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Abstract 

This paper studies the problem of 

partitioning the vertices of a graph G into 

disjoint set V1, …, Vq such that V1, …, Va are all 

dominating sets of G. The objective is to find the 

largest q. We first propose a 0-1 matrix 

representation of bipartite permutation graphs. 

Then, a linear-time algorithm for domatic 

number problem on bipartite permutation 

graphs is designed. 

 

Key words : domatic number, domatic partition, 
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1 Introduction 

 

A graph G = (V,E) is bipartite if V(G) is 

the union of two disjoint independent sets of G. 

A Graph G is permutation graph if there exists a 

permutation π of {1,2,3,…,|V|} such that (i,j)∈E 

if and only if (i-j)(π-1
(i) -π

-1
(j)) < 0. A set D ⊆ V 

is a dominating set if every vertex in V-D is 

adjacent to at least one vertex in D. Let GP = 

{P|P is a partition of V and every set is a 

dominating set of G}. The domatic number dm(G) 

is defined as dm(G) = max{size(P)|P ∈ GP}, 

where size(P) denotes the number of sets in P. A 

domatic partition is a partition in GP whose size 

equals dm(G). 

Finding domatic partition on general 

graphs is NP-Hard [6]. For this problem, Peng 

and Chang gave an linear-time algorithm on 

strongly chordal graphs. Bertossi [1] proposed 

an O(n
2.5

) for interval graphs and O(n log n) for 

proper interval graphs. Later, [10] and [2] gave 

O(m+n) algorithms for interval graphs, and [8] 

gave an O(n) algorithm for interval graphs with 

sorted intervals. In [5], Bonuccelli showed that 

this problem remained NP-hard for circular-arc 

graphs and gave an O(n
2 

log n) time algorithm 

for proper circular-arc graphs. In [3], Haim and 

Ron showed that it remained NP-hard for 

chordal and bipartite graphs. 

The rest of this paper is organized as 

follows. In section 2, we give some properties of 

bipartite permutation graphs and their 0-1 matrix 

representation. In section 3, we provide a linear 

time algorithm for this problem. 

 

 

2 Bipartite Permutation Graphs 

 

 In [9], Peng and Chang gave biclique 

structure of bipartite permutation graphs. A 

biclique or complete bipartite graph is a simple 

bipartite graph such that two vertices are 

adjacent if and only if they are in different 

partite sets. A bipartite permutation graph G can 

be partitioned into Gr = B1
1

1
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l⊕ B2
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−

−
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r

k

l
Br, 

where B1,B2,...,Br are bicliques, called generating 

base, (k1,l1),...,(kr-1,lr-1) are the common nodes 



 - 2 - 

from X and Y partite between any two bicliques. 

We make use of this structure and refine it in our 

algorithm. For the sake of simplicity, proof detail 

can be referenced in [9]. 

 

Lemma 2.1 [9] Gr is a bipartite permutation 

graph. 

 

Theorem 2.1 [9] G is a bipartite permutation 

graph if and only if there exists a generating 

base for G. 

 

Lemma 2.1 shows that Gr and bipartite 

permutation graph are equivalent. Theorem 2.1 

show that every bipartite permutation graph can 

be converted into Gr = B1
1

1
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l⊕ B2
2

2

k
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1

−

−
⊕ r

r

k

l
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The matrix representation in this paper can be 

easily seen that is equivalent to Gr.  

  

 

Figure 2.1 

 

 

Figure 2.1 shows that a bipartite 

permutation graph can be decomposed into 

bicliques. It is natural to represent a graph with 

0-1 matrix, when we use 0-1 matrix to represent 

bipartite permutation graphs, it can be easily 

observed that it has consecutive 1s’ property, In 

Figure 2.2, we show that this two kinds of 

representation are equivalent. 

 

 

Y\X 1 2 3 4 5 

1 1 1 1   

2 1 1 1   

3 1 1 1 1  

4  1 1 1 1 

5    1 1 

Figure 2.2 

 

These three rectangles in Figure 2.2 

represent three bicliques in Figure 2.1 

respectively, and the generating base in Figure 

2.1 (In this example, 2
1⊕ , 1

1⊕ ) mapping to 

Figure 2.2 which is the width and height of the 

intersection region of any two rectangles. 

 Now, we give this representation a formal 

definition, Let G = (X,Y,E), be a bipartite 

permutation graph, X = {1,...,m}, Y = {1,...,n}, 

construct a m by n 0-1 matrix T where  

 

Tij = 1  , if (i,j)∈E, 

Tij = 0  , otherwise. 
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3 Algorithm 

 

 Let G=(X,Y,E)=B1
1

1

k

l⊕ B2
2

2

k

l⊕ ... 1

1

−

−
⊕ r

r

k

l
Br, 

be a bipartite permutation graph, define X(Bi) 

(respectively, Y(Bi)) be number of nodes of 

biclique Bi in X (respectively, Y) partite.     

Let P = {p0,p1,...,pr-1} and Q = {q0,q1,...,qr-1} 

where 

pi = ( x

ip , y

ip )  

  = (
j

i

j

j kBX −∑
=1

)( +1, 
j

i

j

j lBY −∑
=1

)( +1)  

and 

qi = ( x

iq , y

iq ) 

  = (
1

1

)(
−

=

−∑ j

i

j

j kBX +1 ,
1

1

)(
−

=

−∑ j

i

j

j lBY +1), 

for ri ≤≤1 . 

define p0 = (0,0) and q0 = (0,0). 

 

 

The set P and Q indicate left-top and 

bottom-right of these intersection regions of two 

rectangles. In Figure 2.2, the set P = 

{(2,3),(4,4)}, Q = {(4,4),(5,5)}. 

 For set P = {p0,p1,...,pr-1}, Q = 

{q0,q1,...,qr-1}, define region(pi) be the induced 

subgraph of G, where V(region(pi)) =  

{ x

ip , x

ip +1,...,m}∪{ y

ip , y

ip +1,...,n}, define 

ds(i) be the set of nodes label i, )(1 Gdmi ≤≤ , 

define #stages be the size of generating base. 

 

 

 

 

 

 

 

 

 

 

Algorithm DP 

Input : a bipartite permutation graph 

G = B1
1

1

k

l⊕ B2
2

2

k

l⊕ ... 1

1

−

−
⊕ r

r

k

l
Br. 

Output : a domatic partition of G. 

BEGIN 

FOR i := 0 

label ),( 11
y

r

x

r pp
−−

 to i + 1; 

i ++ ; 

UNTIL ( mip x

r >+
−1

 or nip y

r >+
−1

) 

IF (the remainder nodes of Br dominate region(gr-1) ) 

label these nodes to i + 1; 

i ++ ; 

END IF 

FOR j := r - 2 DOWNTO 0 

FOR k := 1 TO i 

IF ( ds(k) cannot dominate region(pj) ) 

pick two vertices u,v where u,v come from first 

unlabeled vertex of region(pj) in X and Y partite 

respectively, if no such u,v vertices exits, set u = 0 

or v = 0. 

IF ( ds(k)∪{u} dominate region(pj) ) 

label u to k; 

END IF 

ELSE IF ( ds(k)∪{v} dominate region(pj) ) 

label v to k; 

END IF 

ELSE IF ( ds(k)∪{u,v} dominate region(pj) ) 

label u,v to k; 

END IF 

ELSE 

unlabeled ds(k); 

i -- ; 

END ELSE 

ENDIF 

 

merge unlabeled nodes to any dominate set; 

END 
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4 Correctness of Algorithm DP 

 

 We can prove this by induction on #stages. 

Basis step #stages = 1, which is the following 

case : 

 

 

Figure 4.1 

 

And we define A, B, C region according to p1 

and q1. Algorithm DP first will disjoint partition 

B  maximally such that each partition 

dominates A (suppose the size of this partition is 

m). Because only B  can dominate A, m will be 

the upper bound of dm(G). 

 Second, algorithm DP will assign nodes of 

B to these partitions such that there are 

maximum dominating sets of G (say dm(G)). 

 We prove this by contradiction. In the first 

step, let the size of disjoint partition be m’, 

where m’ < m, This will obtain a larger domatic 

number dm’(G), dm’(G) > dm(G). In another, 

after the first step, the total nodes needed from B 

is: βm’ - )()( 1111
yyxx pqpq −+− , where β is a 

constant only depending on region B, then we 

have : 

βm’ - )()( 1111
yyxx pqpq −+−  

< βm - )()( 1111
yyxx pqpq −+−  

 

Because nodes of region B are the same, i.e., 

dm’(G) ≤ dm(G). It means that we need fewer 

nodes to generate larger dominating sets. A 

contradiction occurs. 

 For #stages = n, the previous n-1 stages 

satisfy induction hypothesis, show in Figure 4.2 : 

 

 
Figure 4.2 

 

We can prove this case the same way as we do in 

the basis step. 

 It is easy to verify that Algorithm DP scans 

each vertex and each edge constant times. 

Therefore, the following Theorem can be 

obtained. 

 

Theorem 4.1 The time complexity of Algorithm 

DP is O(n+m). 

 

5 Conclusions 

 

Domatic number problem is so essential 

and fundamental to graph theory and its 

applications. It has been known that the problem 

is NP-Hard on bipartite graphs. This paper has 

proposed a linear-time algorithm for the problem 

on bipartite permutation graphs. It is worthy to 

extend the result of this paper to the super 

classes of bipartite permutation graphs such as 

double convex bipartite graphs, convex bipartite 

graphs, and permutation graphs. Meanwhile, it is 

B 

A 

C 

G 
n-1th stage 

nth stage 

. . . 
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a practical issue to derive efficient 

approximation algorithms for bipartite graphs by 

modifying our algorithm. We are now working 

this issue. 

 

 

Reference 

 

[1] A.A. Bertossi, “On the domatic number 

of interval graphs”, Inform. Process. Lett. 

28 (1988) 275-280. 

[2] A. Srinivasa Rao and C. Pandu Rangan, 

“Linear algorithm for domatic number 

problem on interval graphs”, Inform. 

Process. Lett. 33 (1989) 29-33. 

[3] Haim Kaplan and Ron Shamir, “The 

domatic number problem on some perfect 

graph families”, Inform. Process. Lett. 

49 (1994) 51-56. 

[4] J. SPINRAD and A. BRANDSTÄDT and 

L. STEWART “BIPARTITE 

PERMUTATION GRAPHS”, Discrete 

Applied Mathematics 18 (1987) 279-292 

[5] M.A. Bonuccelli, “Dominating sets and 

domatic number of circular arc graphs”, 

Discrete Appl. Math. 12 (1985) 203-213 

[6] M.R. Garey and D.S. Johnson, 

“Computers and Intractability: A Guide 

to the Theory of NP-Completeness” 

Freeman, San Francisco, CA, 1979. 

[7] S.L. Peng and M.S. Chang, “A simple 

linear time algorithm for the domatic 

partition problem on strongly chordal 

graphs”, Inform. Process. Lett. 43 (1992) 

297-300. 

[8] S.L. Peng and M.S. Chang. “A new 

approach for domatic number problem 

on interval graphs”, Proc. National 

Computer Symp. 1991, Taipei, Republic 

of China, pp. 236-241. 

[9] S.L. Peng, J.H. Lee, J.R. Lin, C.S. Liu 

“On the C4-destroying of Bipartite 

Permutation Graphs”, Proc. Workshop 

on Combinatorial Mathematics and 

Computation Theory 2004 p.86-90 

[10] T.L. Lu, P.H. Ho and G.J. Chang, “The 

domatic number problem in interval 

graphs”, SIAM J. Discrete Math. 3 

(1990) 531-536. 

 


