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摘要 

同步多線程(SMT)是一種允許在每一個週

期能夠同時發派來自不同獨立的應用程式或是

線程的指令的一種技術。提取單元一直被認為是

同步多線程的主要瓶頸所在，過去許多研究曾提

出過一些提取策略來增進提取效率以及整體的

效能。 

在此篇論文，我們提出一個全新的提取策

略，稱之為瞬間指令完成計數(ICC)，它會計算

每個線程在每一個時脈確認完成的指令數目，然

後依照這些資訊來決定下一個週期要從哪些線

程來提取指令。此外，我們還將此提取策略和被

稱之為提取偏向(FB)和提取閘控優選(FGAP)的
分支機制做結合，來建構更有效率的提取單元。

經由模擬結果顯示，整體效能提升大約百分之十

三，並且還減少了發派佇列的使用大小，同時還

減少錯誤路徑指令的提取。另外，我們還展示負

載平衡的狀態，這是過去相關研究沒有詳細討論

過的議題。 

關鍵字： 同步多線程、提取策略、提取單元。 

Abstract 

Simultaneous Multithreading (SMT) is a 
technique that permits multiple instructions from 
multiple independent applications or threads to 
issue each cycle. While the fetch unit has been 
identified as one of the major bottlenecks of SMT 
architecture, several fetch schemes were proposed 
by prior works to enhance the fetching efficiency 
and overall performance. 

In this paper, we propose a novel fetch 
policy called Instantaneous Commit Count (ICC) 
which counts each thread’s retired instructions 
each cycle then properly selects which threads to 
feed next cycle. We also combine this scheme with 
branch mechanisms, named FB and FGAP, to 
construct the effective fetch unit. Simulation 
results show that the overall performance is 
improved about 13% on speedup, the issue queue 
size is reduced and the wrong-path instructions 

fetch are also reduced. Furthermore, we show the 
state of load balance that never discussed in prior 
works in detail. 

Key words：Simultaneous Multithreading (SMT), 
Fetch Policy, Fetch Unit 

1. INTRODUCTION 

1.1 Simultaneous Multithreading 
Architecture 

Simultaneous Multithreading (SMT) [1,2,3] 
is a technique that permits multiple instructions 
from multiple independent applications or threads 
to issue each cycle. All threads in an SMT 
processor are active simultaneously, competing 
each cycle for all available resources. This 
dynamic sharing of the functional units allows 
SMT to substantially increase throughput by hiding 
most per-thread latency. SMT also achieves three 
goals: (1) minimizes the architectural impact on 
the conventional superscalar design, (2) has 
minimal performance impact on a single thread 
executing alone, and (3) achieves significant 
throughput gains when running multiple threads. 
SMT architecture is a straightforward extension to 
the conventional superscalar design. Thus, nearly 
all hardware resources remain completely available 
even when there is only a single thread in the 
system. The changes necessary to support SMT are 
as follows [2]: 

1. Multiple program counters and fetch 
unit has ability to fetch instructions 
from different threads each cycle. 

2. Private return address stacks for each 
thread to provide subroutine 
return destinations. 

3. Per-thread instruction retirement, 
instruction queue flush, and trap 
mechanisms. 

4. The branch target buffer entry adds a 
thread-id field to avoid predicting 
phantom branches. 

5. A large register file supports logical 
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registers of all threads plus additional 
registers for register renaming. 

Figure 1.1 [3] illustrates the difference 
between superscalar, fine-grained multithreading, 
and SMT by showing sample execution sequences 
of the three architectures. Each row represents the 
slots issued per cycle. Assuming four instructions 
in maximum can be issued each cycle. An empty 
box indicates that there is no instruction chosen to 
fill this issue slot; respectively, a filled box 
represents that slot has been fed by an instruction 
from a thread. Two types of waste are identified in 
the picture. Horizontal waste occurs when some of 
the issue slots in a cycle can not be used. It 
typically means poor instruction-level parallelism. 
Vertical waste occurs if all slots were not used in a 
cycle. It occurs when a long latency instruction 
that prevents further instructions from issuing. 

 
Figure 1.1: The comparison of issue slot between 

three architectures. 
Figure 1.1a shows the sequence of a 

conventional superscalar. Superscalar processors 
fetch multiple instructions and issue them from a 
single program or thread. When it cannot find any 
instructions to issue in a cycle, both horizontal and 
vertical wastes will occur. Fine-grained 
multithreaded processors maintain thread states 
and quickly switch between them every cycle, that 
is, they execute instructions from a thread at one 
cycle and switch to another thread at the next cycle. 
As the Figure 1.1b shows, it can hide the 
long-latency operations and eliminating vertical 
waste, but horizontal waste still exists. As 
horizontal waste can not be removed, 
multithreaded architectures will be limited by the 
instruction-level parallelism in a single thread as 
superscalar processors while instruction issue 

width continues to increase. 

SMT tries to conquer both horizontal and 
vertical wastes by allowing instructions from 
multiple threads to execute in a single cycle as 
shown in Figure 1.1c. Because it selects 
instructions from several threads, instruction-level 
parallelisms from all threads are exploited, 
eliminating horizontal waste. And if one thread is 
blocked due to long-latency instructions or 
resources conflicts, unblocked threads can use 
these slots, thus vertical waste is also eliminated. 
1.2 Bottlenecks of SMT 

Although the SMT architecture dynamically 
sharing the processor resources to exploit both the 
thread-level parallelism came from multiple 
threads and instruction-level parallelism from 
single thread and better utilizing the resources, 
there are several bottlenecks identified [2]. 

SMT improves performance in the benefits 
of dynamic sharing of resources, but it does appear 
to have some potential drawbacks due to 
inter-thread contention. Instructions competed for 
resources now coming from multiple threads 
instead of single thread puts greater stress to the 
shared structures such as caches, translation 
look-aside buffers and branch target buffers than 
traditional processors do. For example, sharing the 
cache with multiple threads, that is, partitioning the 
cache into pieces for threads will eventually 
reducing the cache space used by each thread, 
hence decrease the degree of locality and cause 
cache misses to arise. Instruction fetching unit is 
one of the major performance bottlenecks which 
also widely studied [2,7,8,9,10,11,12]. On one 
hand, the SMT fetch unit benefits from inter-thread 
competition for instruction bandwidth by 
partitioning the bandwidth among threads and 
finding more useful instructions to fill the issue 
slot, which is often difficult to fill if there is only 
one thread to be accessed at a time. On the other 
hand, dynamic scheduler of SMT processors which 
issuing more instructions (from multiple threads) 
than traditional processors (from a single thread) 
does put more stress on fetch unit. It must now 
fetch more instructions to keep pace with the speed 
that consumed by later pipe-stages. In order to 
improve fetch efficiency, the fetch unit must smart 
enough to determine which thread to fetch from 
since there may be several threads running at a 
given time. Several fetch schemes have been 
proposed to improve the SMT performance 
[2,7,8,9,10,11,12]. 

Another problem is the impact of the 
long-latency instructions. This happens when the 
memory-bond threads or threads with high 
concentration of long-latency instructions fills the 
instruction scheduling window with instructions 
that cannot be issued quickly hence prevent other 
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threads to be fetched and even worse, stall the 
processor. This problem can be solved by either 
increasing the size of instruction queue or good 
fetch scheme design. 

In this paper, we propose a novel fetch 
scheme to overcome the foregoing bottleneck. We 
attempt to let properly threads whose flowing 
speed is better to get more resources so these 
threads won’t suffer from the other slow-flowed 
threads. We will describe our policy with detail in 
the section 3. 
1.3 The Paper Organization 

This paper is organized as follows. In section 
2, we review related works. We describe baseline 
fetch policy and present our fetch policy on SMT 
in section 3. Then, section 4 and 5 shows the 
methodology and analyzes the simulation results. 
Finally, section 6 concludes the paper. 

2. RELATED WORKS 

Tullsen et al. [1,3] proposed the SMT 
architecture and firstly implemented it on MIPS 
R10000 and DEC Alpha platform. The SMT 
architecture doesn’t heavily impact on the 
conventional superscalar design. They also studied 
fetch policies for SMT processors and investigated 
several fetch policies in [2], such as ICOUNT, 
BRCOUNT, IQPOSN and MISSCOUNT which 
attempt to improve on the simple round-robin 
priority policy by using feedback from the 
processor pipeline. With their experiments, the 
ICOUNT has the best performance. In particular, 
the ICOUNT fetch policy has been chosen by 
many researches as their base fetch policy. They 
describe another problem that is when a single 
thread with poor cache performance can strangle 
overall SMT performance, by monopolizing 
resources that could be exploited by other threads. 
The solution proposed in [5] is to free resources 
occupied by a stalled thread by flushing its 
instructions from the pipeline. 

The Intel Pentium 4 processor [6] is the first 
commercially available general-purpose processor 
to implement a simultaneously multithreading core. 
The Pentium 4 supports a dual-threaded 
implementation of SMT called Hyper-Threading 
Technology. Hyper-Threading Technology makes a 
single physical processor appear as dual logical 
processors. The primary difference between the 
Hyper-Threading implementation and the 
architecture proposed in the SMT research is the 
mode of sharing of hardware structures. While the 
SMT research indicates that virtually all structures 
are more efficient when shared dynamically rather 
than partitioned statically, some structures in the 
Hyper-Threading implementation such as the ROB 
entries and load/store buffers are statically divided 

in half when both threads are active. 

C. Shin and S. Lee [7] has investigated how 
much more improvement can be made by allowing 
an adaptive dynamic thread scheduling approach 
rather than the fixed scheduling approaches 
employed in earlier work [2]. He proposed the 
detector thread approach to implement adaptive 
scheduling (when to choose from ICOUNT, 
BRCOUNT and MISSCOUNT) with low hardware 
and software overhead. The detector thread is a 
special thread that occupies one designated thread 
context with minimal extra hardware. It is 
scheduled for execution when idle slots are 
available. 

A. El-Moursy and D. Albonesi [8] proposed 
several fetch policies that reduce the requirement 
of integer and floating point issue queue sizes in 
SMT processors. Their schemes are based on 
ICOUNT policy, and provide some gating 
mechanisms on the basic policy according to the 
number of the instructions that are not ready in the 
issue queue, or the L1 cache miss rate of a given 
thread. For the same level of performance, it 
achieves 33% reduction in the occupancy of the 
issue queue. 

A. Falcon et al. [9] have shown that 
implementing a fetch architecture fetching from 
more than one thread is too expensive, both in 
terms of cost and complexity. They have 
demonstrated that a solution to increment the SMT 
fetch performance is not to fetch few instructions 
from several threads, but to fetch many instructions 
from a single thread. They use a technique called 
stream fetch which allows the fetch unit to fetch a 
basic block between two predicted taken branches. 
Implementing a fetch unit fetching only from one 
thread solves the problem of the high complexity 
of the SMT fetch unit. 

E. Fernandez et al. [10] proposed a fetch 
policy, which called DWarn. DWarn uses L1 
misses as indicators of L2 misses, giving higher 
priority to threads with no outstanding L1 misses. 
DWarn acts on L1 misses, before L2 misses 
happen in a controlled manner to reduce resources 
underuse and to avoid harming a thread when L1 
misses do not lead to L2 misses. Their results show 
that DWarn outperforms previously proposed 
policies [2], in both throughput and fairness, while 
requiring fewer resources and avoiding instruction 
re-execution. 

L. He and Z. Liu [11] also proposed a fetch 
scheme that constructs a formula to calculate the 
needed number of instructions to every selected 
thread. Although the results have showed that it 
can improve speedup and reduce the size of issue 
queue, the formula only focused on 2-threads. 

Yang and Shieh [12] proposed a dynamical 
fetch scheme which gives the highest fetch priority 
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to the long latency bound threads while the RUU 
and LSQ is under low usage. Their motivation is to 
gain further performance by not only use the 
resources effectively but also by the urgency of the 
instructions. 

In the following sections, we will describe 
base fetch policy and propose a new effective fetch 
policy. We will combine the fetch scheme with 
newly proposed branch prediction mechanism [13]. 
Finally, implementation technique and simulation 
results will be analyzed. 

3. FETCH POLICY ON SMT 

3.1 Base Fetch Scheme 
In order to have high performance on SMT, 

the fetch unit must get as many instructions as 
possible each cycle. Fetching from a single thread 
seems to be insufficient to feed an 8-way execution 
core. Solutions that try to widen the fetch 
throughput are targeted to fetch from multiple 
threads in a single cycle. A priority policy is used 
to decide which thread should be fetched first. In 
this paper, the fetch unit can fetch four instructions 
per thread from two threads each cycle. By the way, 
the fetch unit should fetch from two available 
threads which have higher priority. 
     Tullsen et al. [2] have proposed and studied 
several fetch policies for SMT. Their results show 
that the best priority policy is ICOUNT, in which 
priority is assigned to a thread according to the 
number of instructions it has in the decode, rename, 
and issue stages (issue queues) of the pipeline. 
Threads with the fewest such instructions are given 
the highest priority for fetch. The rationale is that 
such threads may be marking more forward 
process than others. It can prevent one thread from 
clogging the issue queue, and provide a mix of 
threads in the issue queue to increase parallelism. 
In this paper, we take ICOUNT as our baseline 
fetch policy. 

3.2 Our Proposed Fetch Policy 
We found that ICOUNT fetch policy overly 

attempts to equally divide the occupancy of the 
issue queue with each thread. For example, 
ICOUNT policy continuously fetches the thread 
which just squashed because of its mis-speculative 
behavior. Furthermore, ICOUNT scheme causes 
issue queue full by seriously competing when we 
get more available threads. So, if we can properly 
let threads whose flowing speed is better to get 
more resources, these threads won’t suffer from the 
other slow-flowed threads. Basing on this idea, the 
fetch unit properly response to share all resources 
on every situation, for example, outstanding cache 
miss. In this paper, we propose a novel fetch policy 
called Instantaneous Commit Count (ICC) which 
counts each thread’s retired instructions each cycle 

then selects which threads to feed next cycle. 

 
Figure 3.1: The architecture of ICOUNT and ICC. 

To implement the scheme, as in ICOUNT, it 
needs a counter for each thread to record its retired 
instructions number every cycle. Figure 3.1 shows 
the architecture of ICOUNT and ICC fetch policy. 
Here, we create three types of ICC fetch policy as 
follow: 

1. ICC-1: The fetch unit always prefers to 
fetch the threads which outperform 
over the others at single cycle. That 
means we will select the threads whose 
ICC is higher. This scheme leads the 
threads which have better throughput 
at single execution to early complete 
their job, but it causes bad load balance. 
We will discuss this problem in section 
5. 

2. ICC-2: In order to avoid favoring 
excessively some threads, we should 
adopt ICC-1 at appropriate time. While 
issue queue is under low usage, we let 
the threads which have lower ICC 
value to take higher fetching priority. 
Otherwise, we choose ICC-1 to be the 
fetch policy. To do this, it will get 
better load balance than ICC-1 policy. 

3. ICC-3: Here, we keep all threads at 
least N instructions in issue queue. If 
all threads exceed N instructions in 
issue queue, we will use ICC-1 fetch 
policy. With our experiment, we take N 
= 6 as it shows both the best average 
performance and load balance. In this 
scheme, when some thread has been 
squashed, it will get at least two 
chances to fetch during the next two 



 5

cycles. Therefore, with this policy, it 
can properly and effectively share the 
rest of issue queue unlike ICOUNT 
tend to equally divide whole issue 
queue. 

Our goal is to allocate more reasonably the 
resources of SMT architecture than base fetch 
scheme. If we can increase the usable issue queue 
entry of specific threads at the right moment, the 
throughput should enhance apparently. 

3.3 Dynamically Speculative Controlled 
Fetch Policy 

We have proposed the branch prediction 
mechanism with biased branch filter and 
confidence estimator to reduce the competition for 
branch predictor between thread and classify 
conditional branches as biased or confident 
branches in [13]. Therefore, the fetch unit that 
plays an important role in the SMT architecture 
decides which threads to fetch instructions from 
each cycle according to the information from the 
proposed branch prediction mechanism. 

Besides, we also introduced extra counter, 
called miss bit (4 bits), for reordering the fetch 
priority that is based on ICOUNT fetch policy 
originally. The miss bit counters are used to 
estimate the confidence of threads and each thread 
has its own miss bit counter. A thread with larger 
miss bit value is considered to more likely fetch 
instructions from wrong path. Here, we combine 
this mechanism with our new strategy for fetch 
instructions. We just choose ICC-3 fetch policy 
because of its better load balance and performance 
after combining. 

ICC-3 + FB (Fetch Bias): The branch 
prediction mechanism is gshare predictor with the 
biased branch filter which uses a biased counter to 
determine the bias of branch. While a fetched 
branch is classified as a strongly biased branch, the 
miss bit counter of corresponding thread decreases 
by 1. While a weakly biased branch is fetched, the 
miss bit counter increase by 8. If miss bit counter is 
greater than the gating threshold of 15, the thread 
is stalled to fetch. The fetch priority is constructed 
by ICC-3 and reconstructed by sorting the miss bit 
counter. 

ICC-3 + FGAP (Fetch Gating and 
Prioritizing): The branch prediction mechanism is 
gshare predictor with the integration of biased 
branch filter and confidence estimator. The fetch 
policy combined with fetch gating and fetch 
prioritizing is shown in Figure 3.2. How the miss 
bit counter and ICC counter attain to fetch gating 
and prioritizing is described as follows: 

 
Figure 3.2: The schematic diagram of the 

combined fetch policy. 
1. The fetch unit fetches instructions from 

instruction cache according to fetch 
priority that decided in prior cycle. 

2. While a branch instruction is fetched 
(hit on BTB), program counter of the 
branch is delivered to branch 
predication mechanism to obtain the 
prediction result and classification 
information. 

3. If the branch is classified as a strongly 
biased or high-confident branch and hit 
in BTB, the miss bit counter of the 
corresponding thread is decreased by 1. 
If the branch is classified as 
low-confident branch, the miss bit of 
the corresponding thread is increased 
by 8. If the branch is classified as 
non-confident branch or misses in BTB, 
the miss bit of the corresponding 
thread is set to 15. 

4. The fetch unit sorts ICC counter and 
looks up all miss bit counter to decide 
the fetch priority to be used in next 
cycle. If the miss bit counter of first 
fetch priority thread is greater than 
gating threshold (default 15), the fetch 
priority is reset to give the highest 
priority to the thread with lowest miss 
bit value. 

However, if there are not enough instructions in the 
IQs, the fetch unit continues to fetch instructions 
regardless of miss bit counter. The fetch priority is 
constructed by ICC-3 and reconstructed by sorting 
the miss bit counter. 

4. METHODOLOGY 
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Our simulator is derived from the 
SimpleScalar Multithreading (SSMT) simulator 
which originally developed by Madon et al. [4]. 
The simulator implements simultaneous 
multithreaded processor pipeline based on the 
out-of-order processor model from SimpleScalar 
tool set [16]. It duplicated the SimpleScalar 
architecture’s physical context according to the 
number of execution contexts to execute 
simultaneously. 

Table 4.1: Simulator parameters. 
Parameter Value 

Base Fetch Policy ICOUNT 
Fetch / Issue / Commit 

Bandwidth 
8 

Fetch Queue Size 32 
Register Update Unit Size 128 
Load / Store Queue Size 64 
Integer Functional Units 8 

Floating Point Units 8 
Branch Predictor gshare 

L1 Cache Block Size 32 Byte 
ICache 128KB, 2-way 
DCache 128KB, 2-way 

L2 Cache Block Size 64 Byte 
L2 Cache 2MB, 4-way 

Fast-Forward Instructions 250,000,000 
Commit Instructions  50,000,000 

 
Table 4.2: Instruction and memory access latency.

Latency Type Cycles 
Integer 1 
FP Add 2 

FP Multi 4 
FP Div 12 

L1 Cache Hit 1 
L2 Cache Hit 10 

Memory 80~122 
 

Table 4.3: Branch mechanism configuration. 

Parameter Value 
Base Branch Predictor gshare 

Pattern History Table (PHT) 2K 
Global History 
Register (GHR) 11 bits 

Branch Target Buffer (BTB) 256, 4way 
Biased Table (BT) 256, 4way 

Biased Counter 4bits 
Taken/Not Taken Biased 

Threshold 12 / 3 

Confidence Counter 4 bits 
Confidence Threshold 7 

Non-Confidence Threshold 2 
Miss Bit Counter 4 bits 
Gating Threshold 15 

Table 4.4: Integer and floating point based 
benchmarks for simulation. 

Benchmarks 
Integer Based gzip, vpr, gcc, mcf, crafty, gap, 

bzip2, twolf 
Floating Point 

Based 
mesa, art, equake 

 
Table 4.5: The selected benchmarks of each thread.
Workload 2-Thread Benchmarks 

All Integer Based 
1 gzip, bzip2 
2 gap, twolf 

All Floating Point Based 
3 mesa, art 
4 mesa, equake 

Mix of Integer and Floating Point Based 
5 vpr, equake 
6 bzip2, mesa 

Workload 4-Thread Benchmarks 
All Integer Based 

1 mcf, gzip, crafty, twolf 
2 mcf, gap, bzip2, vpr 
3 mcf, crafty, gcc, vpr 

Mix of Integer and Floating Point Based 
4 mcf, bzip2, mesa, art 
5 gcc, gzip, mesa, equake 
6 gcc, crafty, gzip, mesa 

Workload 6-Thread Benchmarks 
All Integer Based 

1 mcf, gzip, crafty, twolf, vpr, bzip2 
2 vpr, gcc, mcf, bzip2, twolf, crafty 

Mix of Integer and Floating Point Based 
3 gcc, twolf, gzip, mesa, art, equake 
4 mcf, gzip, twolf, equake, mesa, art 
5 mcf, gzip, crafty, twolf, gcc, art 

Workload 8-Thread Benchmarks 
Mix of Integer and Floating Point Based 
1 mcf, gcc, gzip, crafty, twolf, bzip2, 

vpr, art 
2 mcf, gcc, gzip, gap, bzip2, vpr, art, 

mesa 
3 mcf, gcc, gzip, twolf, bzip2, mesa, 

art, equake 
4 mcf, vpr, gzip, twolf, bzip2, mesa, 

art, equake 

Table 4.1 describes our configuration of 
parameters on SSMT. We adopt ICOUNT as our 
base fetch policy to compare with our proposed 
scheme. In this paper, the fetch unit can fetch four 
instructions per thread from two threads each cycle. 
Table 4.2 shows execution time of instructions and 
memory access latencies. 

The branch mechanism configuration is 
shown in Table 4.3. The extra branch mis-penalty 
is set to 3 cycles for recovering the processor state 
and branches are resolved after execution stage. 
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Thus the branch mis-speculation penalty is 8 cycle. 

We picked up 11 applications (alpha ISA) 
from the SPEC CPU2000 suite to construct our 
workloads where 8 of them were integer based 
from CINT2000 suite and others were floating 
point based from CFP2000 suite. The benchmarks 
selected are listed in Table 4.4. All the benchmarks 
were running on a GNU/Linux x86 system using 
reference data sets. 

Table 4.5 shows selected workloads of 
threads (2, 4, 6 and 8 threads). We combine 
different benchmarks to form three types of 
workloads. These three types are integer based, 
floating point based and mix of both respectively. 

5. SIMULATION RESULTS 

In this section, we present the simulation 
results of our experiment. We will show the 
speedup of our fetch policy over ICOUNT scheme. 
Then we discuss the influence of our policy and 
ICOUNT scheme on the issue queue utilization, 
wrong-path fetch rate and load balance. 

5.1 Experiment Results 
Figure 5.1 to 5.4 show the number of 

instructions fetch per cycle normalized to base 
fetch scheme. As we can see, our schemes achieve 
same value (the difference within 2% on average) 
in 2-thread workloads because the fetch unit can 
only fetch from two threads each cycle. The reason 
less fetch rate in workload 1 (gzip, bzip2) is the 
fetch gating mechanism often stall threads. In 
4-thread workloads, ICC-1, ICC-2, ICC-3, 
ICC-3+FB and ICC-3+FGAP get 5.7%, 1.6%, 3%, 
4.2% and 2.4% improvement on average 
respectively. 

Here, in workload 6 (gcc, crafty, gzip and 
mesa) our fetch policy get fewer fetch numbers 
because it may get worse mix of instructions and 
result in more long data dependency chain. So, our 
fetch policy which combines with FB and FGAP 
will lead to fetch less instructions. In 6-thread 
workloads, ICC-1, ICC-2, ICC-3, ICC-3+FB and 
ICC-3+FGAP enhance 18.8%, 8.2%, 6.1%, 4.4% 
and 1.6% on average respectively. Finally in 
8-thread workloads, ICC-1, ICC-2 and ICC-3 
achieve 25.1%, 13.7% and 7.3% improvement on 
average respectively. Both FB and FGAP fetch 
gating mechanism lead to reduce wrong-path 
instructions fetching. Therefore, the speedup of 
instructions fetch per cycle for these two schemes 
is unapparent. Overall, fetch policy with fetch 
gating mechanism, FB and FGAP, will cause fewer 
fetch instructions because of wrong-path fetch 
reducing. Our ICC scheme can get higher fetch 
number with more threads (6 threads or 8 threads). 

 
Figure 5.1: Normalized fetch rate of 2-threads 

workload. 

 
Figure 5.2: Normalized fetch rate of 4-threads 

workload. 

 
Figure 5.3: Normalized fetch rate of 6-threads 

workload. 

 
Figure 5.4: Normalized fetch rate of 8-threads 

workload. 

The IPCs of the combined workloads are 
shown in Figure 5.5 to 5.8. Our commit counter 
just record instantaneous IPC for each threads. As 
illustrating, 2-thread workloads get almost same 
performance on each scheme except fetch policy 
with FB and FGAP which increase 8.2% and 8.9% 
speedup on average. In 4-thread workload, ICC-1, 
ICC-3, ICC-3+FB and ICC-3+FGAP achieve 3%, 
2.6%, 11.6% and 13% performance improvement 
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on average respectively. Although ICC-2 gets 
lower IPC, the gap is within 1%. 

 
Figure 5.5: Performance of 2-thread workloads. 

 
Figure 5.6: Performance of 4-thread workloads. 

In 6-thread workloads, ICC-1, ICC-2, ICC-3, 
ICC-3+FB and ICC-3+FGAP enhance 14.6%, 5%, 
4.8%, 11.9% and 12.6% performance on average 
respectively. Finally in 8-thread workloads, ICC-1, 
ICC-2, ICC-3, ICC-3+FB and ICC-3+FGAP obtain 
21.7%, 9.9%, 6.8%, 9.4% and 11.5% throughput 
improvement on average respectively. ICC-1 
extremely favor the thread whose flowing speed is 
better so the first finished and second finished 
thread will lead baseline so much and gain 
obviously performance. Nevertheless, ICC-1 
results in bad load balance because it makes the 
finished distance between slow-flowed thread and 
fast-flowed thread more enormous. We will discuss 
this problem at next subsection in detail. 

The IPCs of 6-thread workloads is higher 
than that of the 8-thread workloads for ICOUNT 
policy. Two facts may explain this phenomenon. 
First fact is that all 8-thread workloads are all mix 
type but several 6-thread workloads are all integer 
type. Another and most important fact is that the 
resources are severely and overly competed when 
fetch unit get 8 threads to choose. 

 

Figure 5.7: Performance of 6-thread workloads. 

 

Figure 5.8: Performance of 8-thread workloads. 

 

Figure 5.9 shows average issue queue 
occupancy of each fetch scheme. It is obvious that 
ICOUNT’s usage of issue queue is higher than our 
policy when getting more available threads (6 or 8 
threads). When upping to 8-threads, ICOUNT 
scheme even occupy 112 entries of issue queue on 
average. ICOUNT scheme often fills up issue 
queue to stall pipeline processing. Here, ICC-1, 
ICC-2, ICC-3, ICC-3+FB and ICC-3+FGAP 
reduce 15.1%, 11%, 5.9%, 7% and 17.4% 
occupancy of issue queue on 8-thread workloads 
respectively. 

 
Figure 5.9: Average occupancy of issue queue. 

 
Figure 5.10 and Figure 5.11 illustrate the 

percentage of wrong-path fetch and execution for 
each policy. ICC-3+FB and ICC-3+FGAP reduce 
36.4% and 54.9% wrong-path fetch and 27% and 
45.9% wrong-path execution respectively in 
8-thread workloads. 

 

 

Figure 5.10: Percentage of wrong-path fetch. 
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Figure 5.11: Percentage of wrong-path execution. 

5.2 Load Balance on SMT 

In this section, we discuss the load balance 
on SMT architecture. Although there are many 
researches on fetch policy [7, 8, 9, 10, 11, 12, 13], 
they never present or describe their load balanced 
states in detail. In a general purpose computer, 
most users would like to quickly finish each work 
on average. Basing on this point, ICOUNT scheme 
provides pretty nice load balance because it 
attempts to keep equally utilization of issue queue. 
However, our fetch policy tries to favor a thread 
which has a fast flow speed. In other words, our 
policy attempts to finish one thread as soon as 
possible and to maintain the load balance like 
ICOUNT. 

Figure 5.12 shows the load balance of all 
policy for each thread. We define “best load 
balance” should be a horizontal line whose slope is 
zero. When the slope gets higher, the work gets 
worse load balance. Even so, better load balance 
does not mean higher performance. Here, ICC-1 
enhances performance outstandingly but it gets 
worst load balance. 

As we can see, ICC-1 let “fast thread”, 
which achieves higher IPC than others in single 
threaded mode, to finish more early but it also let 
“slow thread”, which achieves lower IPC than 
others in single threaded mode, to finish more 
lately. Therefore, we attempt to resolve this 
situation and then propose ICC-2 scheme which let 
the threads that have lower ICC value to take 
higher fetching priority while issue queue is under 
low usage. Although, ICC-2 tries to avoid overly 
favoring specific threads, it doesn’t seem to work 
effectively. Finally, we present the better resolution, 
ICC-3 fetch policy, which keeps all threads at least 
N instructions in issue queue. If all threads exceed 
N instructions in issue queue, we will use ICC-1 
fetch policy. ICC-3 policy achieves our goal to not 
only improve performance but also maintain load 
balance like ICOUNT scheme. As illustrated, 
ICC-3 policy can let “fast thread” to finish as early 
as possible but it doesn’t delay “slow thread”. So, 
we combine our previously proposed branch 

mechanism with ICC-3 policy cause its better 
behavior. 

 
Figure 5.12: The order of finished thread and 

average finished cycles. 

6. CONCLUSIONS 

When the SMT processors gain performance 
by sharing the processor resources dynamically to 
exploit both thread-level parallelism and 
instruction-level parallelism, it still has some 
potential drawbacks. The fetch unit has been 
identified as one of the major bottlenecks of SMT 
architecture. Several fetch schemes were proposed 
by prior works to enhance the fetching efficiency. 
Among these schemes, ICOUNT, proposed by 
Tullsen et al. in which priority is assigned to a 
thread according to the number of instructions it 
has in the decode unit, register renaming unit and 
instruction queues were considered to be a great 
scheme not only the performance and load balance 
but also the efficiency of implementation. 

We found that ICOUNT fetch policy overly 
attempts to equally divide the occupancy of the 
issue queue with each thread. When one thread 
squashed because of mis-speculation, ICOUNT 
policy rushes to fill this thread until approximately 
same utilization of issue queue. To allocate 
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resources more reasonably, we propose a novel 
fetch scheme called Instantaneously Commit 
Count (ICC) which counts each thread’s retired 
instructions each cycle then selects which threads 
to feed next cycle. Moreover, we divide ICC policy 
into three types to simulate. Although ICC-1 can 
achieve the highest performance speedup up to 
21.7%, but it has worst load balance. Also, ICC-2 
tries to improve this phenomenon but failed. 
Finally, we find ICC-3 not only enhance 
performance but also keep good load balance like 
ICOUNT. 

We also proposed branch mechanism to 
combine with ICC-3 scheme because of its good 
effect on both throughput and load balance. With 
our experiment, ICC-3+FB and ICC-3+FGAP 
increase performance speedup up to 11% and 
12.4% respectively over baseline. ICC-3+FB and 
ICC-3+FGAP increase performance speedup up to 
6.2% and 7.5% respectively over ICC-3. 
Furthermore, our policy also reduces the average 
issue queue size. 
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