 
In the request phase, input virtual channel 1, 
2, 3 and 4 of input physical channel Ei 
request for output virtual 5, 9, 11 and 16 of 
output physical channel Wo, So and No 
respectively, and so do the input virtual 
channel 6, 7, 9, 13, 15, and 17 of input 
physical channel Wi, Si, Ni and fromIP 
respectively. In the grant phase, because 
there are 3 input virtual channels requesting 
for output virtual channel 5, 6 and 8 which 
are in the same output physical channel Wo, 
by the priority of the grant arbiter of output 
physical channel Wo, output virtual channel 
5 grants the request from input virtual 
channel 1, and so do the output virtual 
channel 5, 9, 14 and 18 of output physical 
channel Wo, So, No and toIP respectively. In 
the accept phase, input virtual channel 1 of 
input physical channel Ei accepts the grant of 
output virtual channel 5. On the other hand, 
there are 2 output virtual channels granting 
input virtual channel 6 and 7 which are in the 
same input physical channel Wi, but input 
physical channel Wi only accepts 1 grant by 
the priority of the accept arbiter. Because the 
priority of input virtual channel 6 is grater 
than 7 in the accept arbiter of input physical 
channel Wi, that’s why the result of the 
accept phase.  
 

4. Hardware Router Design 
 

From the requirements of the switching 
technique, we proposed an input-buffered 
router and it provides the modularized 
routing module and arbitration units. 
Besides, the number of input/output ports 
(physical channels), the number of virtual 
channels per physical channel and the buffer 
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size of each virtual channel can be 
parameterized in the design time. For the 
complex modules for virtual channel and 
switch allocation, we depict the dataflow of 
these modules to explain our design. The 
scheduling consideration is also mentioned. 

 
4.1 Router Architecture 
 

The general router architecture of p 
input/output ports, v virtual channels per port 
(physical channel) is shown in Figure 6. In 
the application of 2D mesh topology, p = 5. 
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Figure 6: Router architecture 

 
In each input port and output port there 

are modules dealing with the receiving and 
transmitting handshaking with other routers 
in the network. Each input/output virtual 
channel keeps its state. The state machine of 
each output virtual channel dominates the 
success of the virtual channel allocation and 
the switch allocation of each output virtual 
channel by maintaining the buffer usage of 
other routers via the ovc_full signal. The 
state machine of the input virtual channel 
dominates the operation of router and is 
mentioned latter. The input buffer of the 
router is separated into v individual lanes and 
supports an ivc_full signal to indicate other 
routers that the input buffer is full or not. 
Which lane the flits coming from other 
routers should be stored is decided by the 
ivcid (Input Virtual Channel IDentify) signal. 
There is a routing module belonging to each 
input virtual channel, which implements the 
routing algorithm of the router. The output of 

the routing module, sovc (Set of Output 
Virtual Channels) signal, sends to the virtual 
channel allocater for the virtual channel 
allocation to allocate 1 ovc (Output Virtual 
Channel) among 1 sovc. The switch allocater 
handles the switch allocation by the outcome 
of virtual channel allocation to decide which 
input virtual channel can send a flit through 
the crossbar switch to the next router. The 
number of input/output port of the crossbar 
switch equals the number of the physical 
channel, so that the complexity of crossbar 
will not increase with the increasing of 
virtual channels. In each output port, there is 
a module generating the ovcid (Output 
Virtual Channel IDentify) signal to indicate 
which lane the flit sent to other routers 
would enter by the switch allocation in this 
round. 
 
4.2 Operation of Proposed Pipelined 
Router 
 

Based on the theories of the wormhole 
and the virtual channel [4], we build a finite 
state machine for each input virtual channel 
shown in Figure 7 to control its proper 
operation of transmitting a flit. 

IDLE RT VCA SA ST/IDLE

ST/SA

ST/RT

no flit

head flit

non-head flit

VCA fail SA fail

VCA success

next head flit

next no flit

next non-
head flit

next head flit

next no flit

next non-
head flit

next non-
head flit

next head flit

next no flit
SA fail

 
Figure 7: Finite state machine for each input 

virtual channel 
 

There are 7 main states: IDLE, RT 
(routing), VCA (virtual channel allocation), 
SA (switch allocation), ST/IDLE (switch 
traverse), ST/RT (switch traverse and 
routing operating simultaneously), and 
ST/SA (switch traverse and switch 
allocation operating simultaneously). The 
initial state is IDLE. The ST/RT and ST/SA 
process 2 different flits in the same time and 
implement the pipeline operation. 
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When there is no flit in the input virtual 
channel, the input virtual channel keeps 
IDLE until there is a flit coming in. If a head 
flit comes, it will enter the RT state and 
activate the routing module to proceed 
routing. Otherwise, if a non-head flit comes, 
it will enter the SA state and activate the 
switch allocater to execute the switch 
allocation. After routing, the input virtual 
channel enters the VCA state and activates 
the virtual channel allocater to execute the 
virtual channel allocation. If the input virtual 
channel fails to get available ovc in the 
virtual channel allocation, it will keep in the 
VCA state. The input virtual channel getting 
available ovc enters the SA state to activate 
the switch allocater to allocate the usage of 
the crossbar switch. If the input virtual 
channel fails to allocate the usage of the 
crossbar switch in the switch allocation, it 
will keep in the SA state. 

For the input virtual channel getting the 
usage of the crossbar switch to transmit a flit, 
there are 3 different state transitions 
depending on the next flit this input virtual 
channel want to process. If there is no next 
flit, the input virtual channel will enter the 
ST/IDLE state to set the control signal of the 
crossbar switch and the corresponding output 
virtual channel will activate the handshaking 
to accomplish the transmission of the flit. If 
the next flit is a head flit, the input virtual 
channel will enter the ST/RT state. In 
addition to the operation above, the input 
virtual channel also activate the routing 
module simultaneously. If the next flit is not 
a head flit, the input virtual channel will 
enter the ST/SA state. In addition to the 
operation of ST/IDLE, the input virtual 
channel also activate the switch allocation of 
the next flit simultaneously. 

For the ST/IDLE state, there are also 3 
different state transitions depending on the 
next flit. If there is no next flit, the input 
virtual channel will enter the IDLE state. If 
the next flit is a head flit, the input virtual 
channel will enter the RT state; otherwise it 
will enter the SA state. For the ST/RT state, 
after the routing module accomplishing 
routing the next flit and the present flit is 

transmitted, the input virtual channel will 
enter the VCA state to process the virtual 
channel allocation of the next flit.  

For the ST/SA state, there are also 4 
different state transitions depending on the 
next flit, and we have to consider 2 situations: 
the switch allocation of the ST/SA state is 
successful or not. If the switch allocation 
fails, the input virtual channel will enter the 
SA state. If the switch allocation succeeds, 
we have to consider another 3 situations. If 
the there is no next flit, the input virtual 
channel will enter the ST/IDLE state. If the 
next flit is a head flit, the input virtual 
channel will enter the ST/RT state; otherwise 
it will enter the ST/SA state again. 
 
4.3 Dataflow of Proposed Virtual 
Channel Allocation Mechanism 
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... ...
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......
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vc_acp01...

...

...

vc_acp00 ~ vc_acp0(p*v-1)
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vc_req(p*v-1)0

vc_req(p*v-1)(p*v-1)

vc_acp0(p*v-1)

vc_gnt(p*v-1)(p*v-1)

(To switch allocater)

(To switch allocater)

(To switch allocater)

vc_acp(p*v-1)(p*v-1)

vc_req10

vc_req1(p*v-1)

vc_gnt10

vc_gnt1(p*v-1)

vc_acp(p*v-1)0

vc_acp10

Vca(p*v-1)

Vca1

Vca0

vc_gnt(p*v-1)0

(From routing module)

(From routing module)
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Figure 8: Dataflow of the virtual channel 

allocater for a router with p*n virtual 
channels 

 
The dataflow of a virtual channel 

allocater for p*n virtual channels is shown in 
Figure 8. From left to right, it contains p*n 
modules generating the request signal for 
output virtual channels, p*n grant arbiters for 
the 1st arbitration of conflicted request 
signals for the same output virtual channel, 
p*n accept arbiters for the 2nd arbitration of 
the conflicted grant signals form output 
virtual channels for the same input virtual 
channel, p*n modules generating the ovc 
signal, which means the allocated output 
virtual channel of each input virtual channel, 
to the switch allocater and p*n modules for 
each output virtual channel to receive the 
final matched input virtual channel of the 
allocation. 
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Each grant arbiter maintains the priority 
of all input virtual channels that want to 
request this output virtual channel. Each 
accept arbiter maintains the priority of all 
output virtual channels that this input virtual 
channel can request. In order to avoid the 
starvation situation, we can adopt all kinds 
of fair arbitration algorithm in grant arbiters 
and accept arbiters to find a maximal 
matching in the virtual channel allocation. 
 
4.4 Dataflow of Proposed Switch 
Allocation Mechanism 
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(To Xbar_ctrl)
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channel allocater)

(To Xbar_ctrl)

(From virtual 
channel allocater)

(From virtual 
channel allocater)

(From virtual 
channel allocater)

(From virtual 
channel allocater)
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Figure 9: Dataflow of the switch allocater for 
p port router, each port with n virtual 
channels 
 

The dataflow of a switch allocater for p 
port router, each port n virtual channels is 
shown in Figure 9. From left to right, it 
contains p*n modules generating the request 
signal for output virtual channels, p grant 
arbiters for the 1st arbitration of conflicted 
request signals for the same output port, p 
accept arbiters for the 2nd arbitration of the 
conflicted grant signals form output virtual 
channels for the same input port, p modules 
generating the opc signal, which means the 
input/output virtual channel pair that can 
transmit a flit,  and p modules for each 
output virtual channel to receive the final 
matched input virtual channel of the 
allocation. 

Each accept and grant arbiter maintains 
the priority of each input virtual channel and 
output virtual channel on the same physical 
channel respectively. In order to avoid the 

starvation situation, we can adopt all kinds 
of fair arbitration algorithm in these grant 
arbiters and accept arbiters to find a maximal 
matching in the switch allocation. 

 
4.5 Scheduling of Proposed Router 

 
The operation of the proposed router is 

scheduled as Figure 10. 
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RT

VCA

SA
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IDLE

RT

VCA

SA

ST

Process the 
next flit

Read mem to xabrProcess the 
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Figure 10: Scheduling of the proposed 

pipelined router 
 
In the left of Figure 10 is the scheduling 

of the finite state machine depicted in Figure 
7 and we schedule the router as 1 time unit to 
accomplish IDLE, RT, VCA, SA, and ST 
respectively. The dotted lines between states 
mean the router will process the next flit at 
the same time which accomplishes the 
pipelining. 

From the dataflow analysis of virtual 
channel allocation and switch allocation, we 
discover that they are accomplished in 4 
dependent operations:  

1. generating request  
2. 1st arbitration and generating grant 
3. 2nd arbitration and generating accept 
4. receiving accept 

Thus we can let VCA and SA finished 
in 4 smaller time units depicted in the right 
of Figure 10. On the other hand, the ST 
(switch traverse) is implemented by 4-phase 
handshaking with other adjacent routers to 
accomplish the flit transmission, so it can 
also be finished in 4 smaller time units. 
Because our router is pipelined, the other 
operations such as IDLE, RT must be 
accomplished in 4 time units. If users adopt 
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other complex routing algorithms in RT, 
they will have more 2 time units as the slack 
without decreasing the overall performance 
of the router. We make 1 time unit at the 
right of Figure 10 as 1 clock cycle, thus the 

pipeline latency of transmitting a flit is 4 
cycles. The detailed finite state machine for 
each input virtual channel is shown in Figure 
11 and it is also the lower hierarchy of the 
finite state machine depicted in Figure 7.

SA0 ST0/IDLE0SA1 SA2 SA3IDLE0 IDLE1 IDLE2 IDLE3 RT0 RT1 RT2 RT3 VCA0 VCA1 VCA2 VCA3 ST1/IDLE1 ST2/IDLE2 ST3/IDLE3

ST0/SA0 ST1/SA1 ST2/SA2 ST3/SA3

ST3/SA0

ST0/RT0 ST1/RT1 ST2/RT2 ST3/RT3

VCA fail

VCA success SA success

SA fail no next flit

next flit is a head flit

next flit is not a head flit

next flit is a head flit

next flit is not a head flit

no next flit

SA fail

next flit is not a head flit

SA success

next flit is a head flit

next flit is not a head flit

next flit is a head flit

no next flit

IDLE RT VCA SA

ST/RT

ST/IDLE

ST/SA
 

Figure 11: Detailed scheduling of the proposed pipelined router (lower hierarchy of Figure 7) 
 

5. Verification and Performance 
 
We completed the router design form 

the high level 3000-line C behavioral model, 
through the 6000-line synthesizable Verilog 
RTL code, to the low level physical layout. 
We employ the XY routing algorithm in the 
routing module for the 2D mesh routing, and 
the fair round-robin arbitration in both of the 
virtual channel allocation and switch 
allocation as the benchmark to verify the 
correctness of the router. The output of the 
router under test is connected to the “pseudo 
input of the next router” to verify the 
correctness of flit transmitting with pattern 
of 9 flits in each input port. The parameter of 
the benchmark router is 5 ports, each port 
with 4 virtual channels, and the size of input 
buffer of each lane contains four 32-bit flits. 
Each packet contains 4 flits in our test 
pattern.  

To balance the time consuming among 
the virtual channel allocation, the switch 
allocation and the 4-phase handshaking in 
the switch traverse, each operation of the 
router takes 4 cycles. For a packet which 
doesn’t face blocking, a head flit takes 16 
clocks to transmit, and other flits of the same 
packet take 8 clocks to transmit. With the 

pipeline design, the router takes 4 clocks to 
send a non head flit. After verifying the pre-
synthesis code, we synthesized our router 
based on UMC Artisan 0.18μm cell-library 
by the Synopsys Design Analyzer. After 
verifying the correctness of the post-
synthesis code, we also accomplished the 
physical layout of the router by Cadence 
SoC Encounter shown in Figure 12. 

 

 
Figure 12: Physical layout of the NoC router 

 
In the corner of typical operation, with 

rise/fall time and skew value of the clock 
signal of 0.1 nano second, the overall router 
chip spec. and the maximal delay of each 
stage are shown in the Table I and Table II 
respectively. The bandwidth of each port of 
the benchmark router is calculated below: 



 10

Bandwidth of each port 
= [(200MHz / 4)*32 bit]  
= 1600Mbps 
= 1.6Gbps 

 
The bandwidth is sufficient for the 

HDTV application mapped to an on-chip 
network mentioned in [3]. 

 
Table I:  Pipelined NoC Router Spec. 
Clock Frequency 200MHz 

Data rate 
 (32-bit channel) 

1.6Gbps 

Area (core) 1073945.125000 µm2 
Operating Voltage 1.8V 

Power consumption 932.5797 mW 
(@200MHz) 

Pipeline latency 4 cycles 
Port Number 5 

Virtual Channel 
Number / Port 

4 

Buffer Size / Input 
Virtual Channel 

4 flits 

 
Table II: Max. Delay 

Operation Time (ns) 
RT 2.07 

VCA 3.13 
SA 3.19 

ST/RT, ST/SA 3.19 
ST/IDLE 1.93 

 
In the NoC router project, we also 

develop an ASIP for the NoC router [6]. The 
performance running the same pattern 
between the hard-ware pipelined router and 
soft-ware ASIP router is shown in Table III. 
The result shows the speed advantage of the 
hardware implementation. 

 
Table III: Speed advantage of the benchmark 

NoC Router implemented in ASIC over 
which implemented in ASIP 

 Time 
(cycles) 

Speedup 
ratio 

H.W. pipelined 
router 

60 9057 

S.W. ASIP router 543445 1 
 
6. Conclusion and Future Work 
 

In this paper, we presented the chip 
design of a pipelined NoC router. The router 

architecture, the transmission mechanism of 
a packet, the virtual channel allocation and 
switch allocation are introduced explicitly. 
The user can adopt the parameters, routing 
algorithm for routing module and fair 
arbitration algorithm for virtual channel and 
switch allocation in our IP of router to suit 
the application they need. With these 
components, our router let the aNoC provide 
highly scalability and adaptivity. We are 
going to develop the high speed arbiter to 
overcome the bottleneck of the virtual 
channel and switch allocation and increase 
the overall operation speed of the router. The 
power analysis and low-power design is 
another research topic of the NoC router. 
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