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Abstract
The main contribution of this paper is a new

visualization algorithm that combines and improves

well-known forced-directed layout approach and

hierarchical layout approach, and can handle complex

pathways composed of cycles and hierarchies.

Experiment shows that our approach can clear render

the global component structure of complex pathways

as well as the local structure in each component.

Based on our algorithm, we developed a

biochemical pathway visualization system called

VisualPathway, which consists of pathway category

browsing , pathway layout, and pathway visualization.

For category browsing, we apply fisheye

visualization technique to enhance the browsing

efficiency so that the user can find desired pathway

more conveniently. For pathway visualization, we

adopt the Petri Net as pathway representation. Users

can access information behind the pathway by

clicking components in the visualization.

1. Introduction
Visualization of pathways always pose a

challenge to bioresearchers. Though the idea is

simple, drawing of complex pathways is not easy. In

the past, pathways were drawn on papers. Recently,

several pathway editors have been developed. Such

editors take advantages of input devices and

graphical interfaces. Constructing a drawing by

mouse and keyboard are easier than by hand and pen.

Furthermore, graphics components are developed to

match pathway components.

However, pathway data is frequently updated.

That makes maintaining and drawing of pathway data

tedious and time-consuming, even we use editors. A

solution to the problem is to develop an editor that

can automatically layout and visualize pathways.

One of the main challenges of automatically

drawing pathway is the layout problem. We can

transform the relation between pathway components

into a directed graph, and the drawing problem then

becomes a general graph layout problem. Layout is a

transformation from topology to geometry; that is, it

generates coordinates for components. There are two

well-known layout approaches: hierarchical layout

[13,18] and forced directed layout[20]. However,

each of them can only handle simple pathway

structures such as hierarchies and cycles that are

common components of biochemical pathways. In

this paper, we develop a new layout algorithm HOLY

(Hierarchically Organized LaYout) for hierarchically

organized complex pathways. In HOLY, a complex

pathway is decompose into basic components such as

cycles and hierarchies that are layout, using

conventional hierarchical layout and force-directed

layout algorithms. HOLY then determines a joining

order of basic components, and joins them one at a

time to form the final layout. Experiment shows that

our approach can preserve local as well as global

structures of complex pathways, and renders better

visualization for several pathways studied in previous

related work[32,34].

2. System Overview
Our pathway visualization roadmap involves

several function units illustrated in Figure 2.1. In



general there are three significant parts: the data

source, the category browser, and the pathway

explorer. The data source means the management of

pathway database. It loads the pathway data into

memory, updates the content of database, and allows

other software components to access the data through

protocols. For increasing the practicability of our

system, users could use a pathway data editor to

modify the data. Furthermore, the data source could

invoke a data importer transferring the data from

other formats, like the MetaCyc[32] database or the

KEGG XML, to our system.

The second part of our visualization is pathway

category browser, which is aimed to improve the

browsing efficiency of traditional way. We integrate

a visualization technique, called hyperbolic tree[5],

and pathway category information into an interactive

browsing platform. The user find out where the

interested pathway in the database belongs to and

what comments researchers added by interacting with

the platform iteratively. When the user found the

desired pathway, he/she can additionally call our

Figure 2.1: An overview of our visualization system. The symbol annotation is on the top-right corner.



Figure 2.2: The XML storage used in our pathway system.

pathway explore to exploit the detail information of

it.

The last important part is pathway explorer for

visualizing pathways. Most known service of

visualizing pathway try to dump all information of a

pathway on screen in graphical way. However, heavy

display makes people confused. Usually people like

to know partial information of a pathway. We thereby

design an interactive interface helping people exploit

preferred pathway knowledge. For providing

convenience to other bio-software, the explorer can

also export a portable pathway file that contains all

information of a single pathway, like KEGG XML.

The graph layout algorithm acts as core techniques in

the visualization.

Pathway data of the system is stored in two

XML files illustrated in Figure 2.2. The top side of

figure is the one containing reactions and entries, in

which the tag global involves several reaction records

and entry records. All attributes of each record

indicate its content. The bottom side of the figure

shows the XML file describing pathways where the

tag dlink represents a reaction with primer substrate

and product only. It is designed for constructing

digraphs when performing layout. Tags parent, child,

and variant are used to describe super-pathway the

sub-pathway and the variance of a pathway.when it is

hierarchically organized.

4. Pathway Visualization



The mission of pathway exploration is to

convey the knowledge of pathway in the database. A

proper interface interactively provides user preferred

information on screen, while it hides inessential data.

The difficulty of pathway visualization is to draw its

structure nicely. We translate the pathway description

data into directed graph so that we know where to

draw pathway components according to the

information of graph layout.

Petri Net representation of pathway [2] is used

in our system. The Petri Net contains two types of

node and directed arcs connecting nodes of different

types. The two types of nodes are called place nodes

and transition nodes. The place node denoted as

circles means compound; the transition node denoted

as boxes indicates reaction. As in Figure 4.1, reaction

nodes are labeled by their EC numbers.

Figure 4.1: An example of Petri Net

representation from [2].

The Petri Net becomes directed graph if we treat

the two types of nodes as the same. They usually

form hierarchies. The pathways may also contain

cycles that are important features in biology. Known

hierarchical layout approaches are capable to draw

pathways. However, most hierarchical layout

approaches will distorts the shape of cycle. For the

capability of drawing various pathway structures

graphically, we design a layout approach to organize

both the hierarchies and cycles in a pathway. Also we

integrate several known layout algorithms in our

system.

Figure 4.2: A pathway record in our pathway database file



Figure 4.3: Pathway composition of Glycolysis/TCA/Glyox-Bypass.

Figure 4.4: Procedure of laying pathway out with a pathway decomposition tree.

4.1 Hierarchically Organized
Layout

The forced-directed layout[20] produces nice

pathway layout with cycles, while the hierarchical

layout[18] performs good at the one without cycles.

We develop a new layout algorithm HOLY

(Hierarchically Organized LaYout) for hierarchically

organized complex pathways. In HOLY, a complex

pathways is decompose into basic components such

as cycles and hierarchies that are layout, using

conventional hierarchical layout and force-directed

layout algorithms. HOLY then determines a joining

order of basic components, and joins them one at a

time to form the final layout. HOLY aims to explore

local as well as global structures of complex

pathways, and rendes better visualization for several

pathways studied in previous related work[32,34].

HOLY consists of the following four nontrivial

stages.

1. Parsing Stage: parse the pathway data.

2. Decomposition Stage: decompose the

super-pathway into hierarchical groups of



pathways.

3. Layout Stage: layout each group with proper

basic approaches.

4. Joining Stage: join group layouts to a large final

layout.

In parsing stage, HOLY parses our pathway

database which is stored in XML format. As in

Figure 4.2, the element pathway containing attribute

id=”TCA GLYOXYLATE-BYPASS” represents a real

pathway ”TCA GLYOXYLATE-BYPASS”. Note 

that the element pathway also contains a sub-element

called child. Its attribute

id=”GLYOXYLATE-BYPASS TCA” shows this

pathway has two sub-pathways. They are

GLYOXYLATEBYPASS and TCA. With that

information, we can find out the sub-pathways by

looking for the element pathway containing attribute

id=”GLYOXYLATE- BYPASS” or id=”TCA”. Using

the child information we know how to decompose a

super-pathway into sub-pathways in step two.

In decomposition stage, the decomposition

recursively divides a super-pathway into

sub-pathways until the current decomposition will

break a cycle, or the current sub-pathways have high

overlapping with each other. Cycles in biochemical

pathway are important feature so we preserve the

cycles. Overlapping between sub-pathways means

that they are highly related and they should not be

decomposed. We set 30 percent of nodes as a

threshold of overlapping in our system. Figure 4.3 is

an example of pathway decomposition. The

superpathway Glycolysis/TCA/Glyox-Bypass has

been decomposed to three subpathways: Glycolysis,

TCA/Glyox-Bypass, and Pyruvdeh-rxn. The

Pyruvdeh-rxn forms a group itself in this case Note

that the TCA/Glyox-Bypass could be decomposed to

TCA and Glyox-Bypass. However, the TCA covers

most part of Glyox-Bypass, so we treat them as one.

In Layout Stage, HOLY performs layout on

each sub-pathway in the decomposition tree. The

procedure is given in Figure 4.4. The recursive

function traverses the decomposition tree and lays out

each sub-pathway with a proper basic approach. For

the sub-pathway containing cycles, we call the forced

directed layout approach to emphasize the symmetry

of graph and uniform edge lengths; for the

sub-pathway containing hierarchies, we perform the

hierarchical layout approach to stress on the direction

of arcs.

However, an issue should be considered before

joining sub-pathways. The nodes connecting two

sub-pathways should be placed in the outside of the

layout; otherwise it could cause a large number of

edge crossings after joining. For instance, both part (a)

and part (b) in



Figure 4.5: Joining two sub-pathway layouts. Part (a) is a hierarchies and

part (b) contains cycle. Their connecting node marked by blue circle are

both inside the layout. Part (c) shows the result of joining (a) and (b).

Figure 4.6 : Avoiding the inner connecting node. (a) inserting pseudo-nodes

for cycle case; part (b), for hierarchies. Square filled with solid black represents

the connecting node and squares with dotted lines are pseudo-nodes.



Figure 4.5 are well visualized. However, their joining result in the part (c) contains a large number of edge

crossings. We avoid this problem by inserting pseudo-nodes into sub-pathway to push connecting nodes outside

boundary of the layout. Our node insertion has two policies: one for cycles and the other for hierarchies. As

illustrated in Figure 4.6 Part (a) left, we insert pseudo-nodes into both sides of a connecting node in a cycle. The

inner path becomes longer than the outer path. Using forced-directed layout, the inner path will be flipped to the

outside, like Part (a) right. For hierarchies, we simply insert pseudo-nodes between the connecting node and its

parent node. The connecting node will then be pushed to the bottom of the layout, like Part (b) in Figure 4.6.

Figure 4.7 gives new layout of the pathway in Figure 4.5. As connecting nodes are pushed outside, we obtain a

better joining result with much less crossings.

In the final step, we join layouts of sub-pathways. We decide one sub-pathway in the decomposition tree as

the first main component, and join other pathways one at a time. Figure 4.8 illustrates how to join sub-pathways.

In step (1) we calculate the mass of each sub-pathway which is marked as a red crossing in Figure 4.8. In step (2),

we shift and attach the new sub-pathway to main component. Note that attaching points are nodes where

pathways split during decomposition. At step 3, we fix the attaching point, and rotate the new component to

maximize the distance between the positions of two masses.

To further join another sub-pathway, we rotate the third pathway and maximize the summation of distance A

and B as indicated in Figure 4.8. The idea is the last mass should leave all other masses as far as possible,

especially the large one. Therefore, we maximize the following function to join the kth sub-pathway. Let

ComponentSize(i) denotes the number of nodes in component i.






1

1
ik ize(i)ComponentS*)Mass,dist(Mass

k

i

We also design a heuristic to determine the joining order to speed up the joining process, and make joining

results more suitable to biochemical pathways. If there is a sub-pathway containing cycles, usually other

sub-pathways are hierarchies and are inserted into the cycle. This implies that cycles should have higher priority

when choosing joining candidates. In addition, we give higher priority to large sub-pathways as small

sub-pathways are often attached to large sub-pathways. The joining priority of a sub-pathway is the defined as

the number of nodes in the sub-pathway, and is doubled if the sub-pathway contains cycles. The sorted order of

priorities is the joining order.



Figure 4.7: Same example with Figure 4.17, but avoid the inner connecting

node by inserting pseudo-nodes.

Figure 4.8: An example of combining three components into one large component from step 1 to step 5.



improves a lot in statistics of running times. That is,

our approach is specified for biochemical pathway.

5. Experimental Results
We compare HOLY to the approaches in

MetaCyc[32], a patway database that provides

automatic layout and visualization of pathways, and

CADLIVE[34], a pathway editing and visualization

tool. MetaCyc contains 658 pathways including 60

super-pathways. Most of them are hierarchies except

20 cycles and one complex pathway. We have tested

our approach on their pathway data. All types of the

pathway in MetaCyc are well visualized. We present

and discuss our experimental results for the three

types of pathways: Hierarchies, cycles, and complex

structures.

5.1 Hierarchies

The pathway Mixed Acid Fermentation in Figure

5.1 is a hierarchy and does not contain any

sub-pathway. As shown in the left part (a), MetaCyc

produces a layout that contains a bottom-up arc that

we may not want it to happen. HOLY gives a

visualization in which all arcs are drawn toward the

bottom as shown in (b).

Figure 5.2 gives results for pathway C1 compounds

oxidation to CO2. The pathway is composed of seven

sub-pathways marked by different colors and

numbers in Figure 5.2(c). All of them are hierarchies.

Both HOLY and MetaCyc produce similar result in

which sub-pathways are easily distinguished.

However, our system usually performs better for the

case that components are not visually organized as

illustrated in the cases for cycles.

5.2 Cycles

Figure 5.3 gives results for pathway TCA

Cycle. The pathway is a simple cycle with one

alternated reaction bypassing the inside of the cycle.

Both HOLY and MetaCyc produce acceptable results.

The TCA Cycle was drawn in a shape of sphere and

the bypassing arc was symmetrically placed along the

circle.

Figure 5.4 gives results of a more complex

pathway which contains a cycle and long and

multiple bypassing arcs inside the cycle. In our result,

Figure 5.4(b), the Calvin Cycle has two bypasses in

geometry. One is composed of two reactions that

their EC-Numbers are 5.3.1.6 and 2.2.1.1; one is

composed of three reactions with EC-Number 4.2.1.¡,

3.1.3.37,



Figure 5.1: The pathway layout of Mixed Acid Fermentation from

(a)MetaCyc and (b)VisualPathway.

Figure 5.2: The pathway layout from (a)MetaCyc and (b)VisualPathway.

Part (c) sketches seven sub-components of the super-pathway. Each color

represents an individual sub-pathway of Super-pathway of C1 compounds oxidation to CO2.



Figure 5.3: The pathway layout of TCA Cycle from (a)MetaCyc and

(b)VisualPathway.

Figure 5.4: The pathway layout of Calvin Cycle from (a)MetaCyc and

(b)VisualPathway.

and 2.2.1.1. The short bypass, just like the TCA, is

along the circle, while the longer goes straight across

the inside. As in Figure 5.4 (a) MetaCyc draws

bypasses with zigzag and distorted paths. However,

HOLY clearly displays the geometry of Calvin Cycle.

In this case, HOLY generates more comprehensible

layout.

5.3 Complex Structures
Complex pathways



Figure 5.5: The layout from (a)MetaCyc and (b)VisualPathway. Part (c) sketches four sub-components of

the super-pathway. The blue arrow represents the hierarchy of glycolysis; the green one, the reaction

pyruvdeh itself; the red, the TCA cycle; finally the black cycle is the glyoxylate bypass.

contain both hierarchies and cycles, and have

complex hierarchical organizations in which a

component can have multiple parents.

Figure 5.5 is the comparison of the layout of

super-pathway of glycolysis, pyruvate dehydrogenase,

TCA, and glyoxylate bypass. Note that the black

cycle and the red cycle as shown in (c) are partially

overlapped. The two cycles correspond to two

different sub-pathways that should be distinguished

in the visualization. However, as in (a), MetaCyc

draws only a circle. HOLY, as shown in part (b),

gives two connecting bubbles that clearly distinguish

both components and preserves the shape of each

cycle. This example shows the significant feature of

HOLY that emphasizes both the local structures and

the component structures of complex pathways in the

visualization.

We also compare HOLY to another pathway

tool, CADLIVE. We take the pathway given in [34]

that is composed of pentose-phosphate, glycolysis,

and TCA cycle. Figure 5.6 gives the result. Both

HOLY and CADLIVE successfully produce clustered

pathway layout in which each cluster corresponds to

an individual sub-pathway. However, HOLY

produces much better layout inside each cluster. In

the layout from CASLIVE, reactions (arcs) are

entangled with each other, and the structure of each

cluster is difficult to read. In the layout from HOLY,



Figure 5.6: The pathway layout of pentose-phosphate, glycolysis, and TCA

cycle from (a)CADLIVE and (b)VisualPathway.

The cluster in red area is drawn in forms of multiple

hierarchies with some long feedback arcs, which

reveals the real inner structure of that sub-pathway.

The main structure of the cluster in green area is a



long path, and the cluster in the blue structure

consists of two overlapped cycles.

Above experiment shows that HOLY peforms

better than MetaCyc and CADLIVE, and is able to

gives visualization of complex pathways that clearly

renders the global component structures as well as the

local structure of each component. In addition, with

priority assignment to determine joining order,

HOLY, runs very fast, usually accomplishing layout

of a complex pathway in seconds. That means the

overall performance of HOLY is good enough for use

in interactive applications.

6. Conclusions

In this paper, we propose an biochemical

pathway visualization system called VisualPathway,

which consist of pathway category browsing ,

pathway layout, and pathway visualization. For

category browsing, we apply fisheye visualization

technique to enhance the browsing efficiency so that

the user can find desired pathway in short time. For

pathway layout, we combine well-known

forced-directed layout approach and hierarchical

layout approach, and propose a new hierarchically

organized layout algorithm. Our approach is able to

handle complex pathways composed of both cycles

and hierarchies. Experiment shows that our approach

can clearly render local as well as global structures of

complex pathways. For the pathway visualization, we

adopt the Petri Net as pathway representation. By

using the layout information and the graphical

representation, we develop an interactive pathway

visualization system in which the pathway is

automatically produced and drawn immediately, and

users can access information behind the pathway by

clicking components in the visualization.
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