A Multiobjective Evolutionary Solution for Short-Haul

Airline Crew Pairing Problem
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Abstract

The Airline Crew Pairing Problem
(ACPP) which consists of finding crew
itineraries and satisfying the related law and
regulation constraints is a significantly
economic challenge. And many efforts have
been spent by airline industry in the search
for efficient and effective solutions. Instead
of using the traditional set partitioning
model, a different view is adopted here to
model the crewing problem and formulate it
with a set of combinational optimization
equations.

In general, there are two phases in crew
pairing, such as pairing generation and
pairing optimization to be solved. A method
of inequality-based multiobjective genetic

algorithm (MMGA) is used here to provide

the solution and solve them at the same time.

Besides, with the Method of Inequalities

(MOI), designers can configure the ranges
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of solutions by adjusting an auxiliary vector
of performance indices. In practice, the
proposed MMGA approach possesses the
merits of global exploration and can provide
several optimal or feasible solutions to help
planners perform efficient and effective

decision-making.

Keywords:  crew pairing, multiobjective
genetic algorithms, combinational
optimization
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1. Introduction

The airline scheduling which mainly

contains the scheduling of aircraft
maintenance, the routing for aircraft and the
crew scheduling affects the most costs and
benefits of the airline company. In the crew
scheduling part, all flights which are
assigned to the aircrafts according to the
routing schedule require the personnel, such
as pilots and crew members. Due to the laws
and regulations, the working hours of
personnel are limited. Therefore, the flights
assigned to one aircraft should be separated
to several sets so they can be assigned to
several groups of crew members.

A pairing for crews is a sequence of
flight duties, starting and ending at a crew
base. An overnight connection between two
duties is usually called layover and the
airline company needs to pay extra cost for
such conditions. Hence, the main goals of
the crew pairing problem are shown as
follows.

B To minimize number of groups

B To minimize layover number

B To satisfy the laws and regulations

In general, the crew pairing problem can

be categorized as three types of problems

according to the periodical cycle, such as
daily problem, monthly problem, and dated
problem (Gopalakrishnan and Johnson,
2005). The schedules form a cycle in one
day, one week, and one month, respectively.
In this paper, the focus is to deal with the
daily case.

From the solution steps, there are two
main phases, pairing generation and pairing
optimization, to provide a solution for the
daily crew pairing. Most researches use
enumeration way in the former phase. The
drawbacks of enumeration are the solution
space will be limited and time consuming
for planners. Therefore, we use the genetic
algorithms (GA) to integrate both phases.
Genetic algorithms, first introduced by
Holland, were later improved by many
researchers (Holland, 1975; Leung and
Wang, 2001; Deb, 2003; Tsai et al., 2004).
GAs possess the global explorer capabilities
and have been successfully used in many
multi-objective researches (Lee et al., 2007,
Chou, 2008).

In this paper, the airline crew pairing
problem would be formulated into
combination optimization equations and the
optimal or feasible solutions would be
globally searched by using a method of
inequality-based = multiobjective  genetic
algorithm (MMGA). A real-world case study
would be presented later to show the good
pairing

capabilities of the proposed

approach.

2. Related Works

A detailed survey of aircrew pairing



problems can refer Gopalakrishnan and
Johnson (2005). And there have been more
researches on crew scheduling. For example,
Arabeyre (1969) surveyed older work on
crew scheduling. Etschmaier and Mathaisel
(1985) provided a more recent survey. Some
more recent algorithms and practices have
been proposed as the column generation
approach to solve the crew pairing problem
(Crainic and Rousseau, 1987; Lavoie et al.,
1988; Hoffman and Padberg, 1993).

3. Mathematical Models

In this section, the mathematical models
are described first and then, the objective
functions and the definition of auxiliary
performance index vector is described later.
Notations

a : number of group of crew members

f: maximal number of daily flights

assigned to each group of crewmembers
y . number of flights

L number of possible pairings

suggested by planners
f.: identifier of the i™ flight, 1<i<y,

and the set of F is denoted as
F={I<i<y}.
Also, various associated information of
each f, are listed as follows.
f.: identifier of f,,

origin of fj,

p;:
P;: destination of f;,
f-

.1 departure time from P,

t. : arrival timein p,,

To overcome this time-consuming

problem, an improved form of candidate

solutions is proposed as:
S=15[s,, e FUf-1}] (1)
where S is a two-dimensional matrix of

ax 3 elements, and each s, ; represents a

flight identifier which means the j" flight
assigned to the it group of crew member. To
keep the number of flights assigned to each
group identical, we assign dummy flights
with flight identifier -1.

The main feature of the proposed model
is that the number of pairings becomes to a
controllable variable instead of unexpected
value within the range 0< z <2’ —1. This
is useful when performing practical pairing
process since the number of pairing is
related to the manpower in the airline
company.

The goal of aircrew pairing problem is to
make the total cost to be minimized.
Therefore, the objective functions to be
minimized, such as ground turn-around time,
crew connection, number of layover, and
flight duty period are described as follows.

Ground turn-around time objective
ensures that each aircraft has sufficient
ground turn-around time not less than the
legal ground turn-around time, denoted as
Ty , to be allowed for the subsequent flight.

The objective is defined as

a £-1
,(8)=2 > %! )
where

n _
Xi,j =

0 if (fi,j+1 _fi,j)ZTx
TX _(fi,j+1 _t_l,j) otherwise

Crew connection objective ensures that



the arrival airport of s, ; is the same with

the departure airport of s for each

i, j+l1

aircraft in S, for 1<t<a , and
1< j< B —1. This objective is to reduce the

extra cost of the nonprofit flight from  p; ;

to P, ;, - The objective is defined as

-1

£,8)=> > x? )

i=l j=

where X7 ={0 G : Pro
1 otherwise
Layover objective ensures each group of
crewmembers can start from and end to their
home bases. Suppose the first and last flights
of the i group in S are Si; and Sjjast

respectively. The objective can be defined as

$,(8)D 4)
i=1
_ 0 pi,l = ﬁi,last
where k, = .
1 otherwise

According to the laws and regulations,
the duty time of each aircrew pair should not
be more than a legal time Tgpp. Therefore,

the fourth evaluation function can be defined

as follows.
$,(S)Y 1, o
i=1
where n = 0 fi,last _f.i,l STFDP
1 otherwise

In other words, if the total flight duty
time of one aircrew pair exceeds the legal

time Trpp, the evaluation function ¢, (S)

will be added the excessive time, or the

violation time.
Definition of Auxiliary Performance

Index Vector

In original formulations of

multiobjective  optimization, the set of
admissible bounds are not considered. To
make the admissible bounds be considered
in multiobjective optimization, the auxiliary
performance index is proposed. The original
objectives are transformed into the auxiliary

performance index vector:
A(Sa 8) = (ﬂ’l (Sa gl )7 ﬂ*z (Sa 82 )7

(6)
2’3 (S’ ‘93 )’ /14 (Ss 84 )3 /15 (S, 85 ))
where A, (S,&,)= {O if ¢, (S).S &
#,(S)—¢&, otherwise.

The auxiliary performance index vector
related to the inequalities is converted from
the MOI problem to a multiobjective
optimization problem. The multiobjective
formulation using the auxiliary performance
index vector is useful for MOI since the
admissible bounds can be combined to all
objectives. Therefore, each objective can be
transformed to the form of inequalities.

Formulation of the Aircraft Routing

Problem

above, this
small-the-best

Instead of combining these

As mentioned problem

comprises of multiple
objectives.
objectives into a single scalar, the aircraft
routing problem with multiple objectives
can be formulated as follows.

4 (8,8,

Minimize 1<i<4  (7)

subject to
! S = [Si,j]axﬁ



4. Solution by Using MMGA

For a method of inequalities (MOI),
MMGA

capability

employs the global search

of genetic algorithms and
proposes an auxiliary vector performance
index which would be related to the set of
design  specifications and can be
multi-objective optimized according to the
assigned fitness based on Pareto-ranking
rules. An applied auxiliary vector index can
always  generate tunable parameters
belonging to a strictly Pareto optimal set and
provide the planners useful information for
adjusting the

design specifications. A

Start

v

Initialization & Fitness
Evaluation on D, r=0

v

heuristic Pareto algorithm was also provided
to lower the Pareto computation costs. A
diversity consideration on the population
was invited into the algorithm to avoid the
effect of the generic drift (bias) and
premature convergence.

The flow chart of the algorithm can be
summarized in Figure 1. Just like the general
multi-objective genetic algorithm (MOGA),
evolutionary population should be operated
by iterations through initialization, fitness
evaluation,

computation, multiobjective

crossover to generate offspring, mutation

and selection for elimination.

Selection on D’ <

v

Crossover from D'to D"’ Ehtlls)r?figl:liljg?}lon
. t MMGA Rank Evaluation
Mutation on D > onD'U D"

D': Population set in generation

D/t.

Off-spring set in generation

Figure 1. Flow chart diagram

And the detailed algorithm is described
as the follows.
MOI-Based Multiobjective GA (MMGA)

Input: (1) A set of candidate solutions
DY ={s{",SP,---,SV} with
population n in generation t.

(2) Two

temporary sets of

candidate solutions: D'V, E©.
(3) The admissible bound vector

€.
Output: A set of optimal candidate
solutions within meeting the

requirements  of  admissible

bounds.



Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

MMGA

parameters: population size n,

Determine the

maximum number of generations
g, crossover rate re[0,1], and
mutation rate 1 €[0,1].

Determine the admissible bound
vector & =1{g,,¢,,6,,6,} of the

transition time objective,
passenger crew objective,
layover objective, flight duty

period objective, and working
hour objective.

Let t:=0. Initialize the population
D"

Adopt the repairing process to
adjust all chromosomes for the
violation of time constraint
violation.

Evaluate the auxiliary perform
index vector of each individual
S in entire population n.

Apply
fitness assignment method to

improved  rank-based

calculate the fitness of each

individual S.

Step 7.

Step 8.

Step 9.

Step 10:

Step 11:

Step 12:
Step 13:

If the

generation t reaches g, or all the

number of current
objectives are satisfied, then stop
the algorithm.

Choose two individuals using the
tournament selection method.
Perform crossover and mutation
operators to  generate  the
populations of next generation
t+1 in the mating pool D'". The
mutation  operator
flights in the

chromosome and exchanges their

randomly

selects two

positions.
Adopt the repairing process for
the chromosomes in D"V
Evaluate the auxiliary
performance index vector of each
individual in D'V,

DY = DO UD®.

Adopt

fitness assignment method again

improved  rank-based
to calculate the fitness of each
individual in D, and let t:=t+1.
Go to Step 7.

Chromosome 1

g

Flights before time t

Flights after time t

Chromosome 2

Flights before time t

Flights after time t

Figure 2. The representation of one individual



Encoding Scheme

The encoding scheme of each
individual is a two-dimensional matrix. To
make the encoding more -efficiency, we
transform the chromosome to a string. To
satisfy the objective of working hour, we use
a modified approach to reduce the
complexity on solving the working hour
objective. In each individual, the flights that
are earlier than time t are allocated in the
left-hand side of the individual. On the other
aspect, the flights that are later than time t
in the right-hand-side of the

individual as Figure 2.

are put

Selection Operation

The roulette-wheel selection is adopted
to select the best fitting individuals of the
population into a mating pool. The selection
probability B of individual is defined as
follow:

Zizl F (I) (8)

where F() is the fitness of the individual

I and N is the population size.

Crossover

In the crossover process, we use an
order-based crossover. First, a random mask
is generated to determine which flights are
fixed, and flights are to be changed. If the i"
element of the generated mask is 1, then the
ith gene of offspringl is fixed. Otherwise, it
will be replaced. As shown in Figure 3, the
fixed genes {1, 3, 4, 7, 9, 11, 12, 14} on
both offspringl and offspring2 will be kept
in the original positions. According to
Figure 3, the genes to be replaced on each
offspring are in the following order:

Offspringl: 2 -5 —>6 —>8 —> 10— 13

Offspring2: 8§ - 5—>2—>6—> 10— 13

After the process of crossover, the orders
of the genes are exchanged according to the
following order:

Offspringl: 8 »5—2—6—10—13

Offspring2: 2—5—6—8—10—13

Offspring , [ 3 4 B

6. nlﬂ 1 12 13 14

Mask 0|1 0

101

Offspring , n 8

5.2 SRR 6 [10] 13

@ Crossover

Offspring | [ n 3 4 B

26“10 1 1214

Offspring n 2

56 PO s (1013

Figure 3. Order-based crossover

Mutation

Also, we use an improved mutation

operator as the Figure 4. The individual are

temporarily transformed to the conceptual



model of 2-dimensional matrix, i.e. each

row is the set of flights assigned to a group

violations have more chances to be selected.

This can prevent extra costs of inefficient

of crewmembers. search.
When selecting the genes to be
exchanged, only the segments with
Violations

Crew , [N
Crew: [T
Crew » [T
Crew , [ T

Crew n

I Real flight
@ D Dummy flight
0]

[0]

Figure 4. Mutation opeation

5. Experiments

In this section, we demonstrate the
experimental results. The experiment
focuses on the practical timetable of MD90.
There are 70 flights in the aircraft routing
for pairing crews. The goal is to find out a
crew pairing schedule that matches all

objectives. Ideally, each pairing should have
6. Conclusion

The goal of this research is to solve the
complex pairing problem by using MMGA
approach and to demonstrate that this
method is capable of reducing solution time
which is verified in the real world. Results
obtained from the case of a short-haul
domestic airline in Taiwan shows clearly the

advantages of solving the pairing problem.

the same origin and destination without
layover costs.

As shown in Figure 5, the pairing case
from the solution set is feasible in all
objectives. The duty periods of all groups
are within 10 hours. And Figure 6 shows the
convergence diagram about the various

objective values of the top chromosome.

With the global explorer capabilities of GAs,
the pairing generation and pairing
optimization can be solved at the same time.

The experiment results for MD90 show
the good pairing solutions which optimize
various objectives such as crew turn around
time, crew connection, Layover time and

flight duty period.



Figure 5. Crew pairing of 15 groups
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