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Abstract

The pattern of linkage disequilibrium (LD) plays a cen-

tral role in genome-wide association studies of identi-

fying genetic variation responsible of common human

diseases. A Single Nucleotide Polymorphism or SNP

is a DNA sequence variation occurring when a sin-

gle nucleotide in the genome differs between members

of species. Recent studies show that the patterns of

linkage disequilibrium observed in human chromosome

reveal a block-like structure; the high LD regions are

called haplotype blocks, and furthermore, a small sub-

set of SNPs, called tag SNPs, is sufficient to capture

the haplotype patterns in each haplotype block. Both

Patil [18] and Zhang et al. [24] have proposed algo-

rithms to partition haplotype sample into blocks fully

under the circumstances of requiring minimal number

of tag SNPs. However, when resources are limited, in-

vestigators and biologists may not be able to genotype

all the tag SNPs and instead must restrict the num-

ber of tag SNPs used in their studies. In this paper,

we examine several haplotype block diversity evalua-

tion functions and propose dynamic programming al-

gorithms for haplotype block partitioning with using
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the limited number of tag SNPs. We implement these

algorithms and analyze the chromosome 21 haplotype

data given by Patil et al. [18]. When the sample is par-

titioned into blocks fully, we identify a total of 2,266

blocks and 3,260 tag SNPs which is smaller than those

identified by Zhang et al. [24]. We demonstrate that

Zhang’s algorithm does not find the optimal solution

due to ignoring the non-monotonic property of com-

mon haplotype evaluation function. The algorithms

described have been implemented in the web-based

system as the analysis tools for bioinformaticists and

geneticists.

Keywords:SNP, Diversity, haplotype block, tag

SNP, dynamic programming.

1 Introduction

A Single Nucleotide Polymorphism, or SNP, is

a small genetic variation, that occur within a per-

son’s DNA sequence. It occurs when a single nu-

cleotide is replaced by others. Mutation in DNA is

the principle factor resulted in the phenotypic dif-

ferences among human beings, and SNPs are the

most common mutations. They are useful poly-

morphic markers to investigate genes susceptible

to diseases or those related to drug responsiveness.
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Furthermore, a small subset of SNPs directly in-

fluences the quality or quantity of the gene prod-

uct, and increase a risk to certain diseases and

to severe side effect by drugs. Alleles of SNPs

that are close together tend to be inherited to-

gether. A haplotype refers to a set of SNPs found

to be statistically associated on a single chromo-

some. Haplotypes defined by common SNPs have

important implications for identifying disease as-

sociation and human traits [3, 19]. Recent studies

have shown that the patterns of linkage disequilib-

rium (LD) observed in human chromosome reveal

a block-like structure [3, 4, 18], and therefore the

entire chromosome can be partitioned into high

LD regions interspersed by low LD regions. The

high LD regions are called haplotype blocks and

the low LD ones are referred to as recombination

hotspots. Within a haplotype block, there is little

or no recombination that occurs and the SNPs are

highly correlated. There are only a few common

haplotypes, that account for most of the varia-

tion from person to person, in a haplotype blocks.

Furthermore, each haplotype block, in which the

genome is largely made up of regions of low di-

versity, can be characterized by a small number

of SNPs, which are referred to as tag SNPs [13].

Tag SNPs are aimed at characterizing candidate

genes avoiding redundancies in genotyping. Most

of the tag SNP selection strategies are haplotype

based. The aim is to identify a minimal subset

of SNPs that can characterize the most common

haplotypes [18, 24]. The characteristics of hap-

lotype blocks and tag SNPs are very important

and useful for medicine and therapy. Studying on

haplotype blocks and tag SNPs not only decrease

the cost for detecting inherited diseases but also

has many contributions for classifying the race of

human and researching on species evolution.

Diversity functions

Several operational definitions have been used

to identify haplotype-block structures, includ-

ing LD-based [4, 22], recombination-based [12,

23], information-complexity-based [1, 14, 6] and

diversity-based [2, 18, 25] methods. The result of

block partition and the meaning of each haplotype

block may be different by using different measur-

ing formula. For simplicity, haplotype samples can

be converted into haplotype matrices by assigned

major alleles to 0 and minor alleles to 1.

Definition 1 (haplotype block diversity)

Given an interval [i, j] of a haplotype matrix A,

a diversity function, δ : [i, j] → δ(i, j) ∈ R is an

evaluation function measuring the diversity of the

submatrix A(i, j).

Haplotype blocks are the genome regions with

high LD, thus it implies that no matter what kinds

of haplotype block definition we used, the patterns

of haplotype within the block will be small, and

the diversity of the block will be low. In terms

of diversity functions, the block selection prob-

lem can be viewed as finding a segmentation of

given haplotype matrix such that the diversities

of chosen blocks satisfy certain value constraint.

Following we examine several haplotype block di-

versity evaluation functions. Given an m×n hap-

lotype matrix A, a block S(i, j) (i, j are the block

boundaries) of matrix A is viewed as m haplo-

type strings; they are partitioned into groups by

merging identical haplotype strings into the same

group. The probability pi of each haplotype pat-

tern si, is defined accordingly such that
∑

pi = 1.
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As an example, Li [15] proposes a diversity for-

mula defined by

δD(S) = 1−
∑

si∈S

p2
i . (1)

Note that δD(S) is the probability that two hap-

lotype strings chosen at random from S are dif-

ferent from each other. Other measurements of

diversity can be obtained by choosing different

diversity function; for example, to measure the

information-complexity one can choose the infor-

mation entropy (negative-log) function [1, 14, 6]:

δE(S) = −
∑

si∈S

pi log pi. (2)

In the literatures [18, 24, 25], Patil and Zhang et

al. define a haplotype block as a region where at

least 80% of observed haplotypes within a block

must be common haplotype. As the same defini-

tion of common haplotype in the literatures, the

coverage of common haplotype of the block can be

formulated as a form of diversity:

δC(S) = 1−

∑
si∈C

pi

∑
si∈U

pi
=

∑
si∈M

1
m

∑
si∈U

pi
. (3)

Here U denotes the unambiguous haplotypes, C

denotes the common haplotypes, and M denotes

the singleton haplotypes. In other words, Patil et

al. require that δC(S) ≤ 20%.

Some studies [4, 28, 26] propose the haplotype

block definition based on LD measure D′; however,

there is no consensus definition for it so far. Zhang

and Jin [28] define a haplotype block as a region in

which all pair-wise |D′| values are not lower than

a threshold α. Let S denote a haplotype interval

[i, j]. We define the diversity as the complement

of minimal |D′| of S. By the definition, S is a

haplotype block if its diversity is lower than 1−α.

δL1(S) = 1−min{(|D′
i′j′ |)|i ≤ i′ < j′ ≤ j}. (4)

Zhang et al. [26] also propose the other definition

for haplotype block; they require at least α pro-

portion of SNP pairs having strong LD (the pair-

wise |D′| greater than a threshold) in each block.

Similarly, we can use the diversity to redefine the

function. We define the diversity as the proportion

of SNP pairs that do not have strong LD. There-

fore, haplotype interval S is a feasible haplotype

block if its diversity is smaller than a threshold.

We can use the following diversity function to cal-

culate the diversity of S. Here N(i, j) denotes the

number of SNP pairs that do not have strong LD

in the interval [i, j].

δL2(S) =
N(i, j)(
(j−i)+1

2

) =
N(i, j)

1
2 [(j − i)2 + j − i]

. (5)

Diversity measurement usually reflects the activ-

ity of recombination events occurred during the

evolutionary process. Generally, haplotype blocks

with low diversity indicates conserved regions of

genome.

Definition 2 (monotonic diversity) A diver-

sity function δ is said to be monotonic if, for any

haplotype block (interval) I = [i, j] of A, it follows

that δ(i′, j′) ≤ δ(i, j) whenever [i′, j′] ⊂ [i, j]; that

is, the diversity of any subinterval of I is always

no larger than the diversity of I.

It is easily verified that many diversity functions,

including the diversity functions (1) and (2), are

monotonic. However, the evaluative function of

common haplotype proposed by Patil et al. [18]

does not satisfy the monotonic property when the

haplotype sample has missing data. For example,

in Figure 1, it is a small portion of human chro-

mosome 21 haplotype sample provided by Patil,

here n denotes the missing data. We can observe
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that the coverage of common haplotype of interval

[21900,21907] is 9/10, more than 80%. Therefore,

according to the definition proposed by Patil et

al., it is a feasible haplotype block. On the other

hand, the coverage of common haplotype of inter-

val [21902,21907] is 3/7, less than 80%, so it is

not a feasible haplotype block. Note that interval

[21900,21907] and interval [21902,21907] are two

intervals terminated at the same SNP locus, and

interval [21900,21907] which has more SNPs is a

feasible haplotype block but interval [21902,21907]

is not.

Figure 1: The evaluative function of common hap-
lotype does not satisfy the monotomic property
when the haplotype sample has missing data.

Tag SNPs can capture most of the haplotype

diversity in the blocks, and therefore could poten-

tially capture most of the information for associ-

ation between a trait and the SNP marker loci.

We can figure out the diversity and features of

each haplotype block easily and economically by

using tag SNPs. For these reasons, we want to

define the haplotype structure by using tag SNPs

as fewer as possible. In previous studies, Patil et

al. [18] defined a haplotype block as a region in

which a fraction of percent or more of all the ob-

served haplotypes are represented at least n times

or at a given threshold in the sample. They ap-

plied the optimization criteria outlined by Zhang

et al. [24, 25] and describe a general algorithm

that defines block boundaries in a way that mini-

mizes the number of tag SNPs that are required to

uniquely distinguish a certain percentage of all the

haplotypes in a region. Patil et al. have developed

a greedy algorithm and identified a total of 4,563

tag SNPs and a total of 4,135 blocks to define the

haplotype structure of human chromosome 21. In

each block they required at least 80% of haplo-

type must be represented more than once in the

block. In addition, Zhang et al. [24] used a dy-

namic programming approach to reduce the num-

bers of blocks and tag SNPs to 2,575 and 3,582,

respectively.

Patil and Zhang’s algorithms both partition the

haplotype sample in to blocks fully under the cir-

cumstances of requiring minimal number of tag

SNPs. However, when resources are limited, in-

vestigators and biologists may not be able to geno-

type all the tag SNPs and instead must restrict the

number of tag SNPs used in their studies. In this

paper, we propose several dynamic programming

algorithms concerning haplotype block partition

problems.

Problem 1 (longest-blocks-t-tags) Given

a haplotype matrix A and a diversity upper
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limit D, we wish to find a list of feasible blocks

whose total tag SNP numbers is less than t

such that the total length is maximized. That

is, output the set S = {B1, B2, . . . , B|S|} such

that (∀Bi ∈ S)(δ(Bi) ≤ D) and
∑

tag(Bi) ≤ t;

tag(Bi) denote the number of tag SNPs required

for block Bi, so that |B1| + |B2| + · · · + |B|S|| is

maximized.

In our previous study [16], we show that assum-

ing all of the feasible blocks and tag SNPs required

for each block have been preprocessed, the longest-

blocks-t-tags problem can be solved in O(tL) time

and O(tn) space, here L denotes the total number

of feasible blocks and n represents the total num-

ber of SNPs. In this paper, we propose a linear

space algorithm for the same problem.

2 Method

In this section, we show dynamic programming

algorithms to partition haplotype blocks with con-

straints on diversity and tag SNP number. That

is, we want to find the longest segmentation S con-

sist of some blocks with the diversity of each block

is less than an upper limit D and the total number

of tag SNPs required for these blocks does not ex-

ceed a specific number t. This problem had been

discussed by Zhang et al. [27], but here we propose

a more time-efficiency and linear space algorithm

to solve the problem. The problem definition is

shown in Problem 1.

Our algorithm begin with the preprocessing of

the farthest site (good partner) [17] for each SNP

marker. According to the haplotype block defi-

nition in Patil [18] and the discussion in previous

section, we know that the common haplotypes cov-

erage evaluation function is not monotonic. That

is, for each SNP marker j there will be a left far-

thest marker i so that [i, j] is the longest haplo-

type block among all feasible blocks that termi-

nated at site j, but some interval [i′, j] ⊂ [i, j]

are not feasible blocks. Thus, before the compu-

tation of finding the longest segmentation using

limited tag SNPs, we need to preprocess the set

of left good partners Li for each SNP marker i,

Li = {x|[x, i] is a feasible haplotype block}. We

can use the event list [17, 20] which is computed by

techniques of suffix tree [7, 21] and lowest common

ancestor (LCA) [9] to find the Li for each SNP lo-

cus i in O(mn), linear proportional to the input

size of haplotype matrix, time. Furthermore, we

also need to pre-compute the number of tag SNPs

required for each feasible haplotype block. This

problem can be solve by using the algorithm de-

scribed in section 2.1. The time complexity of the

algorithm is O(2t0L); here L is the number of all

feasible blocks, and t0 is the maximum number of

tag SNPs required among all feasible blocks. In

our experience, the preprocessing will need much

time, however, we just need to compute it once.

2.1 Tag SNP Selection Algorithms

According to the haplotype block definition de-

fined by Patil et al. [18], they require that at least

ρ = 80% of unambiguous haplotypes are repre-

sented more than once. Using the same criteria as

in Patil [18], for each block, we want to minimize

the number of SNPs that distinguish uniquely at

least ρ percentage of the unambiguous haplotypes

in the block. Those SNPs can be thought of as a

signature of the haplotype block partition.

It is interesting to note that, although the num-
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Figure 2: An example of a longer block but re-
quired few tag SNPs.

ber of tag SNPs required increases as the length

of haplotype block increases in general, there are

exceptions to the case. As an example shown in

Figure 2, the block a which consisted of 3 SNP

markers needs 3 tag SNPs to distinguish each hap-

lotype uniquely, but the block b which consisted of

4 SNP markers just needs 2 tag SNPs (i.e. column

2 and column 4.)

The problem of finding the minimum number of

tag SNPs within a block to uniquely distinguish all

the haplotypes is known as the MINIMUM TEST

SET problem, which has been proven to be NP-

Complete [5]. Thus, there are no polynomial time

algorithms that guarantees to find the optimal so-

lution for any input. Although, some approxima-

tion algorithms such as the greedy algorithm have

been proposed but may fail to find the optimal

solution [11, 30, 29]. In order to find the opti-

mal solution, we adopt the brute force method to

find tag SNPs within a block. Our strategy for

selecting the tag SNPs in haplotype blocks is as

the following. First, the common haplotypes are

grouped into k distinct patterns by merging the

compatible haplotypes in each block. After the

missing data are assigned in each group, we decide

the least number of tag SNPs required based on

the least number of haplotype groups needed to be

distinguished such that haplotypes in these groups

contain at least ρ percentage of the unambiguous

haplotypes in the block. Finally, we select a loci

set consisted of minimum number of SNPs on the

haplotypes such that at least ρ percentage of the

unambiguous haplotypes can be uniquely distin-

guished; the exhaustive searching method can be

used very efficiently since the number of tag SNPs

needed for each block is usually modest in the situ-

ation. The exhaustive searching algorithm shown

in Figure 3 enumerates next t-combination in lexi-

cographic order to generate the next candidate tag

SNP loci set until each pattern can be uniquely

distinguish.

2.2 Longest Blocks Partition Using
Limited Number of Tag SNPs

In our previous study [16], given an m×n haplo-

type matrix, after the preprocessing of left farthest

site for each SNP marker and tag SNPs required

for each feasible blocks, we show that finding the

longest blocks covered by t tag SNPs can be found

in O(tL)(or O(tnl)) time; here t denotes the num-

ber of tag SNPs used, and L =
∑n

i=1 |Li| denotes

the total number of feasible blocks. The results

are summarized as following.

Let f(i, t) define the length of the longest seg-

mentation of haplotype matrix A(1, i) covered by

t tag SNPs, and tag(i, j) denote the number of tag

SNPs required for block which is bounded by sites

i and j. It is interesting to note that f(i, t) can be

computed by the following recurrence relation:

f(1, 0) =
{

0 if tag(1, 1) > 0
1 if tag(1, 1) = 0

f(1, t) = 1 if t ≥ 1
f(i, t) = −∞ if t < 0

f(i, t) =
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FindTag(B, ρ) . Find the number of tag SNPs required for haplotype block B
such that ρ percentage of unambiguous haplotypes in B can be
distinguished uniquely.

Input: A percentage ρ and haplotype block B with unambiguous haplotype pattern
P = {p1, p2, . . . , pk}; the haplotypes number in each pattern is n1, n2, . . . , nk.

Output: The tag SNPs required for haplotype block B.
1 Sort k haplotype patterns in P = 〈p1, p2, . . . , pk〉.

. pi’s are listed in decreasing order of the number of haplotype strings.
2 U = ρ · (∑k

i=1 ni) . U is the number of ρ percentage of unambiguous haplotypes.
3 Find the minimum number g such that

∑g
i=1 ni ≥ U

4 t ← dlog2 ge . t is the minimum number of tag SNPs required.
5 for i ← 1 to t− 1 do . initiate the tag SNP loci set {a[1], a[2], . . . , a[t]}.
6 a[i] ← i
7 a[t] ← a[t− 1]; h ← 0
8 while h < U do . h is the total haplotype strings that can be distinguished.
9 i ← t . generate the next t-combination in lexicographic order.
10 while a[i] = l − t + i do . l is the length of haplotype string .
11 i ← i− 1
12 if i = 0
13 t ← t + 1
14 for i ← 1 to t do
15 a[i] ← i
16 else
17 a[i] ← a[i] + 1
18 for j ← i + 1 to t do
19 a[j] ← a[i] + j − i
20 h ← ∑

nx, x ∈ {x|px is the haplotype that can be distinguished by tag SNP.}
21 return t

Figure 3: The exhaustive searching algorithm for tag SNPs selection.

max





f(i− 1, t)

maxk∈Li

{
(i− k + 1)+
f(k − 1, t− tag(k, i))

}
(6)

The maximized segmentation S between sites

1 and i will have two cases, either the site i is

included in the last block of S or not. If site i is

not included in the last block of S, it will find S

between sites 1 and i−1, otherwise there will exist

a site k ∈ Li such that [k, i] is the last block of S.

In the latter case, the tag SNPs required for the

bock [k, i] is tag(k, i) which has been calculated in

preprocessing, so we can find other blocks which

are covered by other t−tag(k, i) tag SNPs between

sites 1 and k − 1.

Note that if l is the average number of |Li| for

each SNP marker i, f(i, t) will be able to be deter-

mined in O(l) time suppose f(1..(i − 1), t)’s and

f(·, 1..(t−1))’s being ready. It follows that f(·, t)’s
can be calculated from f(·, 1..(t − 1))’s totally in

O(nl) time. Thus a computation ordering from

f(·, 1)’s, f(·, 2)’s, . . . , to f(·, t)’s leads to the fol-

lowing result.

Theorem 1 (longest-blocks-t-tags) Given a

haplotype matrix A, a diversity upper limit D

and the number of tag SNP t, find a segmen-

tation S consisted of k feasible blocks such that

(∀i)(δ(Bi) ≤ D) and
∑

tag(Bi) ≤ t, so that the

total length of S is maximized can be done in

O(tnl) time after the preprocessing of Li and
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tag(k, i)’s, k ∈ Li, for each SNP marker i.

The recurrence relation has been used to de-

velop a dynamic programming algorithm, the al-

gorithm also can be viewed in [16]. We must point

out that the algorithm also can be used to parti-

tion haplotypes into blocks with a fixed genome

coverage, that has been discussed by Zhang et

al. [27]. We can define the length of block B =

[i, j] as the actual length of the genome span-

ning form the i-th SNP to the j-th SNP. Given

an m × n haplotype matrix of a chromosome of

length G and a percentage α ≤ 1, find a segmenta-

tion S = {B1, B2, . . . , B|S|} with the total length

`(S) ≥ αG such that the total tag SNPs required

is minimized; the recurrence relation f(1, n, t) is a

block length evaluation function, given n, we can

increase the value of f(1, n, t) by increasing the

value of t until f(1, n, t) ≥ αG. After finding the

t such that f(1, n, t) ≥ αG, we can get the bound-

aries of each block by tracing back.

2.3 Linear Space Algorithms

In section 2.2, given an m × n haplotype ma-

trix A, a diversity upper limit D, and a specific

number of tag SNPs t, we propose an O(tnl) (or

O(tL)) time algorithm for finding the longest seg-

mentation S containing blocks with the diversity

of each block is no greater than D and the total

tag SNPs number required for these blocks does

not exceed t. We apply the dynamic programming

technique to general case and obtain the following

recurrence relation. Note that f(i, j, t) define the

length of the longest segmentation of haplotype

matrix A(i, j) covered by t tag SNPs.

f(i, i, 0) =
{

0 if tag(i, i) > 0
1 if tag(i, i) = 0

f(i, i, t) = 1 if t ≥ 1
f(i, j, t) = −∞ if t < 0
f(i, j, t) = −∞ if j < i

f(i, j, t) =

max





f(i, j − 1, t)

maxk∈Lj

{
(j − k + 1)+
f(i, k − 1, t− tag(k, j))

}
(7)

Lemma 1 Given an m × n haplotype matrix A,

a diversity upper limit D, and the number of tag

SNPs t, for an any constrained interval [i, j],

1 ≤ i ≤ j ≤ n, find a segmentation consisted of

k feasible blocks such that (∀i)(δ(Bi) ≤ D) and
∑

tag(Bi) ≤ t, so that the total length of S is

maximized can be done in O(|j − i|lt) time after

the preprocessing of Li and tag(k, i)’s, k ∈ Li, for

each SNP marker i.

Clearly, the space complexity of our algorithm

shown in [16] is O(tn) for the retrieval of the

boundaries of each block by tracking back. Such

space requirement results in practiced difficulties

in cases where t and n become too large. For the

reason, we need to have a space-efficiency algo-

rithm to solve the problem. Using the similar con-

cept as in [10], we find a cut-point x∗ to divide n

SNP sites into two parts, n1 and n2, and use t∗

tag SNPs for n1 and the other t− t∗ tag SNPs for

n2 such that the total size of blocks covered by t∗

tags in n1 and blocks covered by t− t∗ tags in n2

is maximized. We obtain the following recurrence

relation.

f(i, j, t) = f(i, x∗, t∗) + f(x∗ + 1, j, t− t∗) (8)
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Figure 4: Illustration of the idea of recurrence
f(i, j, t).

The idea behind the recurrence relation is illus-
trated at Figure 4. Note that in order to make the
total size of blocks tagged by t∗ SNPs and t − t∗

SNPs maximized, we can not assign a half of t
to t∗ directly, because in some case, the b t

2c-th
and the (b t

2c + 1)-th SNP will be used to tag the
same block which is the member of the longest seg-
mentation. If we use the first to the b t

2c-th SNPs
to tag the blocks in n1, and use the (b t

2c + 1)-th
to the t-th SNPs to tag the blocks in n2, we will
not get the longest segmentation on n SNPs. In
general case, there will be many pairs of t∗ and
x∗ solutions which fit our request. For the pur-
pose of time efficiency, we want to make x∗ and
t∗ to approach the half of n and t as far as pos-
sible. Let t0 denote the maximum number of tag
SNPs required among all feasible blocks. In or-
der to find the appropriate value of t∗ and x∗, we
can examine t∗ in t0 continuous possible values,
b t

2c − b t0
2 c ≤ t∗ ≤ b t

2c + d t0
2 e, and examine x∗ in

all SNPs loci for each selection of t∗. Since t0 is
small in general case, we can find the t∗ and the
x∗ quickly. After finding the appropriate values of
t∗ and x∗, we can execute the steps recursively to
partition the original problem to two subproblems
repeatedly. Until t ≤ t0, we just use the dynamic
programming algorithm shown in [16] to solve each
subproblem. Here we can trace back to output the
boundaries of each block. The algorithm is shown
in Figure 5.

Theorem 2 (longest-blocks-t-tags) Assume
the maximum number of tag SNPs required
among all feasible blocks, t0, is a fixed constant.
Given a haplotype matrix A, a diversity upper
limit D, and the number of tag SNPs t, find a
segmentation S consisted of k feasible blocks such
that (∀i)(δ(Bi) ≤ D) and

∑
tag(Bi) ≤ t, so that

the total length of S is maximized can be done
in O(tnl) time and using linear space after the
preprocessing of Ri, Li and tag(k, i)’s, k ∈ Li, for
each SNP marker i.

Proof. We propose an O(tnl) time algorithm,
LisTag(i, j, T ), shown in Figure 5. The correct-
ness of the algorithm can be shown as follow.
When T ≤ t0, the algorithm uses the dynamic
programming algorithm shown in [16] to compute
f(i, j, T ) and output the boundaries of each blocks
by tracing back. If T > t0, we must find a x∗ be-
tween sites i and j, and find a t∗ between 0 and
T . Subsequently, we can find a maximum seg-
mentation S1 tagged by t∗ SNPs between sites i
and x∗ and a maximum segmentation S2 tagged
by T − t∗ SNPs between sites x∗+1 and j so that
the total size of S1 and S2 is equal to S which is
the maximum segmentation tagged by T SNPs be-
tween sites i and j. In general case, there will be
many pairs of t∗ and x∗ solutions which fit our re-
quest. For the purpose of time efficiency, we want
to make x∗ and t∗ to approach the half of n and t
as far as possible. In order to find the appropriate
values of t∗ and x∗, we can examine t∗ in t0 contin-
uous possible values, b t

2c−b t0
2 c ≤ t∗ ≤ b t

2c+d t0
2 e,

and examine x∗ in all SNPs loci for each selection
of t∗. In the case of T > t0, we first compute
f(i, x, t)’s and f(x + 1, j, T − t)’s, i ≤ x ≤ j − 1,
b t

2c − d t0
2 e ≤ t ≤ b t

2c + d t0
2 e, and put the result

into two two dimensional arrays A and B. Note
that the computation of f(x+1, j, T−t)’s uses the
similar idea with opposite direction as the compu-
tation of f(i, x, t)’s; we use the right good partners
Ri, Ri = {x|[i, x] is a feasible haplotype block},
to compute f(x + 1, j, T − t)’s from x = j − 1
down to x = i. Then we can find x∗ and t∗ such
that the total length of blocks tagged by t∗ tag
SNPs between sites i and x∗ and blocks tagged by
T −t∗ tag SNPs between sites x∗+1 and j is max-
imized. That is, we can find x∗ and t∗ such that
f(i, x∗, t∗)+f(x∗+1, j, T−t∗) is maximized. Next
steps we use recursive algorithm LisTag(i, x∗, t∗)
and LisTag(x∗+1, j, T − t∗) to list blocks tagged
by t∗ SNPs in [i, x∗] and blocks tagged by T − t∗

SNPs in [x∗ + 1, j].

In the algorithm, we use five global data struc-
tures involving arrays E, F , S, A, and B. Arrays
E and F are used to store the good partner points
Li and Ri for each SNP marker i, and array S
is used to store the tag SNPs required for each
feasible blocks. The data in E, F and S arrays
were calculated in preprocessing, and the space of
each array is L, the number of all feasible blocks.
In addition, we use two dimensional array A for
computing f(i, x, 0..bT

2 c+ d t0
2 e)’s and B for com-

puting f(x + 1, j, 0..bT
2 c + d t0

2 e)’s. Note that the
computation of f(i, j, t) will compare the values of
f(i, k−1, t− tag(k, j))’s, k ∈ Lj , and f(i, j−1, t).
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LisTag(i, j, T ) . List blocks covered by T tag SNPs in [i, j] with maximized total length.
Input: Interval [i, j] and number of tag SNPs T .
Output: The boundaries of blocks covered by T tag SNPs.
Global variable: E, F , S, A, B. . E and F are used to store the good partner pointers Li and

Ri which have been preprocessed dependent on diversity constraints D,
S is used to store the tag SNPs required for each feasible blocks,
two dimensional arrays A and B are global temporary working storages.

1 if T ≤ t0 then
2 for t ← 0 to T do
3 for x ← i to j do
4 Directly compute A[t, x] = f(i, x, t) according to recurrence relation 7.
5 Trace back on A array to output the boundaries of blocks covered by T tag SNPs.
6 return
7 for t ← 0 to bT

2 c+ d t0
2 e do

. Compute A[t mod (t0 + 1), x] = f(i, x, t), ∀x ∈ [i..j − 1], t ∈ [bT
2 c − b t0

2 c..bT
2 c+ d t0

2 e].
8 for x ← i to j − 1 do
9 Compute A[t mod (t0 + 1), x] = f(i, x, t) by formula 7.
10 for t ← 0 to bT

2 c+ d t0
2 e do

. Compute B[t mod (t0 + 1), x] = f(x + 1, j, t), ∀x ∈ [i..j − 1], t ∈ [bT
2 c − b t0

2 c..bT
2 c+ d t0

2 e].
11 for x ← j down to i + 1 do
12 Compute B[t mod (t0 + 1), x] = f(x, j, t) by formula 7 with opposite direction.
13 Find (x∗, t∗) = arg maxi≤x≤j,bT

2 c−b
t0
2 c≤t≤bT

2 c+d
t0
2 e{A[t, x] + B[T − t, x]}.

. Pointer back tracking to find the x∗, and t∗

14 LisTag(i, x∗, t∗) . recursive call to report blocks in interval [i, x∗] with t∗ tags.
15 LisTag(x∗ + 1, j, T − t∗) . recursive call to report blocks in interval [x∗, j] with T − t∗ tags.

Figure 5: The O(nlt) time and linear space algorithm for haplotype blocking with constraints on diversity
and the number of tag SNPs.

Therefore, if t0 denotes the maximum tag(k, j),
the maximum number of tag SNPs required among
all feasible blocks, we at most need to store the val-
ues of f(·, ·, (t− t0)..(t−1)) and f(i, j−1, t) while
compute the value of f(i, j, t). In our experience,
we know that the t0 will be equal to 8 at most as
an example of Patil’s haplotype data. It means
that the space of two dimensional arrays A and B
is t0×n, so the space complexity for the algorithm
is O(L+ t0n). Since t0 is generally a constant and
L > n in most practical cases, we can prove the
space used by the algorithm is O(L + n).

The time complexity of the algorithm is O(nlt)
as shown in the following by induction. Let T (n, t)
denotes the time needed for LisTag(1, n, t). As-
sume that T (n′, t′) ≤ c2n

′lt′ for all n′ < n, t′ < t.
According to the algorithm, we have:

T (n, t) = c1nlt︸ ︷︷ ︸
line 7-13

+T (n1, t
∗)︸ ︷︷ ︸

line 14

+ T (n− n1, t− t∗)︸ ︷︷ ︸
line 15

By induction,
T (n, t)
≤ c1nlt + c2n1lt

∗ + c2(n− n1)l(t− t∗)

≤ l(c2nt + c1nt + 2c2n1t
∗ − c2n1t− c2nt∗)

≤ l[c2nt + ( 5
3c2n1t

∗ − c2n1t)
+(c1nt + 1

3c2n1t
∗ − c2nt∗)]

≤ l[inc2nt+c2n1( 5
3 t∗− t)+(c1nt+ 1

3c2nt−c2nt∗)]
≤ l{c2nt + c2n1[ 53 (b t

2c+ d t0
2 e)− t]

+(c1 + 1
3c2)nt− c2n(b t

2c − d t0
2 e)}

≤ l{c2nt + c2n1[ 53 ( t
2 + t0

2 + 1)− t]
+(c1 + 1

3c2)nt− c2n( t
2 − t0

2 − 1)}
≤ l[c2nt + c2n1( 5

6 t0 + 5
3 − 1

6 t) + (c1 + 1
3c2)nt

− 1
2c2nt + c2n( t0

2 + 1)]
≤ l[c2nt + c2n1( 5

6 t0 + 5
3 − 1

6 t) + 4
10c2nt− 1

2c2nt
+c2n( t0

2 + 1)](Let c1 = 1
15c2)

≤ l[c2nt + c2n1( 5
6 t0 + 5

3 − 1
6 t) + c2n( t0

2 + 1− t
10 )]

≤ c2nlt

Let t ≥ 5t0 +10, the above inequality will come
into existence, so we can prove the time complexity
of the algorithm is O(nlt). ¤

10



Figure 6: A view of the haplotype sample – HapMap phase II haplotypes, chr19 in the YRI panel – by
diversity visualization tool.

3 Experimental Results and Diver-
sity Visualizations

In response to needs for analysis and obser-
vation of human genome variation, we have es-
tablished a website and apply the algorithms de-
scribed in this paper to provide several analy-
sis tools for bioinformatic and genetic researchers.
The web-based system consists of a list of PHP
and PERL CGI-scripts together with several C
programs for selecting haplotype blocks and an-
alyzing the haplotype diversity. We also collect
the haplotype data of human chromosome 21 from
Patil et al. [18] and download haplotypes for all
the autosomes from phase II data of HapMap [8] so
that the bioinformatic researchers can use the data
to evaluate the performance of the tools. On the
other hand, researchers also can input their own
haplotype data by pasting the haplotype sample
or uploading the file of haplotype sample, or in-
put the address of other websites’ haplotype data.

The website provides tools to examine the di-
versity of haplotypes and partition haplotypes into
blocks by using different diversity functions. By
using the diversity visualization tool, researchers
can observe the diversity of haplotypes in the form
of the diagram of curves. The tool uses the di-
versity function (1), δD, to calculate the diversi-
ties of all intervals. Figure 6 shows an example of
the diversity visualization of the haplotype sample
downloaded from HapMap.

The website also provides the tools for re-

searchers to partition haplotypes into blocks with
constraints on diversity and tag SNP number; by
using the tool, researchers can find the longest seg-
mentation consists of non-overlapping blocks with
limited number of tag SNPs. Researchers can up-
load a haplotype sample or select a sample from
our database, and then input a number of tag
SNPs to partition the sample. As an example; we
pick the shortest contig of Patil’s haplotype sam-
ple (contig number: NT 001035, 69 SNPs) and
paste to the system; applying the diversity func-
tion (3), δC , and requiring the diversity must not
be greater than 0.2 (at least 80% of common haplo-
type) in each block; using 10 tag SNPs, the sample
can be partitioned into 19 haplotype blocks, and
there are total of 61 SNPs in these blocks.

In order to test our program, we also apply our
block partition tools which can be used to find
the longest segmentation covered by the minimum
number of tag SNPs to the haplotype data of hu-
man chromosome 21 from Patil et al. [18]. Using
the tool with the diversity function (3), δC , and
the same criteria as in Patil (80% of common hap-
lotype coverage), when the haplotype sample is
partitioned into blocks fully, a total of 3,260 tag
SNPs and a total of 2,266 haplotype blocks are
identified. In contrast, Patil et al. [18] identified a
total of 4,563 tag SNPs and a total of 4,135 blocks,
and Zhang et al. [24] identified a total of 3,582 tag
SNPs and a total of 2,575 blocks. Our program
reduces the number of tag SNPs and blocks by
28.6% and 45.2% comparing to Patil et al.. We
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No. of blocks Average no.
Common No. of requiring ≥ 1 common All Common

Method SNPs/block blocks SNPs haplotype/block blocks(%) SNP(%)

Ours > 10 736 733 4.32 32.5 77.8
3− 10 751 686 3.16 33.1 18.0
< 3 779 216 2.12 34.4 4.2

Total 2,266 1,635 3.18 100.0 100.00

Zhang’s > 10 742 738 4.23 28.8 75.5
3− 10 909 842 3.03 35.3 19.5
< 3 924 274 2.12 35.9 5.0

Total 2,575 1,854 3.05 100.0 100.0

Patil’s > 10 589 589 3.75 14.2 56.8
3− 10 1,408 1,396 2.92 34.1 30.7
< 3 2,138 1,776 2.30 51.7 12.4

Total 4,135 3,761 2.72 100.0 100.0

Table 1: The comparison of properties of haplotype blocks defined by Zhang, Patil and us with 80% of
common haplotype coverage.

also demonstrate that the results of Zhang et al.
are not optimum.

Table 1 shows the comparison of properties of
haplotype blocks defined by Zhang, Patil and us
with 80% coverage of common haplotype. Our
program discovers a total of 736 blocks containing
more than 10 SNPs per block. The blocks with
more than 10 SNPs account for 32.48% of all of
blocks. The average number of SNPs for all of the
blocks is 10.61. The largest block contains 128
common SNPs, which is longer than the largest
block (containing 114 SNPs) identified by Patil et
al. and the same as in Zhang et al.. Figure 7
shows the partition results of the Patil’s haplotype
sample; each block boundaries and the summaries
of the analysis are shown in the frame on the left,
and the contents of each block are shown in the
frame on the right.

Furthermore, Tables 2 and 3 show more anal-
ysis data of our experimental results. According
to the results, we can partition 38.55% of genome
region into blocks where does not require any tag
SNPs. This is because that most of these blocks
just contain few common SNPs, and there are 80%
of unambiguous haplotypes have the same hap-
lotype pattern (compatible) in these blocks. We
term these SNP loci as non-informative markers
because they are the same among most (80%) of
population. These data also show that as the
genome region covered increases, we need to in-
crease more and more extra tag SNPs to cap-
ture the haplotype information of the blocks, and
the number of zero-tagged blocks becomes fewer.
Note that, although the average length of non-
zero-tagged blocks becomes shorter as the chromo-

some region covered increase, the average length
of total blocks becomes longer.

Both Zhang et al. and we have proposed a dy-
namic programming algorithm to solve the prob-
lem of finding the longest segmentation with lim-
ited tag SNPs. However, it is observed that our
algorithm obtains better results than theirs on the
same haplotype sample. One of the main reasons
is that their algorithm presumes that the common
haplotypes evaluation function proposed by Patil
et al. satisfy the monotonic property. However,
when the haplotype sample has missing data, the
diversity function does not satisfy the monotonic
property. For example, Figure 8 shows the anal-
ysis results of Zhang’s and our algorithms on the
same haplotype sample; this sample just has 69
SNPs, which is a small part of Pail’s haplotype
data, its contig number is NT 001035. Using the
sample criteria (80% of common haplotype), our
method can partition the sample into 20 blocks
and identify 18 tag SNPs, on the other hand,
Zhang’s algorithm partitions the sample into 23
blocks and used 22 tag SNPs. The results are
similar in interval [21840,21875], but in interval
[21876,21899], our method discovers 3 blocks and
3 tag SNPs, which is better than Zhang’s (6 blocks
and 6 tag SNPs). In interval [21900,21908], both
Zhang’s and our methods find 2 blocks, but our
method just needs 3 tag SNPs rather than 4 that
is found by Zhang’s method. These cases demon-
strate that Zhang’s algorithm does not find the
optimal solution due to the non-monotonic prop-
erty of common haplotype evaluation function.

Our web system is freely accessible at
http://bioinfo.cs.pu.edu.tw/∼hap/index.php.
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Figure 7: Use diversity function δC and require the diversity of blocks must not be greater than 0.2 to
partition Patil’s haplotype data into blocks fully.

tag SNPs genome region extra genome 0-tagged blocks with avg. length of
used covered (%) region increased (%) blocks tags number > 0 non-0-tagged blocks

0% (0) 38.55 38.55 6136 0 1.51(0-tagged blocks)
10% (326) 59.99 21.44 4991 192 35.52
20% (652) 70.85 10.86 4145 367 29.37
30% (978) 78.62 7.77 3387 516 26.79
40% (1304) 84.61 5.99 2897 712 22.38
50% (1630) 89.02 4.41 2250 844 21.29
60% (1956) 92.59 3.57 1814 1002 19.41
70% (2282) 95.30 2.71 1478 1159 17.79
80% (2608) 97.29 1.99 1014 1289 16.90
90% (2934) 98.64 1.35 719 1421 15.89

100% (3260) 100.00 1.36 631 1635 14.10

Table 2: The analysis data based on the number of tag SNPs required.

genome region tag SNPs extra tag SNPs 0-tagged blocks with avg. length of
covered (%) required required blocks number tags number > 0 non-0-tagged blocks

38.55 0 0 6136 0 1.51(0-tagged blocks)
40 8 8 6111 6 67.17
50 127 119 5630 80 43.75
60 327 200 4991 193 35.39
70 623 296 4213 347 30.22
80 1045 422 3307 567 25.14
90 1709 664 2208 888 20.58

100 3260 1551 631 1635 14.10

Table 3: The analysis data based on the percentage of genome region covered.
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Figure 8: The experimental results of Zhang’s and
our algorithms on a small part of Patil’s data.

Some preliminary results, including the selection
of different diversity functions as well as choosing
meaningful diversity constraints, in using our
tools can also be found in the web system.

4 Conclusion

In this paper, we examine several haplotype di-
versity evaluation functions; by using appropriate
diversity functions, the block selection problem
can be viewed as finding a segmentation of given
haplotype matrix such that the diversities of cho-
sen blocks satisfy certain value constraint. Tag
SNPs can capture most of the haplotype diversity
in the blocks, and therefore could potentially cap-
ture most of the information for association be-
tween a trait and the SNP marker loci. Instead
of genotyping all of the SNP markers on the chro-
mosome, one may wish to use only the genotype
information on the tag SNP. We can figure out
the haplotype features of most population by just
checking a few SNP markers. Thus, studying the
tag SNPs can dramatically reduce the time and
effort for genotyping, without losing much haplo-
type information.

We present dynamic programming algorithms
for haplotype blocks partitioning with constraints
on diversity and tag SNP number. In Theorem 1,
we show that finding a maximum segmentation
with limited tag SNPs number can be done in
O(tnl) time; furthermore, we reduce the space
complexity into O(L + n) by using the algorithm
LisTag(i, j, T ). We need to point out that these
efficiency results of our algorithms can be applied
in many different definition of diversity functions
only if we can pre-compute boundaries of all of
feasible blocks and tag SNPs required for these
blocks.

We also show that the results discovered by our
method is superior to Zhang et al.’s [24]. Due to
the non-monotonic property of common haplotype
evaluation function, we demonstrate that Zhang’s
algorithm will not find the optimal solution when
the haplotype samples have missing data.
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