
 1

Design of a New Pipelined Router for NoC
Shih-Hsun Hsu
Department of Electrical Engineering
National Cheng Kung University
e-mail: sishin@j92a21.ee.ncku.edu.tw

Chien-Ming Sun
Department of Electrical Engineering
National Cheng Kung University
e-mail: scm@j92a21.ee.ncku.edu.tw

Jer-Min Jou
Department of Electrical Engineering
National Cheng Kung University
e-mail: jou@j92a21.ee.ncku.edu.tw

Ming-Chao Lee
Department of Electrical Engineering
National Cheng Kung University
e-mail: chao@j92a21.ee.ncku.edu.tw

Abstract

Networks-on-a-chip (NoC) is a new

architectural template, which helps to meet
many of challenges of designing a complex
system-on-a-chip (SoC). In the paper, we
introduce the on-chip network and propose
the pipelined router for a NoC template
called adaptive NoC (aNoC). In the network,
we focus on the topology and the switching
technique which provide scalability and low
latency as the system expands, and they are
key issues for the NoC; in the router design,
we propose the generalized routing
algorithm: routing and arbitration
mechanisms to solve contentions. The
proposed routing and arbitration units in the
router can be easily modularized when we
adopt different routing and arbitration
algorithms. Furthermore, we accomplish the
hardware design of a router containing the
mechanism of pipelining to accomplish the
transmission of a packet. The proposed
router was developed as an IP of NoC which
can be easily modularized for users adopting
different number of ports, virtual channels,
channel width, buffer size and different
routing (including dynamic and static
routing) and arbitration algorithms. The
benchmark router with 5 ports, each port
constants 4 32-bit virtual channels, can
operate at 200MHz and the data rate can be
up to 1.6Gbps. The performance of the
router is enough for an HDTV application
on NoC.

Keywords: NoC, router, wormhole,
virtual channel and pipeline.

1. Introduction

Recently, a single chip may contain up

to one billion transistors; with such massive
resources, SoC designers face many
challenges, including component-level issues
such as performance and power, and system-
level issues: reusability, adaptability, and
scalability.

An efficient solution to these problems
is to treat SoCs as micronetworks, and that is
what our adaptive Network-on-Chip (aNoC)
[2] does. An example of aNoC in Figure 1
has a regular structure and it provides
network interfaces for easier component
reuse and plug-n-play. The aNoC template
decouples the computation (each processing
elements, i.e. IPs, including all kinds of
processor cores, memory, DSPs or FPGAs)
and the communication (the communication
between IPs via networks and routers) so that
the design and synthesis of each part is
simpler and can be done separately.

2. Networks of aNoC

2.1 Network Topology

From the perspective of network, we

regard the composition of a computation
component, a router and a network interface
which binds the above 2 components as a
node or point of the network. The topology
of the network in aNoC is 2D mesh topology,
which is a kind of direct network (point-to-
point network). Comparing with other
topologies of the interconnection network,
the 2D mesh has a regular structure and is

 2

easier to map into a 2D layout than other
topology. For the scalability of nodes and
reducing the complexity of the connection
between 2 nodes, we don’t adopt the
topology of bus network (shared-medium
network) and indirect network such as
crossbar, tree and multistage networks.

uProcuProc

router

uProcuProc

uProcuProc uProcuProc

FPGAMEM

MEM

MEM

uProcuProc

MEM

MEM

Shared
MEM

FPGA

FPGA

DSP

DSP

DSP

Shared
MEM

Shared
MEM

uProcuProc

MEM

Shared
MEM

local network
global network

network interface

processing element

(0, 0) (1, 0) (2, 0) (3, 0)

(0, 1) (1, 1) (2, 1) (3, 1)

(0, 2) (1, 2) (2, 2) (3, 2)

(0, 3) (1, 3) (2, 3) (3, 3)

uProcuProc

router

uProcuProc

uProcuProc uProcuProc

FPGAMEM

MEM

MEM

uProcuProc

MEM

MEM

Shared
MEM
Shared
MEM

FPGA

FPGA

DSP

DSP

DSP

Shared
MEM
Shared
MEM

Shared
MEM
Shared
MEM

uProcuProc

MEM

Shared
MEM
Shared
MEM

local network
global network

network interface

processing element

(0, 0) (1, 0) (2, 0) (3, 0)

(0, 1) (1, 1) (2, 1) (3, 1)

(0, 2) (1, 2) (2, 2) (3, 2)

(0, 3) (1, 3) (2, 3) (3, 3)

Figure 1: aNoC topology: 2D mesh

There are 2 hierarchical networks in the

aNoC template, which are called local
network and the global network from the
lower to higher hierarchy respectively. The
local network connects all adjacent nodes in
the mesh and is used for the data
transmission in the local area. For the
scalability of the network and for reducing
the latency of the transmission between 2
distant nodes, we add the extra global
network between non-adjacent nodes [1].
The hop counts of the global network can be
determined according to the size and the
latency requirement of the system. Both in
the local and the global network, there is a
set of bidirectional full-duplex channel to
connect 2 nodes. Take Figure 1 as an
example, this is a 16-node 2D mesh network
and the pair of (x, y) represents the address
of nodes in the network. The hop count of
the global network is 4.

2.2 Switching Technique

The switching technique of the aNoC

network is the wormhole routing. In the
regular packet switching, we divide a
message into several packets. To decrease

the latency of packet transmitting between
the source and the destination node, we
further divide each packet into several
smaller flow control digits called flits, and
only the head flit (i.e. the first flit of a packet)
records the destination address of the packet
for routing. Other flits in the same packet
follow the path established by the head flit
and these flits are transmitted in a pipelined-
fashion. Besides, to increase the utilization
of channels and to avoid deadlocks of the
wormhole routing, we adopt a technique
called virtual channel [5] which divides a
single unidirectional physical channel into
several virtual channels.

3. Proposed Routing and
Arbitration Mechanism

Before introducing the mechanism we

adopt, we first introduce the flow of a packet
transmitting through our virtual channel
router. Based on [4], the transmission of a
packet through a virtual channel router can
be divided into 4 steps shown in Figure 2:
routing, virtual channel allocation, switch
allocation and switch traverse.

head flit?

routing

virtual channel
allocation

switch
allocation

opc
allocated?

switch
traversed

flit leaves

Yes No

Yes

YesNo

sovc: a set of output virtual channel
ovc: output virtual channel
opc: output physical channel

flit arrives and
moves at the
head of input
FIFO buffer

ovc
allocated?

No
sovc

ovc

opc

Figure 2: The flow of a packet transmitting

through a virtual channel router

3.1 Routing Mechanism

According to the destination address

recorded in the head flit of a packet, we will
get all possible output paths to the next
router by the routing algorithm. The routing
algorithm can be deterministic, adaptive,
minimal path or non-minimal path. In the

 3

deterministic routing, we will get the fixed
output path by the position of the destination
node; however, in the adaptive routing, we
will get the output path further by the
workload of a channel. Minimal routing
algorithm can route a packet along the
shortest path, and a non-minimal routing
algorithm can pass away the hot spots or
broken nodes of the network. Besides the
dynamic routing approach above, table
lookup is a strategy of static routing for a
known application mapped in the NoC
system. In any case, the routing module in
our proposed router only has to fit in with
the following criterion: generating possible
output virtual channels (i.e., a set of possible
output virtual channels called sovc generated
by the routing module) to the next router. In
2D mesh application of aNoC, we adopt the
XY routing which is proven deadlock-free in
2D mesh topology and the routing module
will generate all output virtual channels of a
single output port as the sovc signal.

3.2 Proposed Virtual Channel
Allocation Mechanism

When there are several individual

virtual channels requesting the same output
virtual channel for their individual packet
transmission, we need a mechanism to solve
the contention and the result of the allocation
keeps during the transmission of an entire
packet.

The virtual channel allocation can be
regarded as a matching problem and it can be
divided into 3 phases: request, grant and
accept. For easier explanation of our
mechanism and our definition of the priority
on the arbiters, we consider the following
example: 3 of 4 input virtual channels
request their individual output virtual
channels shown in Figure 3.

For easier identification of these input
and output virtual channels, each input and
output virtual channel has its own virtual
channel number from 1 to 4. There is a pair
of arbiters called accept arbiter and grant
arbiter at each input virtual channel and
output virtual channel respectively to

accomplish matching. Each grant arbiter at
each output virtual channel maintains the
priority of all input virtual channels that
want to request this output virtual channel.
The initial priority of a grant arbiter in
Figure 3 is determined by the order of the
input virtual channel number. Each accept
arbiter maintains the priority of all output
virtual channels that this input virtual
channel can request. The initial priority of an
accept arbiter in Figure 3 is determined by
the order of the output virtual channel
number.

1

23

4

1

23

4

1

23

4

1

23

4

Accept arbiters

1

23

4

1

23

4

1

23

4

1

23

4

Grant arbiters

1

2

3

4

1

2

3

4

Phase1: request

1

23

4 1

23

4

1

23

4 1

23

4

1

23

4 1

23

4

1

23

4 1

23

4

Pointer that points the highest priority

input virtual
channel number

output virtual
channel number

priority of input virtual
channel number

priority of output virtual
channel number

1

23

4

1

23

4

1

23

4

1

23

4

Accept arbiters

1

23

4

1

23

4

1

23

4

1

23

4

Grant arbiters

1

2

3

4

1

2

3

4

Phase2: grant

1

23

4 4

2

3

1

23

4 4

12

3

1

23

4 1

23

4

1

23

4 2

34

1

1

1

23

4

1

23

4

1

23

4

1

23

4

Accept arbiters

1

23

4

1

23

4

1

23

4

1

23

4

Grant arbiters

1

2

3

4

1

2

3

4

Phase2: grant

1

23

4 4

2

3

1

23

4 4

12

3

1

23

4 1

23

4

1

23

4 2

34

1

1input virtual
channel number

output virtual
channel number

priority of input virtual
channel number

priority of output virtual
channel number

1

23

4

1

23

4

1

23

4

1

23

4

Accept arbiters

1

23

4

1

23

4

1

23

4

1

23

4

Grant arbiters

1

2

3

4

1

2

3

4

Phase3: accept

4

12

3

1

23

4 4

12

3

1

23

4 1

23

4

1

23

4 2

34

1

4

12

3

input virtual
channel number

output virtual
channel number

priority of input virtual
channel number

priority of output virtual
channel number

Figure 3: Concept of virtual channel
allocation

The arbitration algorithm used in both

of the grant arbiter and the accept arbiter in
Figure 3 is determined by a round-robin rule

 4

(which is a kind of fair scheme) for fairness.
In order to avoid the starvation situation, we
can adopt all kinds of fair arbitration
algorithm in grant arbiters to find a maximal
matching. In the example of Figure 3 we
assume that priority of output virtual
channels in each accept arbiter is 1>2>3>4,
and the initial priority of input virtual
channels in each grant arbiter is 1>2>3>4. 3
head flits in input virtual channel 1, 3 and 4
have gotten possible output virtual channels
from the corresponding routing modules.

In the request phase, input virtual
channel 1 requests for output virtual channel
1 and 2, input virtual channel 3 requests for
output virtual channel 2 and 4, and input
virtual channel 4 requests for output virtual
channel 4 according to the output of the
corresponding routing modules respectively.
In the grant phase, output virtual channel 1
grants the request of input virtual channel 1.
In Figure 3, there are 2 input virtual channels
requesting for output virtual channel 2 and 4
respectively, and the grant arbiters of these
2 output virtual channel only grant 1 request
by the priority. Because the priority of input
virtual channel 1 is grater than 3 in the grant
arbiter of output virtual channel 2, and the
priority of input virtual channel 3 is grater
than 4 in the grant arbiter of output virtual
channel 4, that’s why the result of the grant
phase. Please note that the change of priority
in grant arbiters is round-robin for fairness.
In the accept phase, input virtual channel 3
accepts the grant of output virtual channel 4.

Because there are 2 output virtual
channels granting the same input virtual
channel 1, the accept arbiter of input virtual
channel 1 only accepts 1 request by the
priority. Because the priority of output
virtual channel 1 is grater than 2 in the
accept arbiter of input virtual channel 1,
that’s why the result of the accept phase.
With the 3 phase, we accomplish the virtual
channel allocation of the first iteration.
Those input virtual channels which fail to
allocate any output virtual channels will re-
allocate in the next iteration until they
succeed.

3.3 Proposed Switch Allocation
Mechanism

When there are several allocated input-
output virtual channel pairs belonging to the
same input physical channel or the same
output physical channel, which are also the
same input port or the same output port of a
crossbar switch for flit transmission, we need
a mechanism to solve the contention and the
result of the allocation keeps during the
transmission of each flit.

For easier explaining our mechanism
and definition of the priority on arbiters for
switch allocation, we consider the following
example shown in Figure 4: 10 of 20 virtual
channels (5 physical channels, Ei/Eo, Wi/Wo,
Si/So, Ni/No, and fromIP/toIP, 4 virtual
channels of each) requesting the usage of the
crossbar switch.

1
2

3
4
5
6

7
8
9

10

11
12
13
14

15
16
17
18

19
20

1
2

3
4
5
6

7
8
9
10

11
12
13
14

15
16
17
18

19
20

input vc output vc

Ei

Wi

Si

Ni

fromIP

Eo

Wo

So

No

toIP

Figure 4: Example of switch allocation

(5 physical channels, 4 virtual channels of
each and 10 allocated input-output virtual

channel pairs)

The switch allocation also can be

regarded as a matching problem divided into
3 phases shown in Figure 5: request, grant
and accept.

There is n pairs of accept arbiter and
grant arbiter in a switch allocater, where n is
the number of input/output port of a router.
Each accept and grant arbiter maintains the
priority of each input virtual channel and

 5

output virtual channel on the same physical
channel respectively.

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

input vc output vc

1

23

4

3

4input virtual
channel number

priority of input virtual channel number

1

2

5

67

8

3

4 1

2

9

1011

12

3

4 1

2

13

1415

16

3

4 1

2

17

1819

20

3

4 1

2

1

23

4

3

4 1

2

5

67

8

3

4 1

2

9

1011

12

3

4 1

2

13

1415

16

3

4 1

2

17

1819

20

3

4 1

2

output virtual
channel number

priority of output virtual channel number

Pointer that points
the highest priority

Accept arbiters

Pointer that points
the highest priority

Phase1: request

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

input vc output vc

1

23

4

3

4input virtual
channel number

priority of input virtual channel number

1

2

5

67

8

3

4 1

2

9

1011

12

3

4 1

2

13

1415

16

3

4 1

2

17

1819

20

3

4 1

2

1

23

4

3

4 1

2

5

67

8

3

4 1

2

9

1011

12

3

4 1

2

13

1415

16

3

4 1

2

17

1819

20

3

4 1

2

output virtual
channel number

priority of output virtual channel number

Pointer that points
the highest priority

Accept arbiters

Pointer that points
the highest priority

Phase1: request

Grant arbiters

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Input vc output vc

1

23

4

3

4 1

2

5

67

8

3

4 1

2

9

1011

12

3

4 1

2

13

1415

16

3

4 1

2

17

1819

20

3

4 1

2

1

23

4

3

4 1

2

5

67

8

2

3 4

1

9

1011

12

2

3 4

1

13

1415

16

1

2 3

4

17

1819

20

1

2 3

4
Accept arbiters Phase2: grant Grant arbiters

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Input vc output vc

1

23

4

3

4 1

2

5

67

8

3

4 1

2

9

1011

12

3

4 1

2

13

1415

16

3

4 1

2

17

1819

20

3

4 1

2

1

23

4

3

4 1

2

5

67

8

2

3 4

1

9

1011

12

2

3 4

1

13

1415

16

1

2 3

4

17

1819

20

1

2 3

4
Accept arbiters Phase2: grant

Grant arbiters

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Input vc output vc

1

23

4

2

3 4

1

5

67

8

1

2 3

4

9

1011

12

2

3 4

1

13

1415

16

3

4 1

2

17

1819

20

3

4 1

2

1

23

4

3

4 1

2

5

67

8

2

3 4

1

9

1011

12

2

3 4

1

13

1415

16

1

2 3

4

17

1819

20

1

2 3

4
Accept arbiters Phase3: accept Grant arbiters

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Input vc output vc

1

23

4

2

3 4

1

5

67

8

1

2 3

4

9

1011

12

2

3 4

1

13

1415

16

3

4 1

2

17

1819

20

3

4 1

2

1

23

4

3

4 1

2

5

67

8

2

3 4

1

9

1011

12

2

3 4

1

13

1415

16

1

2 3

4

17

1819

20

1

2 3

4
Accept arbiters Phase3: accept
Figure 5: Concept of switch allocation of the

example of Figure 4

In order to avoid the starvation situation,
we can adopt all kinds of fair arbitration
algorithm in these grant and accept arbiters
to find a maximal matching. The priority of
these arbiters is determined by a round-robin
rule. In the example of the Figure 5 we
assume that the initial priority of input
virtual channel in each accept arbiter is
1>2>3>4, 5>6>7>8…, and 17>18>19>20
respectively, and so are the initial priority of
output virtual channels in each grant arbiter.
In the request phase, input virtual channel 1,
2, 3 and 4 of input physical channel Ei
request for output virtual 5, 9, 11 and 16 of
output physical channel Wo, So and No
respectively, and so do the input virtual
channel 6, 7, 9, 13, 15, and 17 of input
physical channel Wi, Si, Ni and fromIP
respectively. In the grant phase, because
there are 3 input virtual channels requesting
for output virtual channel 5, 6 and 8 which
are in the same output physical channel Wo,
by the priority of the grant arbiter of output
physical channel Wo, output virtual channel
5 grants the request from input virtual
channel 1, and so do the output virtual
channel 5, 9, 14 and 18 of output physical
channel Wo, So, No and toIP respectively. In
the accept phase, input virtual channel 1 of
input physical channel Ei accepts the grant of
output virtual channel 5. On the other hand,
there are 2 output virtual channels granting
input virtual channel 6 and 7 which are in the
same input physical channel Wi, but input
physical channel Wi only accepts 1 grant by
the priority of the accept arbiter. Because the
priority of input virtual channel 6 is grater
than 7 in the accept arbiter of input physical
channel Wi, that’s why the result of the
accept phase.

4. Hardware Router Design

From the requirements of the switching
technique, we proposed an input-buffered
router and it provides the modularized
routing module and arbitration units.
Besides, the number of input/output ports
(physical channels), the number of virtual
channels per physical channel and the buffer

 6

size of each virtual channel can be
parameterized in the design time. For the
complex modules for virtual channel and
switch allocation, we depict the dataflow of
these modules to explain our design. The
scheduling consideration is also mentioned.

4.1 Router Architecture

The general router architecture of p
input/output ports, v virtual channels per port
(physical channel) is shown in Figure 6. In
the application of 2D mesh topology, p = 5.

…input port 0

routing

statestate buffer

virtual channel
allocater

sovc0

xbr_ctrl

ivcid0

…

To virtual channel allocater

From other routing engine

sovc1

flit_in0

state

state

ovcid0

flit_out0

flit_out(p-1)

ovcid_gen_opc0

tx_fsm_opc_0rx_fsm_ipc_0 routing

……
…

… sovcv-1routing

…

……

… state buffer
state buffer

rx0
rx_ack0

statestate bufferflit_in1

rx_fsm_ipc_1 …

…

……

… state buffer
state buffer

rx1
rx_ack1

sovcv
sovcv+1

sovc(2v-1)

routing
routing

routing

statestate bufferflit_in(p-1)

rx_fsm_ipc_(p-1) …

…

……

… state buffer
state buffer

rx(p-1)
rx_ack(p-1)

sovc(p-1)*v
sovc(p-1)*v+1

sovc(p-1)*v+(v-1)

routing
routing

routing

…

To virtual channel allocater

state

…

ivcid1

ivcid(p-1)

tx0

tx_ack0

state

state

ovcid1

flit_out1

ovcid_gen_opc1

tx_fsm_opc_1

state

…

tx1

tx_ack1

state

state

ovcid(p-1)ovcid_gen_opc(p-1)

tx_fsm_opc_(p-1)

state

…

tx(p-1)

tx_ack(p-1)

…

ivc_full0 ~ivc_full(v-1)

ivc_fullv ~ivc_full(2v-1)

ivc_full(p*v) ~ivc_full(p*v-1)

ovc_full0 ~ovc_full(v-1)

ovc_fullv ~ovc_full(2v-1)

ovc_full(p*v) ~ovc_full(p*v-1)

input port 1

input port (p-1)

output port 0

output port 1

output port (p-1)

p x p
Xbar

Xbar control

ovc0 ovc1 ovcp*v-1…

opc0 opc1 opcp*v-1…

switch
allocater

ovc_one_sapce0 ~ovc_one_space(v-1)

ovc_one_sapcev ~ovc_one_space(2v-1)

ovc_one_sapce(p*v) ~ovc_one_space(p*v-1)

ivc_one_sapce0 ~ivc_one_space(v-1)

ivc_one_sapcev ~ivc_one_space(2v-1)

ivc_one_sapce(p*v) ~ivc_one_space(p*v-1)

Figure 6: Router architecture

In each input port and output port there

are modules dealing with the receiving and
transmitting handshaking with other routers
in the network. Each input/output virtual
channel keeps its state. The state machine of
each output virtual channel dominates the
success of the virtual channel allocation and
the switch allocation of each output virtual
channel by maintaining the buffer usage of
other routers via the ovc_full signal. The
state machine of the input virtual channel
dominates the operation of router and is
mentioned latter. The input buffer of the
router is separated into v individual lanes and
supports an ivc_full signal to indicate other
routers that the input buffer is full or not.
Which lane the flits coming from other
routers should be stored is decided by the
ivcid (Input Virtual Channel IDentify) signal.
There is a routing module belonging to each
input virtual channel, which implements the
routing algorithm of the router. The output of

the routing module, sovc (Set of Output
Virtual Channels) signal, sends to the virtual
channel allocater for the virtual channel
allocation to allocate 1 ovc (Output Virtual
Channel) among 1 sovc. The switch allocater
handles the switch allocation by the outcome
of virtual channel allocation to decide which
input virtual channel can send a flit through
the crossbar switch to the next router. The
number of input/output port of the crossbar
switch equals the number of the physical
channel, so that the complexity of crossbar
will not increase with the increasing of
virtual channels. In each output port, there is
a module generating the ovcid (Output
Virtual Channel IDentify) signal to indicate
which lane the flit sent to other routers
would enter by the switch allocation in this
round.

4.2 Operation of Proposed Pipelined
Router

Based on the theories of the wormhole
and the virtual channel [4], we build a finite
state machine for each input virtual channel
shown in Figure 7 to control its proper
operation of transmitting a flit.

IDLE RT VCA SA ST/IDLE

ST/SA

ST/RT

no flit

head flit

non-head flit

VCA fail SA fail

VCA success

next head flit

next no flit

next non-
head flit

next head flit

next no flit

next non-
head flit

next non-
head flit

next head flit

next no flit
SA fail

Figure 7: Finite state machine for each input

virtual channel

There are 7 main states: IDLE, RT
(routing), VCA (virtual channel allocation),
SA (switch allocation), ST/IDLE (switch
traverse), ST/RT (switch traverse and
routing operating simultaneously), and
ST/SA (switch traverse and switch
allocation operating simultaneously). The
initial state is IDLE. The ST/RT and ST/SA
process 2 different flits in the same time and
implement the pipeline operation.

 7

When there is no flit in the input virtual
channel, the input virtual channel keeps
IDLE until there is a flit coming in. If a head
flit comes, it will enter the RT state and
activate the routing module to proceed
routing. Otherwise, if a non-head flit comes,
it will enter the SA state and activate the
switch allocater to execute the switch
allocation. After routing, the input virtual
channel enters the VCA state and activates
the virtual channel allocater to execute the
virtual channel allocation. If the input virtual
channel fails to get available ovc in the
virtual channel allocation, it will keep in the
VCA state. The input virtual channel getting
available ovc enters the SA state to activate
the switch allocater to allocate the usage of
the crossbar switch. If the input virtual
channel fails to allocate the usage of the
crossbar switch in the switch allocation, it
will keep in the SA state.

For the input virtual channel getting the
usage of the crossbar switch to transmit a flit,
there are 3 different state transitions
depending on the next flit this input virtual
channel want to process. If there is no next
flit, the input virtual channel will enter the
ST/IDLE state to set the control signal of the
crossbar switch and the corresponding output
virtual channel will activate the handshaking
to accomplish the transmission of the flit. If
the next flit is a head flit, the input virtual
channel will enter the ST/RT state. In
addition to the operation above, the input
virtual channel also activate the routing
module simultaneously. If the next flit is not
a head flit, the input virtual channel will
enter the ST/SA state. In addition to the
operation of ST/IDLE, the input virtual
channel also activate the switch allocation of
the next flit simultaneously.

For the ST/IDLE state, there are also 3
different state transitions depending on the
next flit. If there is no next flit, the input
virtual channel will enter the IDLE state. If
the next flit is a head flit, the input virtual
channel will enter the RT state; otherwise it
will enter the SA state. For the ST/RT state,
after the routing module accomplishing
routing the next flit and the present flit is

transmitted, the input virtual channel will
enter the VCA state to process the virtual
channel allocation of the next flit.

For the ST/SA state, there are also 4
different state transitions depending on the
next flit, and we have to consider 2 situations:
the switch allocation of the ST/SA state is
successful or not. If the switch allocation
fails, the input virtual channel will enter the
SA state. If the switch allocation succeeds,
we have to consider another 3 situations. If
the there is no next flit, the input virtual
channel will enter the ST/IDLE state. If the
next flit is a head flit, the input virtual
channel will enter the ST/RT state; otherwise
it will enter the ST/SA state again.

4.3 Dataflow of Proposed Virtual
Channel Allocation Mechanism

acp_arb0

acp_arb1

acp_arbp*v-1

...

...

ovcP*v-1

ovc0

ovc1

vc_gnt0(p*v-1)

vc_gnt00
vc_gnt01

gnt_arbp*v-1

gnt_arb0

gnt_arb1

vc_req00
vc_req01

sovcp*v-1

vca_reqp*v-1

sovc0
vca_req0

vca_req1

... ...

vc_req0(p*v-1)

sovc1

......

......

......

vca_rece0

vca_rece1

vca_recep*v-1

vc_acp00
vc_acp01...

...

...

vc_acp00 ~ vc_acp0(p*v-1)

vc_acp10 ~ vc_acp0(p*v-1)

vc_acp90 ~ vc_acp0(p*v-1)

vc_req(p*v-1)0

vc_req(p*v-1)(p*v-1)

vc_acp0(p*v-1)

vc_gnt(p*v-1)(p*v-1)

(To switch allocater)

(To switch allocater)

(To switch allocater)

vc_acp(p*v-1)(p*v-1)

vc_req10

vc_req1(p*v-1)

vc_gnt10

vc_gnt1(p*v-1)

vc_acp(p*v-1)0

vc_acp10

Vca(p*v-1)

Vca1

Vca0

vc_gnt(p*v-1)0

(From routing module)

(From routing module)

(From routing module)

Figure 8: Dataflow of the virtual channel

allocater for a router with p*n virtual
channels

The dataflow of a virtual channel

allocater for p*n virtual channels is shown in
Figure 8. From left to right, it contains p*n
modules generating the request signal for
output virtual channels, p*n grant arbiters for
the 1st arbitration of conflicted request
signals for the same output virtual channel,
p*n accept arbiters for the 2nd arbitration of
the conflicted grant signals form output
virtual channels for the same input virtual
channel, p*n modules generating the ovc
signal, which means the allocated output
virtual channel of each input virtual channel,
to the switch allocater and p*n modules for
each output virtual channel to receive the
final matched input virtual channel of the
allocation.

 8

Each grant arbiter maintains the priority
of all input virtual channels that want to
request this output virtual channel. Each
accept arbiter maintains the priority of all
output virtual channels that this input virtual
channel can request. In order to avoid the
starvation situation, we can adopt all kinds
of fair arbitration algorithm in grant arbiters
and accept arbiters to find a maximal
matching in the virtual channel allocation.

4.4 Dataflow of Proposed Switch
Allocation Mechanism

acp_arb1

...

acp_arbp-1

gnt_arb1

...

gnt_arbp-1

ovc2v sa_reqv

ovc2v-1 sa_req2v-1...

req0(p*v)

ovcp*v
sa_reqp*v

ovc(p*v-1)
sa_reqp*v-1

sa_rece1

...

acp_arb0

gnt00

gnt0(v-1)
gnt_arb0

req00
req0(v-1)

ovcv-1 sa_reqv-1

sa_req0
ovc0

sa_rece0

sa_recep-1

opc0
opcv-1

Sa0

opcv

opc2v-1

Sa1

Sap-1

acp00 ~ acp0(p*v-1)

acp(v-1)0 ~ acp(v-1)(p*v-1)

req0(p*v-1)

req0(v)

req0(2v-1)

...

...

...

...

...

...

...

...

...

gnt0(v)

gnt0(2v-1)

gnt0(p*v)

gnt0(p*v-1)

acp00
acp0(v-1)

acp0(v)acp0(2v-1)

acp0(p*v)

acp0(p*v-1)

...

...

opcp*v

opcp*v-1

...

...

acpv0 ~ acpv(p*v-1)

acp(2v-1)0 ~ acp(2v-1)(p*v-1)

acp(p*v)0 ~ acp(p*v)(p*v-1)
acp(p*v-1)0 ~ acp(p*v-1)(p*v-1)

...

...

...

... ...

...

...
...

(To Xbar_ctrl)

(From virtual
channel allocater)

(To Xbar_ctrl)

(From virtual
channel allocater)

(From virtual
channel allocater)

(From virtual
channel allocater)

(From virtual
channel allocater)

(From virtual
channel allocater)

Figure 9: Dataflow of the switch allocater for
p port router, each port with n virtual
channels

The dataflow of a switch allocater for p
port router, each port n virtual channels is
shown in Figure 9. From left to right, it
contains p*n modules generating the request
signal for output virtual channels, p grant
arbiters for the 1st arbitration of conflicted
request signals for the same output port, p
accept arbiters for the 2nd arbitration of the
conflicted grant signals form output virtual
channels for the same input port, p modules
generating the opc signal, which means the
input/output virtual channel pair that can
transmit a flit, and p modules for each
output virtual channel to receive the final
matched input virtual channel of the
allocation.

Each accept and grant arbiter maintains
the priority of each input virtual channel and
output virtual channel on the same physical
channel respectively. In order to avoid the

starvation situation, we can adopt all kinds
of fair arbitration algorithm in these grant
arbiters and accept arbiters to find a maximal
matching in the switch allocation.

4.5 Scheduling of Proposed Router

The operation of the proposed router is

scheduled as Figure 10.

IDLE

RT

VCA

SA

ST

S1

S2

S3

S4

S0

IDLE

VCA_req

VCA_gnt

VCA_acp

VCA_acap

SA_req

SA_gnt

SA_acp

SA_acapxbar_ctrl

tx0

tx1

tx1

tx0

Read mem

RT

delete FIFO

S1

S2

S3

S4

S0

rx0

rx0

rx1

rx1

write FIFO

IDLE

IDLE

IDLE

IDLE

RT

VCA

SA

ST

IDLE

RT

VCA

SA

ST

Process the
next flit

Read mem to xabrProcess the
next flit

Figure 10: Scheduling of the proposed

pipelined router

In the left of Figure 10 is the scheduling

of the finite state machine depicted in Figure
7 and we schedule the router as 1 time unit to
accomplish IDLE, RT, VCA, SA, and ST
respectively. The dotted lines between states
mean the router will process the next flit at
the same time which accomplishes the
pipelining.

From the dataflow analysis of virtual
channel allocation and switch allocation, we
discover that they are accomplished in 4
dependent operations:

1. generating request
2. 1st arbitration and generating grant
3. 2nd arbitration and generating accept
4. receiving accept

Thus we can let VCA and SA finished
in 4 smaller time units depicted in the right
of Figure 10. On the other hand, the ST
(switch traverse) is implemented by 4-phase
handshaking with other adjacent routers to
accomplish the flit transmission, so it can
also be finished in 4 smaller time units.
Because our router is pipelined, the other
operations such as IDLE, RT must be
accomplished in 4 time units. If users adopt

 9

other complex routing algorithms in RT,
they will have more 2 time units as the slack
without decreasing the overall performance
of the router. We make 1 time unit at the
right of Figure 10 as 1 clock cycle, thus the

pipeline latency of transmitting a flit is 4
cycles. The detailed finite state machine for
each input virtual channel is shown in Figure
11 and it is also the lower hierarchy of the
finite state machine depicted in Figure 7.

SA0 ST0/IDLE0SA1 SA2 SA3IDLE0 IDLE1 IDLE2 IDLE3 RT0 RT1 RT2 RT3 VCA0 VCA1 VCA2 VCA3 ST1/IDLE1 ST2/IDLE2 ST3/IDLE3

ST0/SA0 ST1/SA1 ST2/SA2 ST3/SA3

ST3/SA0

ST0/RT0 ST1/RT1 ST2/RT2 ST3/RT3

VCA fail

VCA success SA success

SA fail no next flit

next flit is a head flit

next flit is not a head flit

next flit is a head flit

next flit is not a head flit

no next flit

SA fail

next flit is not a head flit

SA success

next flit is a head flit

next flit is not a head flit

next flit is a head flit

no next flit

IDLE RT VCA SA

ST/RT

ST/IDLE

ST/SA

Figure 11: Detailed scheduling of the proposed pipelined router (lower hierarchy of Figure 7)

5. Verification and Performance

We completed the router design form

the high level 3000-line C behavioral model,
through the 6000-line synthesizable Verilog
RTL code, to the low level physical layout.
We employ the XY routing algorithm in the
routing module for the 2D mesh routing, and
the fair round-robin arbitration in both of the
virtual channel allocation and switch
allocation as the benchmark to verify the
correctness of the router. The output of the
router under test is connected to the “pseudo
input of the next router” to verify the
correctness of flit transmitting with pattern
of 9 flits in each input port. The parameter of
the benchmark router is 5 ports, each port
with 4 virtual channels, and the size of input
buffer of each lane contains four 32-bit flits.
Each packet contains 4 flits in our test
pattern.

To balance the time consuming among
the virtual channel allocation, the switch
allocation and the 4-phase handshaking in
the switch traverse, each operation of the
router takes 4 cycles. For a packet which
doesn’t face blocking, a head flit takes 16
clocks to transmit, and other flits of the same
packet take 8 clocks to transmit. With the

pipeline design, the router takes 4 clocks to
send a non head flit. After verifying the pre-
synthesis code, we synthesized our router
based on UMC Artisan 0.18μm cell-library
by the Synopsys Design Analyzer. After
verifying the correctness of the post-
synthesis code, we also accomplished the
physical layout of the router by Cadence
SoC Encounter shown in Figure 12.

Figure 12: Physical layout of the NoC router

In the corner of typical operation, with

rise/fall time and skew value of the clock
signal of 0.1 nano second, the overall router
chip spec. and the maximal delay of each
stage are shown in the Table I and Table II
respectively. The bandwidth of each port of
the benchmark router is calculated below:

 10

Bandwidth of each port
= [(200MHz / 4)*32 bit]
= 1600Mbps
= 1.6Gbps

The bandwidth is sufficient for the

HDTV application mapped to an on-chip
network mentioned in [3].

Table I: Pipelined NoC Router Spec.
Clock Frequency 200MHz

Data rate
 (32-bit channel)

1.6Gbps

Area (core) 1073945.125000 µm2
Operating Voltage 1.8V

Power consumption 932.5797 mW
(@200MHz)

Pipeline latency 4 cycles
Port Number 5

Virtual Channel
Number / Port

4

Buffer Size / Input
Virtual Channel

4 flits

Table II: Max. Delay

Operation Time (ns)
RT 2.07

VCA 3.13
SA 3.19

ST/RT, ST/SA 3.19
ST/IDLE 1.93

In the NoC router project, we also

develop an ASIP for the NoC router [6]. The
performance running the same pattern
between the hard-ware pipelined router and
soft-ware ASIP router is shown in Table III.
The result shows the speed advantage of the
hardware implementation.

Table III: Speed advantage of the benchmark

NoC Router implemented in ASIC over
which implemented in ASIP

 Time
(cycles)

Speedup
ratio

H.W. pipelined
router

60 9057

S.W. ASIP router 543445 1

6. Conclusion and Future Work

In this paper, we presented the chip
design of a pipelined NoC router. The router

architecture, the transmission mechanism of
a packet, the virtual channel allocation and
switch allocation are introduced explicitly.
The user can adopt the parameters, routing
algorithm for routing module and fair
arbitration algorithm for virtual channel and
switch allocation in our IP of router to suit
the application they need. With these
components, our router let the aNoC provide
highly scalability and adaptivity. We are
going to develop the high speed arbiter to
overcome the bottleneck of the virtual
channel and switch allocation and increase
the overall operation speed of the router. The
power analysis and low-power design is
another research topic of the NoC router.

Acknowledgements

The research is partial supported by
National Science Council under contract no.
NSC-93-2213-E-006-110.

7. References

[1]Hangsheng Wang et al. ”Power-driven

Design of Router Microarchitectures in
On-chip Networks”, IEEE/ACM on
Microarchitecture, 2003.

[2]Jer-Min Jou et al. “Adaptive Network-on-
a-Chip Architecture System Design”, the
46th IEEE International Midwest
Symposium on Circuits and Systems,
2003.

[3]Kangmin Lee, Se-Joong Lee, and Hoi-Jun
Yoo, “A Distributed Crossbar Switch
Scheduler for On-Chip Networks”, CICC
2003.

[4]Li-Shiuan Peh et al. ”A delay model and
speculative architecture for pipelined
routers”, International Symposium on
High-Performance Computer Architecture,
January, 2001.

[5]William J. Dally, ”Virtual Channel Flow
Control”, IEEE Transactions on Parallel
and Distributed Systems, vol. 3, no. 2,
pp.194-205, March, 1992.

[6]Zi-lun Wang, et al. “Design of a Low
Power ASIP for NoC Routers”, submitted
to the WCEsp, 2005.

