
 1

瞬間指令完成計數: 一個同步多線程的提取引擎

ICC: A Simultaneous Multithreading Fetch Engine

陳昀徽 謝忠健
大同大學資訊工程所 大同大學資訊工程所
g9206011@ms2.ttu.edu.tw shieh@ttu.edu.tw

摘要

同步多線程(SMT)是一種允許在每一個週

期能夠同時發派來自不同獨立的應用程式或是

線程的指令的一種技術。提取單元一直被認為是

同步多線程的主要瓶頸所在，過去許多研究曾提

出過一些提取策略來增進提取效率以及整體的

效能。

在此篇論文，我們提出一個全新的提取策

略，稱之為瞬間指令完成計數(ICC)，它會計算

每個線程在每一個時脈確認完成的指令數目，然

後依照這些資訊來決定下一個週期要從哪些線

程來提取指令。此外，我們還將此提取策略和被

稱之為提取偏向(FB)和提取閘控優選(FGAP)的
分支機制做結合，來建構更有效率的提取單元。

經由模擬結果顯示，整體效能提升大約百分之十

三，並且還減少了發派佇列的使用大小，同時還

減少錯誤路徑指令的提取。另外，我們還展示負

載平衡的狀態，這是過去相關研究沒有詳細討論

過的議題。

關鍵字： 同步多線程、提取策略、提取單元。

Abstract

Simultaneous Multithreading (SMT) is a
technique that permits multiple instructions from
multiple independent applications or threads to
issue each cycle. While the fetch unit has been
identified as one of the major bottlenecks of SMT
architecture, several fetch schemes were proposed
by prior works to enhance the fetching efficiency
and overall performance.

In this paper, we propose a novel fetch
policy called Instantaneous Commit Count (ICC)
which counts each thread’s retired instructions
each cycle then properly selects which threads to
feed next cycle. We also combine this scheme with
branch mechanisms, named FB and FGAP, to
construct the effective fetch unit. Simulation
results show that the overall performance is
improved about 13% on speedup, the issue queue
size is reduced and the wrong-path instructions

fetch are also reduced. Furthermore, we show the
state of load balance that never discussed in prior
works in detail.

Key words：Simultaneous Multithreading (SMT),
Fetch Policy, Fetch Unit

1. INTRODUCTION

1.1 Simultaneous Multithreading
Architecture

Simultaneous Multithreading (SMT) [1,2,3]
is a technique that permits multiple instructions
from multiple independent applications or threads
to issue each cycle. All threads in an SMT
processor are active simultaneously, competing
each cycle for all available resources. This
dynamic sharing of the functional units allows
SMT to substantially increase throughput by hiding
most per-thread latency. SMT also achieves three
goals: (1) minimizes the architectural impact on
the conventional superscalar design, (2) has
minimal performance impact on a single thread
executing alone, and (3) achieves significant
throughput gains when running multiple threads.
SMT architecture is a straightforward extension to
the conventional superscalar design. Thus, nearly
all hardware resources remain completely available
even when there is only a single thread in the
system. The changes necessary to support SMT are
as follows [2]:

1. Multiple program counters and fetch
unit has ability to fetch instructions
from different threads each cycle.

2. Private return address stacks for each
thread to provide subroutine
return destinations.

3. Per-thread instruction retirement,
instruction queue flush, and trap
mechanisms.

4. The branch target buffer entry adds a
thread-id field to avoid predicting
phantom branches.

5. A large register file supports logical

 2

registers of all threads plus additional
registers for register renaming.

Figure 1.1 [3] illustrates the difference
between superscalar, fine-grained multithreading,
and SMT by showing sample execution sequences
of the three architectures. Each row represents the
slots issued per cycle. Assuming four instructions
in maximum can be issued each cycle. An empty
box indicates that there is no instruction chosen to
fill this issue slot; respectively, a filled box
represents that slot has been fed by an instruction
from a thread. Two types of waste are identified in
the picture. Horizontal waste occurs when some of
the issue slots in a cycle can not be used. It
typically means poor instruction-level parallelism.
Vertical waste occurs if all slots were not used in a
cycle. It occurs when a long latency instruction
that prevents further instructions from issuing.

Figure 1.1: The comparison of issue slot between

three architectures.
Figure 1.1a shows the sequence of a

conventional superscalar. Superscalar processors
fetch multiple instructions and issue them from a
single program or thread. When it cannot find any
instructions to issue in a cycle, both horizontal and
vertical wastes will occur. Fine-grained
multithreaded processors maintain thread states
and quickly switch between them every cycle, that
is, they execute instructions from a thread at one
cycle and switch to another thread at the next cycle.
As the Figure 1.1b shows, it can hide the
long-latency operations and eliminating vertical
waste, but horizontal waste still exists. As
horizontal waste can not be removed,
multithreaded architectures will be limited by the
instruction-level parallelism in a single thread as
superscalar processors while instruction issue

width continues to increase.

SMT tries to conquer both horizontal and
vertical wastes by allowing instructions from
multiple threads to execute in a single cycle as
shown in Figure 1.1c. Because it selects
instructions from several threads, instruction-level
parallelisms from all threads are exploited,
eliminating horizontal waste. And if one thread is
blocked due to long-latency instructions or
resources conflicts, unblocked threads can use
these slots, thus vertical waste is also eliminated.
1.2 Bottlenecks of SMT

Although the SMT architecture dynamically
sharing the processor resources to exploit both the
thread-level parallelism came from multiple
threads and instruction-level parallelism from
single thread and better utilizing the resources,
there are several bottlenecks identified [2].

SMT improves performance in the benefits
of dynamic sharing of resources, but it does appear
to have some potential drawbacks due to
inter-thread contention. Instructions competed for
resources now coming from multiple threads
instead of single thread puts greater stress to the
shared structures such as caches, translation
look-aside buffers and branch target buffers than
traditional processors do. For example, sharing the
cache with multiple threads, that is, partitioning the
cache into pieces for threads will eventually
reducing the cache space used by each thread,
hence decrease the degree of locality and cause
cache misses to arise. Instruction fetching unit is
one of the major performance bottlenecks which
also widely studied [2,7,8,9,10,11,12]. On one
hand, the SMT fetch unit benefits from inter-thread
competition for instruction bandwidth by
partitioning the bandwidth among threads and
finding more useful instructions to fill the issue
slot, which is often difficult to fill if there is only
one thread to be accessed at a time. On the other
hand, dynamic scheduler of SMT processors which
issuing more instructions (from multiple threads)
than traditional processors (from a single thread)
does put more stress on fetch unit. It must now
fetch more instructions to keep pace with the speed
that consumed by later pipe-stages. In order to
improve fetch efficiency, the fetch unit must smart
enough to determine which thread to fetch from
since there may be several threads running at a
given time. Several fetch schemes have been
proposed to improve the SMT performance
[2,7,8,9,10,11,12].

Another problem is the impact of the
long-latency instructions. This happens when the
memory-bond threads or threads with high
concentration of long-latency instructions fills the
instruction scheduling window with instructions
that cannot be issued quickly hence prevent other

 3

threads to be fetched and even worse, stall the
processor. This problem can be solved by either
increasing the size of instruction queue or good
fetch scheme design.

In this paper, we propose a novel fetch
scheme to overcome the foregoing bottleneck. We
attempt to let properly threads whose flowing
speed is better to get more resources so these
threads won’t suffer from the other slow-flowed
threads. We will describe our policy with detail in
the section 3.
1.3 The Paper Organization

This paper is organized as follows. In section
2, we review related works. We describe baseline
fetch policy and present our fetch policy on SMT
in section 3. Then, section 4 and 5 shows the
methodology and analyzes the simulation results.
Finally, section 6 concludes the paper.

2. RELATED WORKS

Tullsen et al. [1,3] proposed the SMT
architecture and firstly implemented it on MIPS
R10000 and DEC Alpha platform. The SMT
architecture doesn’t heavily impact on the
conventional superscalar design. They also studied
fetch policies for SMT processors and investigated
several fetch policies in [2], such as ICOUNT,
BRCOUNT, IQPOSN and MISSCOUNT which
attempt to improve on the simple round-robin
priority policy by using feedback from the
processor pipeline. With their experiments, the
ICOUNT has the best performance. In particular,
the ICOUNT fetch policy has been chosen by
many researches as their base fetch policy. They
describe another problem that is when a single
thread with poor cache performance can strangle
overall SMT performance, by monopolizing
resources that could be exploited by other threads.
The solution proposed in [5] is to free resources
occupied by a stalled thread by flushing its
instructions from the pipeline.

The Intel Pentium 4 processor [6] is the first
commercially available general-purpose processor
to implement a simultaneously multithreading core.
The Pentium 4 supports a dual-threaded
implementation of SMT called Hyper-Threading
Technology. Hyper-Threading Technology makes a
single physical processor appear as dual logical
processors. The primary difference between the
Hyper-Threading implementation and the
architecture proposed in the SMT research is the
mode of sharing of hardware structures. While the
SMT research indicates that virtually all structures
are more efficient when shared dynamically rather
than partitioned statically, some structures in the
Hyper-Threading implementation such as the ROB
entries and load/store buffers are statically divided

in half when both threads are active.

C. Shin and S. Lee [7] has investigated how
much more improvement can be made by allowing
an adaptive dynamic thread scheduling approach
rather than the fixed scheduling approaches
employed in earlier work [2]. He proposed the
detector thread approach to implement adaptive
scheduling (when to choose from ICOUNT,
BRCOUNT and MISSCOUNT) with low hardware
and software overhead. The detector thread is a
special thread that occupies one designated thread
context with minimal extra hardware. It is
scheduled for execution when idle slots are
available.

A. El-Moursy and D. Albonesi [8] proposed
several fetch policies that reduce the requirement
of integer and floating point issue queue sizes in
SMT processors. Their schemes are based on
ICOUNT policy, and provide some gating
mechanisms on the basic policy according to the
number of the instructions that are not ready in the
issue queue, or the L1 cache miss rate of a given
thread. For the same level of performance, it
achieves 33% reduction in the occupancy of the
issue queue.

A. Falcon et al. [9] have shown that
implementing a fetch architecture fetching from
more than one thread is too expensive, both in
terms of cost and complexity. They have
demonstrated that a solution to increment the SMT
fetch performance is not to fetch few instructions
from several threads, but to fetch many instructions
from a single thread. They use a technique called
stream fetch which allows the fetch unit to fetch a
basic block between two predicted taken branches.
Implementing a fetch unit fetching only from one
thread solves the problem of the high complexity
of the SMT fetch unit.

E. Fernandez et al. [10] proposed a fetch
policy, which called DWarn. DWarn uses L1
misses as indicators of L2 misses, giving higher
priority to threads with no outstanding L1 misses.
DWarn acts on L1 misses, before L2 misses
happen in a controlled manner to reduce resources
underuse and to avoid harming a thread when L1
misses do not lead to L2 misses. Their results show
that DWarn outperforms previously proposed
policies [2], in both throughput and fairness, while
requiring fewer resources and avoiding instruction
re-execution.

L. He and Z. Liu [11] also proposed a fetch
scheme that constructs a formula to calculate the
needed number of instructions to every selected
thread. Although the results have showed that it
can improve speedup and reduce the size of issue
queue, the formula only focused on 2-threads.

Yang and Shieh [12] proposed a dynamical
fetch scheme which gives the highest fetch priority

 4

to the long latency bound threads while the RUU
and LSQ is under low usage. Their motivation is to
gain further performance by not only use the
resources effectively but also by the urgency of the
instructions.

In the following sections, we will describe
base fetch policy and propose a new effective fetch
policy. We will combine the fetch scheme with
newly proposed branch prediction mechanism [13].
Finally, implementation technique and simulation
results will be analyzed.

3. FETCH POLICY ON SMT

3.1 Base Fetch Scheme
In order to have high performance on SMT,

the fetch unit must get as many instructions as
possible each cycle. Fetching from a single thread
seems to be insufficient to feed an 8-way execution
core. Solutions that try to widen the fetch
throughput are targeted to fetch from multiple
threads in a single cycle. A priority policy is used
to decide which thread should be fetched first. In
this paper, the fetch unit can fetch four instructions
per thread from two threads each cycle. By the way,
the fetch unit should fetch from two available
threads which have higher priority.
 Tullsen et al. [2] have proposed and studied
several fetch policies for SMT. Their results show
that the best priority policy is ICOUNT, in which
priority is assigned to a thread according to the
number of instructions it has in the decode, rename,
and issue stages (issue queues) of the pipeline.
Threads with the fewest such instructions are given
the highest priority for fetch. The rationale is that
such threads may be marking more forward
process than others. It can prevent one thread from
clogging the issue queue, and provide a mix of
threads in the issue queue to increase parallelism.
In this paper, we take ICOUNT as our baseline
fetch policy.

3.2 Our Proposed Fetch Policy
We found that ICOUNT fetch policy overly

attempts to equally divide the occupancy of the
issue queue with each thread. For example,
ICOUNT policy continuously fetches the thread
which just squashed because of its mis-speculative
behavior. Furthermore, ICOUNT scheme causes
issue queue full by seriously competing when we
get more available threads. So, if we can properly
let threads whose flowing speed is better to get
more resources, these threads won’t suffer from the
other slow-flowed threads. Basing on this idea, the
fetch unit properly response to share all resources
on every situation, for example, outstanding cache
miss. In this paper, we propose a novel fetch policy
called Instantaneous Commit Count (ICC) which
counts each thread’s retired instructions each cycle

then selects which threads to feed next cycle.

Figure 3.1: The architecture of ICOUNT and ICC.

To implement the scheme, as in ICOUNT, it
needs a counter for each thread to record its retired
instructions number every cycle. Figure 3.1 shows
the architecture of ICOUNT and ICC fetch policy.
Here, we create three types of ICC fetch policy as
follow:

1. ICC-1: The fetch unit always prefers to
fetch the threads which outperform
over the others at single cycle. That
means we will select the threads whose
ICC is higher. This scheme leads the
threads which have better throughput
at single execution to early complete
their job, but it causes bad load balance.
We will discuss this problem in section
5.

2. ICC-2: In order to avoid favoring
excessively some threads, we should
adopt ICC-1 at appropriate time. While
issue queue is under low usage, we let
the threads which have lower ICC
value to take higher fetching priority.
Otherwise, we choose ICC-1 to be the
fetch policy. To do this, it will get
better load balance than ICC-1 policy.

3. ICC-3: Here, we keep all threads at
least N instructions in issue queue. If
all threads exceed N instructions in
issue queue, we will use ICC-1 fetch
policy. With our experiment, we take N
= 6 as it shows both the best average
performance and load balance. In this
scheme, when some thread has been
squashed, it will get at least two
chances to fetch during the next two

 5

cycles. Therefore, with this policy, it
can properly and effectively share the
rest of issue queue unlike ICOUNT
tend to equally divide whole issue
queue.

Our goal is to allocate more reasonably the
resources of SMT architecture than base fetch
scheme. If we can increase the usable issue queue
entry of specific threads at the right moment, the
throughput should enhance apparently.

3.3 Dynamically Speculative Controlled
Fetch Policy

We have proposed the branch prediction
mechanism with biased branch filter and
confidence estimator to reduce the competition for
branch predictor between thread and classify
conditional branches as biased or confident
branches in [13]. Therefore, the fetch unit that
plays an important role in the SMT architecture
decides which threads to fetch instructions from
each cycle according to the information from the
proposed branch prediction mechanism.

Besides, we also introduced extra counter,
called miss bit (4 bits), for reordering the fetch
priority that is based on ICOUNT fetch policy
originally. The miss bit counters are used to
estimate the confidence of threads and each thread
has its own miss bit counter. A thread with larger
miss bit value is considered to more likely fetch
instructions from wrong path. Here, we combine
this mechanism with our new strategy for fetch
instructions. We just choose ICC-3 fetch policy
because of its better load balance and performance
after combining.

ICC-3 + FB (Fetch Bias): The branch
prediction mechanism is gshare predictor with the
biased branch filter which uses a biased counter to
determine the bias of branch. While a fetched
branch is classified as a strongly biased branch, the
miss bit counter of corresponding thread decreases
by 1. While a weakly biased branch is fetched, the
miss bit counter increase by 8. If miss bit counter is
greater than the gating threshold of 15, the thread
is stalled to fetch. The fetch priority is constructed
by ICC-3 and reconstructed by sorting the miss bit
counter.

ICC-3 + FGAP (Fetch Gating and
Prioritizing): The branch prediction mechanism is
gshare predictor with the integration of biased
branch filter and confidence estimator. The fetch
policy combined with fetch gating and fetch
prioritizing is shown in Figure 3.2. How the miss
bit counter and ICC counter attain to fetch gating
and prioritizing is described as follows:

Figure 3.2: The schematic diagram of the

combined fetch policy.
1. The fetch unit fetches instructions from

instruction cache according to fetch
priority that decided in prior cycle.

2. While a branch instruction is fetched
(hit on BTB), program counter of the
branch is delivered to branch
predication mechanism to obtain the
prediction result and classification
information.

3. If the branch is classified as a strongly
biased or high-confident branch and hit
in BTB, the miss bit counter of the
corresponding thread is decreased by 1.
If the branch is classified as
low-confident branch, the miss bit of
the corresponding thread is increased
by 8. If the branch is classified as
non-confident branch or misses in BTB,
the miss bit of the corresponding
thread is set to 15.

4. The fetch unit sorts ICC counter and
looks up all miss bit counter to decide
the fetch priority to be used in next
cycle. If the miss bit counter of first
fetch priority thread is greater than
gating threshold (default 15), the fetch
priority is reset to give the highest
priority to the thread with lowest miss
bit value.

However, if there are not enough instructions in the
IQs, the fetch unit continues to fetch instructions
regardless of miss bit counter. The fetch priority is
constructed by ICC-3 and reconstructed by sorting
the miss bit counter.

4. METHODOLOGY

 6

Our simulator is derived from the
SimpleScalar Multithreading (SSMT) simulator
which originally developed by Madon et al. [4].
The simulator implements simultaneous
multithreaded processor pipeline based on the
out-of-order processor model from SimpleScalar
tool set [16]. It duplicated the SimpleScalar
architecture’s physical context according to the
number of execution contexts to execute
simultaneously.

Table 4.1: Simulator parameters.
Parameter Value

Base Fetch Policy ICOUNT
Fetch / Issue / Commit

Bandwidth
8

Fetch Queue Size 32
Register Update Unit Size 128
Load / Store Queue Size 64
Integer Functional Units 8

Floating Point Units 8
Branch Predictor gshare

L1 Cache Block Size 32 Byte
ICache 128KB, 2-way
DCache 128KB, 2-way

L2 Cache Block Size 64 Byte
L2 Cache 2MB, 4-way

Fast-Forward Instructions 250,000,000
Commit Instructions 50,000,000

Table 4.2: Instruction and memory access latency.

Latency Type Cycles
Integer 1
FP Add 2

FP Multi 4
FP Div 12

L1 Cache Hit 1
L2 Cache Hit 10

Memory 80~122

Table 4.3: Branch mechanism configuration.

Parameter Value
Base Branch Predictor gshare

Pattern History Table (PHT) 2K
Global History
Register (GHR) 11 bits

Branch Target Buffer (BTB) 256, 4way
Biased Table (BT) 256, 4way

Biased Counter 4bits
Taken/Not Taken Biased

Threshold 12 / 3

Confidence Counter 4 bits
Confidence Threshold 7

Non-Confidence Threshold 2
Miss Bit Counter 4 bits
Gating Threshold 15

Table 4.4: Integer and floating point based
benchmarks for simulation.

Benchmarks
Integer Based gzip, vpr, gcc, mcf, crafty, gap,

bzip2, twolf
Floating Point

Based
mesa, art, equake

Table 4.5: The selected benchmarks of each thread.
Workload 2-Thread Benchmarks

All Integer Based
1 gzip, bzip2
2 gap, twolf

All Floating Point Based
3 mesa, art
4 mesa, equake

Mix of Integer and Floating Point Based
5 vpr, equake
6 bzip2, mesa

Workload 4-Thread Benchmarks
All Integer Based

1 mcf, gzip, crafty, twolf
2 mcf, gap, bzip2, vpr
3 mcf, crafty, gcc, vpr

Mix of Integer and Floating Point Based
4 mcf, bzip2, mesa, art
5 gcc, gzip, mesa, equake
6 gcc, crafty, gzip, mesa

Workload 6-Thread Benchmarks
All Integer Based

1 mcf, gzip, crafty, twolf, vpr, bzip2
2 vpr, gcc, mcf, bzip2, twolf, crafty

Mix of Integer and Floating Point Based
3 gcc, twolf, gzip, mesa, art, equake
4 mcf, gzip, twolf, equake, mesa, art
5 mcf, gzip, crafty, twolf, gcc, art

Workload 8-Thread Benchmarks
Mix of Integer and Floating Point Based
1 mcf, gcc, gzip, crafty, twolf, bzip2,

vpr, art
2 mcf, gcc, gzip, gap, bzip2, vpr, art,

mesa
3 mcf, gcc, gzip, twolf, bzip2, mesa,

art, equake
4 mcf, vpr, gzip, twolf, bzip2, mesa,

art, equake

Table 4.1 describes our configuration of
parameters on SSMT. We adopt ICOUNT as our
base fetch policy to compare with our proposed
scheme. In this paper, the fetch unit can fetch four
instructions per thread from two threads each cycle.
Table 4.2 shows execution time of instructions and
memory access latencies.

The branch mechanism configuration is
shown in Table 4.3. The extra branch mis-penalty
is set to 3 cycles for recovering the processor state
and branches are resolved after execution stage.

 7

Thus the branch mis-speculation penalty is 8 cycle.

We picked up 11 applications (alpha ISA)
from the SPEC CPU2000 suite to construct our
workloads where 8 of them were integer based
from CINT2000 suite and others were floating
point based from CFP2000 suite. The benchmarks
selected are listed in Table 4.4. All the benchmarks
were running on a GNU/Linux x86 system using
reference data sets.

Table 4.5 shows selected workloads of
threads (2, 4, 6 and 8 threads). We combine
different benchmarks to form three types of
workloads. These three types are integer based,
floating point based and mix of both respectively.

5. SIMULATION RESULTS

In this section, we present the simulation
results of our experiment. We will show the
speedup of our fetch policy over ICOUNT scheme.
Then we discuss the influence of our policy and
ICOUNT scheme on the issue queue utilization,
wrong-path fetch rate and load balance.

5.1 Experiment Results
Figure 5.1 to 5.4 show the number of

instructions fetch per cycle normalized to base
fetch scheme. As we can see, our schemes achieve
same value (the difference within 2% on average)
in 2-thread workloads because the fetch unit can
only fetch from two threads each cycle. The reason
less fetch rate in workload 1 (gzip, bzip2) is the
fetch gating mechanism often stall threads. In
4-thread workloads, ICC-1, ICC-2, ICC-3,
ICC-3+FB and ICC-3+FGAP get 5.7%, 1.6%, 3%,
4.2% and 2.4% improvement on average
respectively.

Here, in workload 6 (gcc, crafty, gzip and
mesa) our fetch policy get fewer fetch numbers
because it may get worse mix of instructions and
result in more long data dependency chain. So, our
fetch policy which combines with FB and FGAP
will lead to fetch less instructions. In 6-thread
workloads, ICC-1, ICC-2, ICC-3, ICC-3+FB and
ICC-3+FGAP enhance 18.8%, 8.2%, 6.1%, 4.4%
and 1.6% on average respectively. Finally in
8-thread workloads, ICC-1, ICC-2 and ICC-3
achieve 25.1%, 13.7% and 7.3% improvement on
average respectively. Both FB and FGAP fetch
gating mechanism lead to reduce wrong-path
instructions fetching. Therefore, the speedup of
instructions fetch per cycle for these two schemes
is unapparent. Overall, fetch policy with fetch
gating mechanism, FB and FGAP, will cause fewer
fetch instructions because of wrong-path fetch
reducing. Our ICC scheme can get higher fetch
number with more threads (6 threads or 8 threads).

Figure 5.1: Normalized fetch rate of 2-threads

workload.

Figure 5.2: Normalized fetch rate of 4-threads

workload.

Figure 5.3: Normalized fetch rate of 6-threads

workload.

Figure 5.4: Normalized fetch rate of 8-threads

workload.

The IPCs of the combined workloads are
shown in Figure 5.5 to 5.8. Our commit counter
just record instantaneous IPC for each threads. As
illustrating, 2-thread workloads get almost same
performance on each scheme except fetch policy
with FB and FGAP which increase 8.2% and 8.9%
speedup on average. In 4-thread workload, ICC-1,
ICC-3, ICC-3+FB and ICC-3+FGAP achieve 3%,
2.6%, 11.6% and 13% performance improvement

 8

on average respectively. Although ICC-2 gets
lower IPC, the gap is within 1%.

Figure 5.5: Performance of 2-thread workloads.

Figure 5.6: Performance of 4-thread workloads.

In 6-thread workloads, ICC-1, ICC-2, ICC-3,
ICC-3+FB and ICC-3+FGAP enhance 14.6%, 5%,
4.8%, 11.9% and 12.6% performance on average
respectively. Finally in 8-thread workloads, ICC-1,
ICC-2, ICC-3, ICC-3+FB and ICC-3+FGAP obtain
21.7%, 9.9%, 6.8%, 9.4% and 11.5% throughput
improvement on average respectively. ICC-1
extremely favor the thread whose flowing speed is
better so the first finished and second finished
thread will lead baseline so much and gain
obviously performance. Nevertheless, ICC-1
results in bad load balance because it makes the
finished distance between slow-flowed thread and
fast-flowed thread more enormous. We will discuss
this problem at next subsection in detail.

The IPCs of 6-thread workloads is higher
than that of the 8-thread workloads for ICOUNT
policy. Two facts may explain this phenomenon.
First fact is that all 8-thread workloads are all mix
type but several 6-thread workloads are all integer
type. Another and most important fact is that the
resources are severely and overly competed when
fetch unit get 8 threads to choose.

Figure 5.7: Performance of 6-thread workloads.

Figure 5.8: Performance of 8-thread workloads.

Figure 5.9 shows average issue queue
occupancy of each fetch scheme. It is obvious that
ICOUNT’s usage of issue queue is higher than our
policy when getting more available threads (6 or 8
threads). When upping to 8-threads, ICOUNT
scheme even occupy 112 entries of issue queue on
average. ICOUNT scheme often fills up issue
queue to stall pipeline processing. Here, ICC-1,
ICC-2, ICC-3, ICC-3+FB and ICC-3+FGAP
reduce 15.1%, 11%, 5.9%, 7% and 17.4%
occupancy of issue queue on 8-thread workloads
respectively.

Figure 5.9: Average occupancy of issue queue.

Figure 5.10 and Figure 5.11 illustrate the

percentage of wrong-path fetch and execution for
each policy. ICC-3+FB and ICC-3+FGAP reduce
36.4% and 54.9% wrong-path fetch and 27% and
45.9% wrong-path execution respectively in
8-thread workloads.

Figure 5.10: Percentage of wrong-path fetch.

 9

Figure 5.11: Percentage of wrong-path execution.

5.2 Load Balance on SMT

In this section, we discuss the load balance
on SMT architecture. Although there are many
researches on fetch policy [7, 8, 9, 10, 11, 12, 13],
they never present or describe their load balanced
states in detail. In a general purpose computer,
most users would like to quickly finish each work
on average. Basing on this point, ICOUNT scheme
provides pretty nice load balance because it
attempts to keep equally utilization of issue queue.
However, our fetch policy tries to favor a thread
which has a fast flow speed. In other words, our
policy attempts to finish one thread as soon as
possible and to maintain the load balance like
ICOUNT.

Figure 5.12 shows the load balance of all
policy for each thread. We define “best load
balance” should be a horizontal line whose slope is
zero. When the slope gets higher, the work gets
worse load balance. Even so, better load balance
does not mean higher performance. Here, ICC-1
enhances performance outstandingly but it gets
worst load balance.

As we can see, ICC-1 let “fast thread”,
which achieves higher IPC than others in single
threaded mode, to finish more early but it also let
“slow thread”, which achieves lower IPC than
others in single threaded mode, to finish more
lately. Therefore, we attempt to resolve this
situation and then propose ICC-2 scheme which let
the threads that have lower ICC value to take
higher fetching priority while issue queue is under
low usage. Although, ICC-2 tries to avoid overly
favoring specific threads, it doesn’t seem to work
effectively. Finally, we present the better resolution,
ICC-3 fetch policy, which keeps all threads at least
N instructions in issue queue. If all threads exceed
N instructions in issue queue, we will use ICC-1
fetch policy. ICC-3 policy achieves our goal to not
only improve performance but also maintain load
balance like ICOUNT scheme. As illustrated,
ICC-3 policy can let “fast thread” to finish as early
as possible but it doesn’t delay “slow thread”. So,
we combine our previously proposed branch

mechanism with ICC-3 policy cause its better
behavior.

Figure 5.12: The order of finished thread and

average finished cycles.

6. CONCLUSIONS

When the SMT processors gain performance
by sharing the processor resources dynamically to
exploit both thread-level parallelism and
instruction-level parallelism, it still has some
potential drawbacks. The fetch unit has been
identified as one of the major bottlenecks of SMT
architecture. Several fetch schemes were proposed
by prior works to enhance the fetching efficiency.
Among these schemes, ICOUNT, proposed by
Tullsen et al. in which priority is assigned to a
thread according to the number of instructions it
has in the decode unit, register renaming unit and
instruction queues were considered to be a great
scheme not only the performance and load balance
but also the efficiency of implementation.

We found that ICOUNT fetch policy overly
attempts to equally divide the occupancy of the
issue queue with each thread. When one thread
squashed because of mis-speculation, ICOUNT
policy rushes to fill this thread until approximately
same utilization of issue queue. To allocate

 10

resources more reasonably, we propose a novel
fetch scheme called Instantaneously Commit
Count (ICC) which counts each thread’s retired
instructions each cycle then selects which threads
to feed next cycle. Moreover, we divide ICC policy
into three types to simulate. Although ICC-1 can
achieve the highest performance speedup up to
21.7%, but it has worst load balance. Also, ICC-2
tries to improve this phenomenon but failed.
Finally, we find ICC-3 not only enhance
performance but also keep good load balance like
ICOUNT.

We also proposed branch mechanism to
combine with ICC-3 scheme because of its good
effect on both throughput and load balance. With
our experiment, ICC-3+FB and ICC-3+FGAP
increase performance speedup up to 11% and
12.4% respectively over baseline. ICC-3+FB and
ICC-3+FGAP increase performance speedup up to
6.2% and 7.5% respectively over ICC-3.
Furthermore, our policy also reduces the average
issue queue size.

REFERENCE

[1] D. Tullsen, S. Eggers, and H. Levy,
“Simultaneous multithreading: Maximizing
on-chip parallelism,” In 22nd Annul
International Symposium on Computer
Architecture, June 1995, Pages 392-403

[2] D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo,
and R. Stamm, “Exploiting choice:
Instruction fetch and issue on an
implementable simultaneous multithreading
processor,” In 23rd Annul International
Symposium on Computer Architecture, May
1996

[3] S. Eggers, J. Emer, H. Levy, J. Lo, and R.
Stamm, and D. Tullsen, “Simultaneous
multithreading: A platform for
next-generation processors,” IEEE Micro,
Sep. 1997, Pages 12-18

[4] D. Madon, E. Sanchez, and S. Monnier, “A
Study of a Simultaneous Multithreaded
Architecture,” In Proceedings of EuroPar'99,
Toulouse, Lectures Notes in Computer
Science, Volume 1685, Springer-Verlag, Sep.
1999, Pages 716-726

[5] D. Tullsen and J. Brown, “Handling
Long-latency Loads in a Simultaneous
Multithreading Processor” MICRO-34, Dec.
2001, Pages 318-327

[6] D. Marr, F. Binns, D. Hill, G. Hinton, D.
Koufaty, J. Miller and M. Upton,
“Hyper-Threading Technology Architecture
and Microarchitecture” Intel Technology
Journal Q1, 2002

[7] C. Shin and S. Lee, “Dynamic Scheduling
Issues in SMT Architectures,” In
Proceedings of the 17th International
Parallel and Distributed Processing
Symposium, April 2003, Pages 8pp.

[8] A. El-Moursy and D. Albonesi, “Front-end
policies for improved issue efficiency in
SMT processors,” In Proceedings of the 9th
International Symposium on
High-Performance Computer Architecture,
Feb. 2003, Pages 31-40

[9] A. Falcon, A. Ramirez and M. Valero, “A
Low-Complexity, High-Performance Fetch
Unit for Simultaneous Multithreading
Processors,” In Proceedings of the 10th
International Symposium on High
Performance Computer Architecture, Feb.
2004, Pages 244-254

[10] E. Fernandez, F. Cazorla, A. Ramirez and M.
Valero, “DCache Warn: an I-Fetch Policy to
Increase SMT Efficiency,” In Proceedings of
the 18th International Parallel and
Distributed Processing Symposium, April
2004, Pages 74-84

[11] L. He and Z. Liu, “An Effective Instruction
Fetch Policy for Simultaneous Multithreaded
Processors,” In Proceedings of the 7th
International Conference on High
Performance Computing and Grid in Asia
Pacific Region, July 2004, Pages 162-168

[12] T.-R. Yang, and J.-J. Shieh, “Dynamic Fetch
Engine Design for Simultaneous
Multithreaded Processors,” In Proceedings
of the 9th Asia-Pacific Computer Systems
Architecture Conference, Sep. 2004, Pages
489-502

[13] C.-H. Lin, and J.-J. Shieh, “A Study of
Branch Prediction and Fetch Policy on
Simultaneous Multithreading Architecture,”
In Proceedings of the 9th World
Multi-Conference on Systemics, Cybernetics
and Informatics, Orlando Florida, USA, July
2005

[14] P.-Y. Chang, M. Evers, and Y. Patt,
“Improving Branch Prediction Accuracy by
Reducing Pattern History Table
Interference,” 1996 conference on Parallel
Architectures and Compilation Techniques,
Oct. 1996, Pages 48-57

[15] P.M.W. Knijnenburg, A. Ramirez, F. Latorre,
J. Larriba, and M. Valero, “Branch
classification to control instruction fetch in
simultaneous multithreaded architectures,”
In 2002 International Workshop on
Innovative Architecture for Future
Generation High-Performance Processors
and Systems, Jan. 2002, Pages 67-76

 11

[16] T. Austin, E. Larson, D. Ernst, “SimpleScalar:
an infrastructure for computer system
modeling,” IEEE Computer Journal, Feb.
2002, Pages 59-67

[17] S. Hily, A. Seznec, “Branch Prediction and
Simultaneous Multithreading,” In
Proceedings of the 1996 Conference on
Parallel Architectures and Compilation
Techniques, Oct. 1996, Pages 169-173

