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Abstract

The Constant Bit-Length Linear Quadtree (CBLQ)
has been proposed as one of well-known encoding
schemes for representing binary images. It not only
saves the storage efficiently, but also keeps the level
of detail property for images. Based on CBLQ), set
operations on images can be easily derived. In this
paper, we propose efficient strategies for rotating
and mirroring images based on CBLQ. Our strate-
gies can obtain the code of the rotated or mirrored
image directly from the code of the original image,
instead of from the rotated/ mirrored image. From
our simulation, we show that the CPU-time for all
rotating or mirroring cases are the same by using
our strategy based on CBLQ.

Keywords: CBLQ, mirroring, quadtree, rotation,
spatial data

1. Introduction

Representation and manipulation of digital bi-
nary images are two important tasks in image
processing, pattern recognition, pictorial database,
computer graphics, geographic information sys-
tems, and the other related applications [3, 5, 6,
7, 8,9, 11, 12]. A Quadtree [8, 10] is one well-
known representation of hierarchical data struc-
tures for representing the binary image. Take Fig-
ure 1 for example. A binary image in Figure 1-(a)
is successively sub-divided into four equal-size sub-
images in the NW (northwest), NE (northeast),
SW (southwest), and SE (southeast) quadrants.
A homogeneously colored quadrant is represented
by a leaf node in the quadtree. Otherwise, the
quadrant is represented by an internal node and
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further divided into four subquadrants until each
subquadrant has the same color. The correspond-
ing quadtree for this binary image is shown in Fig-
ure 1-(b).

Since the quadtree uses a lot of pointer data,
it consumes a considerable amount of storage and
possibly result in increase of processing time due
to high rate of page faults. A linear quadtree has
been proposed as a linear array of certain type of
structure elements such that the tree structure is
implicitly preserved [4]. It is one kind of the set-of-
codes representation which represents the colored
quadrants as a set of numbers. The Constant Bit-
length Linear Quadtrees (CBL(Q)) [4] is proposed
to keep the level of detail property for the linear
quadtree. In the CBLQ representation, the code
length of each interesting structure element is con-
stant, instead of variant in length, according to the
number of elements. Based on CBLQ representa-
tion, the operations can be performed on images
efficiently because the information of images can
be easily obtained [4].

Rotating and mirroring operations are two im-
portant operations on image manipulation [2, 6, 7,
11, 12]. Basically, there are three rotating cases:
Rotate_ 90, Rotate_180, Rotate_270. These
cases are equivalent to rotating of 270°, 180°, and
90° about the center in the anticlockwise direction,
respectively. On the other hand, there are four mir-
roring cases [2] which are described as follows. The
Mirror_X case and the Mirror_Y case mean mir-
roring about X-axis and Y-axis, respectively. The
Mirror_MD case means mirroring about the main
diagonal from the SW to NE direction, where MD
means the main diagonal. The Mirror_CD case
means mirroring about the cross diagonal from the
SE to NW direction, where CD means the cross
diagonal.

If we want to retrieve the image which is ro-
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Figure 1: An example of the quadtree: (a) the sample image;
(b) its quadtree.

tated or mirrored in the database, we must derive
the code of the new image which has been rotated
or mirrored from the original image. That is, to
achieve this goal, originally, we must perform three
steps as shown in Figure 2-(a). First, we must de-
rive the original image A from the original code.
Second, we rotate or mirror the original image A to
the new one B. Third, we derive the related code
from the new image B. The process for obtaining
the rotated or mirrored code is time-consuming.
Therefore, it is more efficient to obtain the code of
the rotated or mirrored image from the code of the
original one directly. Therefore, we propose the
strategies to obtain the rotated or mirrored code
directly from the original one, which is the efficient
process shown in Figure 2-(b). Since the CBLQ has
good compression improvement to represent and
manipulate the images efficiently, we propose the
strategies for rotating and mirroring images based
on the CBLQ representation.

The rest of this paper is organized as follows.
In Section 2, we briefly describe the Constant Bit-
length Linear Quadtrees (CBLQ) [4]. In Section 3,
we present one strategy to obtain the codes of the
rotated images represented by CBLQ. In Section 4,
we present another one strategy to obtain the codes
of the mirrored images represented by CBLQ. In
Section 5, we show the performance study. Finally,
we give the conclusion.
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Figure 2: The process for obtaining the rotated or mirrored
code: (a) the original three steps ; (b) our proposed strategy.

2. Constant Bit-Length Linear
Quadtree (CBLQ)

It is assumed that the image is a square binary
2™ x 2™ array composed of unit square pixels that
can be black or white, where n is referred as the
resolution parameter in the horizontal or vertical
direction. A CBLQ representation of a picture is
obtained by traversing its corresponding quadtree
in the breadth-first order [4]. In the traversal, a
special digit is obtained from each node accord-
ing to its attribute. If the node is a leaf node,
then digit 1(0) is obtained if it is a black (white)
node. If the node is an internal node, then digit 2
is taken unless all its children are leaf nodes. Digit
3 is gained if the node is an internal node and its
children are leaf nodes. For the convenience, digits
0 and 1 (2 and 3) are called leaf (internal) labels.
Take Figure 3 as an example, the corresponding
CBLQ representation of Figure 3-(a) is 1222 0303
3311 0301 1010 1010 1100 1100 0011, which is ob-
tained by traversing the quadtree in Figure 3-(b)
in the breadth-first order.

3. The Strategy to Rotate Binary
Images Represented by CBLQ

In this section, we present the strategy which
maps the original image to the rotated one directly
from the codes of the original image based on the
CBLQ representation [4]. Generally, we assume
that the input image is a 2" x 2" binary image,
where n is the resolution parameter in the hori-
zontal and vertical directions. Based on CBLQ),



Figure 3: An example of the CBLQ representation: (a) the
example image; (b) the corresponding quadtree with the labels;
(c) the corresponding quadtree with the ID numbers of the
internal nodes.
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Figure 4: Definition of four blocks: (a) blocks A, B, C, and
D; (b) the corresponding quadtree.

we represent four quadrants in the quadtree as four
blocks. It means that the NW, NE, SW, and SE
quadrants are represented as blocks A, B, C, and
D, respectively, as shown in Figure 4-(a). The or-
der for blocks A, B, C, and D is called a Morton
order [4]. Moreover, blocks A, B, C, and D are
the first, second, third, and fourth children of the
root node (or the internal node) from the left to
right in the corresponding quadtree, respectively.
Figure 4-(b) shows the location of blocks A, B, C,
and D in the corresponding quadtree, which are
positions A, B, C, and D.

In our strategy, we define one data structure,
L_Group, which will be used for code conversion.
From the view point of the quadtree and the
CBLQ representation, every four labels from the
same parent node can be grouped together in one
L_Group. We assume that the I D of the root node
is 0, where ID means the identification for the in-

ternal node. The I D of L_Group is equal to the I D
of the parent node. In Figure 3-(c), each ID of the
internal node shown is assigned in the breath-first
order by increasing the previous ID by 1. Take
Figure 3-(b) as an example. The root node is as-
sumed at the zeroth level. The four labels 0, 3,
0, and 3 at the second level can be grouped into
a L_Group. They are derived from the same par-
ent node which is labeled with 2 at the first level.
Moveover, since the ID of this parent node is 1
after the ID = 0 for the root node, the ID of this
L_Group is 1 shown in Figure 3-(c).

There is a property for the rotating cases:
the image and the corresponding quadtree will be
changed at the same time during the rotating pro-
cess. When the image is rotated, its corresponding
quadtree will be traversed in the breadth-first or-
der. At the same time, the nodes in this quadtree
will be moved to the new position. Take Figure
5-(a) as an example. The four children of Ny, are
labelled as 1, 2, 3, and N, at the first level in Fig-
ure 5-(b). According to Figure 4-(b), they locate
at positions A, B, C, and D, respectively, where
N; denotes an internal node. After being rotated
by 90 degrees clockwise, their location have been
changed from blocks A, B, C, and D in Figure 5-
(a) to blocks B, D, A, and C in Figure 5-(c). It
means that the four children at the first level in
Figure 5-(b) are changed their positions A, B, C,
and D to positions B, D, A, and C, respectively, in
Figure 5-(d). The four children at the first level in
Figure 5-(d) are labels with 3, 1, No, and 2 on posi-
tions A, B, C, and D, respectively. The process of
changing the positions of four children is executed
at each level until the end of the quadtree. It is
similar to the other rotating cases.

From the examples shown as above, we con-
clude the mapping rules which are used for chang-
ing the positions in three rotating cases.

e Rule R1. (Rotate_90):
C—» A, A—- B, D— C,B— D.

e Rule R2. (Rotate_180):
D— A;C— B, B— (C; A— D.

e Rule R3. (Rotate_270):
B— A;D— B, A— C, C— D.

Note that in the mapping rules, we always
maintain the order A, B, C, and D in the result
(the right part of the mapping rule, i.e., the right
part of “—”). Therefore, the order of the process
in each mapping rule is important.

We take Figures 6-(a) and (b) as examples to
illustrate the image of Rotate 90 case which uses



Figure 5: An example for the rotating case: (a) the original
image; (b) the quadtree for the original image; (c) the image
after being rotated by 90 degrees clockwise; (d) the quadtree
for the image after being rotated.

the mapping rule R1. According to rule R1, The
sixteen data blocks in block A in Figure 6-(a) are
moved, as the result of the sixteen data blocks
shown in block B in Figure 6-(b). It is similar
to the sixteen data blocks in each block B, C', and
D. They are moved to blocks D, A, and C, respec-
tively. The other mapping rules which are used for
the other cases can be easily derived in the similar
way. The images of other rotating cases which use
different mapping rules are shown in Figures 6-(c)
and(d).

Although we use the image to illustrate how
the mapping rule used in one case, actually, we
change the CBLQ) representation of the origin im-
age by using the mapping rule. After processing by
the mapping rule, the CBLQ representation for a
certain case of the rotated image can be obtained
directly. Figure 7 shows the algorithm to obtain
the CBLQ representation of the rotated image di-
rectly from the one of the original image by us-
ing the mapping rule. Table 1 shows the mean-
ing of the parameters used in Figure 7. First, in
the process of procedure RM_CBLQ, we call Pro-
cedure CreatelnternallD(I_Codes, ID_Array) as
shown in line 3. We scan I_Codes of the origi-
nal image to compute the ID numbers of internal
nodes. The ID number of the first internal node
is 1. If I_.Codes[i] = 2 or 3 which is a label of
an internal node, the ID number of this internal
node is stored in ID_Array[i] by adding 1 to the
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Figure 6: Rotating cases about the center in the clockwise
direction: (a) the original image; (b) the Rotate_90 case; (c)
the Rotate_180 case; (d) the Rotate_270 case.

1:procedure RM_CBLQ(I_Codes, I_Case)
2:begin
3:  Call CreateInternallD(I_Codes, ID_Array);
repeat
t := Dequeue(I_Queue);
Call IQueueAdd(t, I_Case, ID_Array, I_Queue);
Call OCodesOut(t, I_Case, I_-Codes, O_Codes);
until 7_Queue is empty;
:end

Figure 7: Procedure RM_CBLQ

previous one, where 0 < ¢ < |I_Codes|. Otherwise
the value -1 is stored in I D_Array which indicates
I_Codesli] is not an internal node.

Second, we process [_-Queue by the loop of
statements from line 5 to 7 in Figure 7 until
I_Queue is empty. Initially, we add 0 to I_Queue,
where 0 is the ID number of the root node. We
will add the ID number of the internal node to
I_Queue in the following statements. As shown
in line 5, we delete an element ¢ from I_Queue
by calling function Dequeue. The variable ¢ is an

Table 1: Parameters used for Procedure RM_CBLQ

parameter | content
I_Codes an array with an index starting from 0
which stores the labels of the original image;
I_Case the type of the rotating or mirroring case;
ID_Array | an array with an index starting from 0,
which stores the ID numbers of internal
nodes and |[ID_Array| = |I_Codesl;
I_Queue a queue which stores the ID numbers of
L_Groups and will be read in order;
O_Codes an array with an index starting from 0,
which stores the labels after being rotated
or mirrored and |O_Codes| = |I_Codes|;




ID number of L_Group which represents one par-
ent node that has four child nodes in the quadtree.
Since these four child nodes are represented as four
labels based on CBLQ, one L_Group has four la-
bels. The variable t helps compute the start and en
position of the processing range in the I D_Array
and I_Codes. Since each L_Group has four labels,
the start position is obtained as ¢ x 4 and the end
position is obtained as (t+ 1) x4 —1=1¢ x4+ 3.

Procedure IQueueAdd as shown in line 6 is
used to find the I D number of the internal node in
the ID_Array and put it into I_Queue. In this pro-
cedure, we regard ID_Array(t x 4], ID_Array[t x
44 1], ID_Array[t x4+2], and ID_Array[t x 4+ 3]
as positions A, B, C, and D in the quadtree, re-
spectively. We also can regard them as blocks A,
B, C, and D in the image, respectively. Then, we
check the number in ID_Array[t x4 .. t x4+ 3] to
see whether it indicates the internal node or not. If
the number is larger than 0, which indicates the in-
ternal node, we add it into I_Queue; otherwise, we
ignore it. The I D number in I_Queue indicates the
internal node that will be processed later, which
implies their descendent nodes will be moved later
at the same time.

In line 7, procedure OCodesOut is used to
map the labels in I_Codes to O_Codes accord-
ing to the mapping rule for I_Case. In Proce-
dure IQueueAdd, similarly, we regard I_Codes[t x
4], I-Codes[t x 4 + 1], I-Codes[t x 4 + 2], and
I_Codes[t x 4 + 3] as positions A, B, C, and D in
the quadtree, respectively. We store I_Codes[t x 4

t x 4+ 3] in O_Codes according to the map-
ping rule for I_Case. The labels in I_Codes[t x 4

. t x4+ 3] in their order will be affected by the
mapping rule for I_Case. Therefore, according to
the mapping rule for I_Case, we can obtain the
new order of the labels and store them in O_Codes
in the new order. Then, we will repeat the above
three steps until I_Queue is empty, and we can
obtain the rotated codes.

We take Figure 6-(a) as an example to illus-
trate the algorithm shown in Figure 7. There are
two input variables for Procedure RM_CBL(Q. One
is I_Codes which is represented as 1222 0303 3311
0301 101010101100 1100 0011 based on the CBLQ
representation, and the other one is I_Case which
is the type of the Rotate_90 case. The initializa-
tion of Procedure RM_CBL() is listed as follows.

e Initialization:

I_Codes:

1222 0303 3311 0301 1010 1010 1100 1100 0011
ID_Array:

I Queue: 0
O_codes:

First, we store the ID numbers of L_Group in
ID_Array:

-1123-14-1567-1-1-18-1-1
-1-1-1-1-1-1-1-1-1-1-1-1
-1-1-1-1-1-1-1-1.

Then, we repeat those steps from line 5 to 7 in
Figure 7 until I_Queue is empty. We describe the
process of the first loop as follows.

e The first loop:

Dequeue - 0;0x4=0;

Read I_Codes|0..3] and ID_Array[0..3]

I_Codes:

[1222] 0303 3311 0301 1010 1010 1100 1100 0011

ID_Array:
[-1123]-14-1567-1-1-18-1-1
1-1-1-1-1-1-1-1-1-1-1-1
1-1-1-1-1-1-1-1

I Queue: 2,3, 1

O_Codes: [2 1 22]

Note that the number with underline in I_Queue
denotes the new-added ID number of the internal
node in this loop.

Here we explain our strategy for the rotating
case from view point of the image. In the first
loop is shown in Figure 8, the blocks marked by
the bold frame are visited in a Morton order, i.e.,
blocks A, B, C, and D in order. The left part in
each of Figures 8-(a), (b), (c), or (d) is the original
image. The right part in each of Figures 8-(a), (b),
(c), or (d) is the result after the block movement.
Figure 8-(a) shows that the data item in block C
is moved to block A. Figure 8-(b) shows that the
data item in block A is moved to block B. Figure
8-(c) shows that the data item in block D is moved
to block C. Figure 8-(d) shows that the data item
in block B is moved to block D. Therefore, the four
blocks are moved to the related positions according
to the mapping rule R1 for the Rotate_90 case.

On the other hand, we explain our strategy
from the view point of the code. In the process
of the first loop, in the second step, we delete
the ID number 0 from I_Queue. It means that
the first loop is processing in L_Group with ID
number 0. It starts at the number “0”, which
is obtained by the number “0” being multiplied
by 4, and ends at the number “3”, which is ob-
tained by the starting number “0” being added by
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Figure 8: The movement of the data item in the first loop of
the Rotate_90 case from the view point of the image: (a) from
block C to block A; (b) from block A to block B; (c) from
block D to block C; (d) from block B to block D.

(b)

Figure 9: The movement of the /D numbers of each internal
node: (a) the original position of the ID numbers; (b) the
positions of the I.D numbers after the first loop.

3. In other words, the region ranging from 0 to
3 in I Codes and ID_Array will be processed to
output the corresponding O_Codes and I_Queue,
respectively. Therefore, we have I_Codes[0..3] =
[1, 2, 2, 2], and ID_Array[0..3] = [-1, 1, 2, 3].
In the third step, since the second to fourth ele-
ments in ID_Array[0..3] indicate the ID numbers
of the internal nodes, they are added in I_Queue
that will be processed after. But the first element
in ID_Array is not added in I_Queue because it
indicates a leaf node. Therefore, we add 2, 3, 1
to I_Queue according to the mapping rule for the
Rotate_90 case in order. Figure 9 shows the move-
ment of the ID numbers of the internal node from
the view point of the quadtree in the first loop.

Figure 10: The movement of the CBLQ labels: (a) the original
position of each CBLQ label; (b) the positions of the CBLQ
labels after the first loop.

=)

Figure 11: The second loop of the Rotate 90 case from the
view point of the image

In the fourth step, according to the mapping
rule for I_Case, we rearrange the order for the la-
bels in I_Codes|0..3], i.e., [1, 2, 2, 2] in order, to
obtain the labels in O_Codes|0..3], i.e., [2, 1, 2, 2]
in order. Figure 10 shows the movement of the
labels from the view point of the quadtree in the
first loop. At this point, the first loop is finished.

The process of other loops are presented in Ta-
ble 2 and Table 3. The output is O_Codes “ 2122
1313 0013 0033 0101 0101 1010 1100 1100” in the
Rotate_90 case. Note that from the view point of
the image, the size of the blocks that are moved
in the second loop shown in Figure 11 becomes
smaller than that in the first loop shown in Figure
8. It indicates the movement and traverse of the
nodes from the first level to the last level of the
quadtree. Similarly, the size of the blocks that are
moved in the 5th loop in Figure 12 becomes smaller
than that in the second loop shown in Figure 11.




Table 2: The process of the 2nd loop to the 5th loop in the
Rotate_90 case

Loop 2

Table 3: The process of the 6th loop to the last loop in the
Rotate_90 case

Dequeue — 2 ;2 x4 =28;
Read I_Codes[8..11] and ID_Array[8..11]
1_Codes:

ID_Array:

21123-14-15[67 -1 -1]-18-1-1
A-l-1-1-1-1-1-1-1-1-1-1
loll-l-1-1-1-1

L Queue: 3,1,6,7

O_Codes:
2122 [1313]

Loop 6

Loop 3

Dequeue — 7 ;7x4 =28
Read I-Codes[28..31] and ID_Array[28..31]
I_Codes:

ID_Array:
1123-14-1567-1-1-18-1-1
-l 11 -1-1-1-1-1-1-1-1
[-1-1-1-1]-1-1-11

I_Queue: 8,5, 4

O_Codes:

Dequeue — 3 ;3 x4 =12
Read I_Codes[12..15] and ID_Array[12..15]
1_Codes:

ID_Array:

1123-14-1567-1-1[-1 8 -1 -1]
A-l-1-1-1-1-1-1-1-1-1-1
loll-l-1-1-1-1

L Queue: 1,6,7,8

O_Codes:
2122 1313 [0013]

Loop 7

Loop 4

Dequeue — 8 ; 8 x4 =32
Read I-Codes[32..35] and ID_Array[32..35]
I_Codes:

ID_Array:
1123-14-1567-1-1-18-1-1
-l-1-1-1-1-1-1-1-1-1-1
A-1-1-1[-1 -1 -1 -1]

I_Queue: 5,4

O_Codes:

Dequeue — 1;1x4=4;
Read I_Codes[4..7] and ID_Array[4..7]
1_Codes:

ID_Array:
-1123[-14-15]67-1-1-18-1-1
A-l-1-1-1-1-1-1-1-1-1-1
loll-l-1-1-1-1

I Queue: 6,7,8,5,4

O_Codes:
2122 1313 0013 [003 3]

Loop 8

Loop 5

Dequeue — 5 ;5 x4 =20;
Read I-Cdoes[20..23] and ID_Array[20..23]
I_Codes:

ID_Array:
1123-14-1567-1-1-18-1-1
A-1-1-1[-1-1 -1 -1]-1-1-11
-1-1-1-1-1-1-1

I_Queue: 4

O_Codes:

Dequeue — 6 ;6 x4 =24 ;
Read I_Codes[24..27] and ID_Array[24..27]
I_Codes:

ID_Array:
1123-14-1567-1-1-18-1-1
A-1-1-1-1-1-1-1[-1 -1 -1 -1]
l-l-1-1-1-1-1-1

I Queue: 7,8,5,4

O_Codes:
2122 1313 0013 0033 [0101]

Loop 9

Dequeue — 4 ;4 x4 =16
Read I-Codes[16..19] and ID_Array[16..19]
I_Codes:

1222 0303 3311 0301 [1010] 1010 1100 1100 0011

ID_Array:
1123-14-1567-1-1-18-1-1
[(1-1-1-1]-1-1-1-1-1-1-1-1
-l-1-1-1-1-1-1

I_Queue:

O_Codes:




Figure 12: The 5th loop of the Rotate_90 case from the view
point of the image

4. The Strategy to Mirror Binary
Images Represented by CBLQ

In this section, we present the strategy which
maps the original image to the mirrored one di-
rectly from the codes based on the CBLQ repre-
sentation [4]. The property for the rotating cases
is the same for the mirroring case, i.e., the im-
age and the corresponding quadtree change at the
same time during the mirroring process. Take Fig-
ure 13-(a) as an example. Figure 13-(c) shows the
case of mirroring Figure 13-(a) about X-axis to ob-
tain the result. In other words, after mirroring of
Figure 13-(a) about X-axis, the four children at the
first level in Figure 13-(b) have been changed their
positions from A, B, C, and D to C, D, A, and
B, respectively, as shown in Figure 13-(d). The
four children at the first level in Figure 13-(d) are
labeled with labels 3, Ny, 1, and 2 on positions A,
B, C, and D, respectively. The process of chang-
ing the positions of four children is also executed
at each level until the end of the quadtree. It is
similar to the other mirroring cases.

Our strategy uses the same process as the ro-
tating strategy as shown in Figure 7 to obtain the
code for the mirrored image. However, different
from the rotating strategy, the mirroring strategy
uses different rules for the mirroring cases as shown
In the process of the mirroring strategy as shown
in Figure 7, the mapping rules for the mirroring
cases are used in I_Case to changed the positions
of labels in the corresponding quadtree. Then, we
can obtain the mirrored code of the image directly
from the code of the original image. The mapping
rules used for four mirroring cases are listed as fol-
lows.

e Rule M1. (Mirror_X):
C— A;D— B, A— C, B— D.

e Rule M2. (Mirror_Y):

(c)

Figure 13: An Example for the mirroring case: (a) the original
image; (b) the quadtree for the original image; (c) the image
after being mirrored about X-axis; (d) the quadtree for the
image after being mirrored.

B— A;A— B, D— C, C— D.

e Rule M3. (Mirror_MD):
D— A, B— B, C— (C; A— D.

e Rule M4. (Mirror_CD):
A— A, C— B,B— C,D— D.

We take Figures 6-(a) as examples to illustrate
the image of Mirror_X case which uses the mapping
rule M1. According to rule M1, The sixteen data
blocks in block A in Figure 14-(a) are moved, as
the result of the sixteen data blocks shown in block
C in Figure 14-(b). It is similar to the sixteen
data blocks in each block B, C, and D. They are
moved to blocks D, A, and B, respectively. The
other mapping rules which are used for the other
cases can be easily derived in the similar way. The
images of other rotating cases which use different
mapping rules are shown in Figures 14-(c), (d), and

(e).

5. Performance

In this section, we show the results of the per-
formance study of our strategies to rotate and mir-
ror images based on CBLQ. We use the CPU-time
as the performance measure for our strategy based
on CBLQ. In our simulation, we randomly gener-
ate pixel arrays of size 32 x 32 and 64 x 64 pix-
els with controlled amount of black density. We
generate images with densities of 10%, 20%, 30%,
40%, 50%, 60%, 70%, 80%, and 90% black pix-
els. That is, we generate 18 combinations (from
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Figure 14: Mirroring cases: (a) the original image; (b) the
Mirror_X case; (c) the Mirror_Y case; (d) the Mirror _MD case;
(e) the Mirror _CD case.

Table 4: Comparison of the CPU-time (ms) on different ro-
tating cases based on the CBLQ with size 32 x 32

Table 5: Comparison of the CPU-time (ms) on different mir-
roring cases based on the CBLQ with size 32 x 32

cooa Black densty | 400, | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90%
Mirror_X 8 | 14 |17 19|20 | 19]17]13] 8
Mirror_Y 8 | 14 | 17 [ 19 |20 [ 19 ] 17| 13] 8
Mirror_MD 8 | 14 | 1719 |2 19|17 | 13] s
Mirror_CD 8 | 14 | 17 [ 19 |20 |19 ] 17 ] 13 ] 8

Table 6: Comparison of the CPU-time (ms) on different ro-
tating cases based on the CBLQ with size 64 x 64

32 x 32 with 10% black pixels to 64 x 64 with 90%
black pixels). 500 binary images which are ran-
domly placed black pixels with the uniform dis-
tribution are generated for each combination. For
each combination, we compare the average CPU-
time of the seven cases (the Rotate-90 case, the
Rotate_180 case, the Rotate_270 case, the Mirror X
case, the Mirror_Y case, the Mirror MD case, and
the Mirror_CD case) based on the CBLQ.

The results of the CPU-time for those cases
in rotating and mirroring strategies based on the
CBLQ are shown in Tables 4, 5, 6, and 7. From
these tables, they both show that the CPU-time
for those cases is the same, whether the rotating
cases or mirroring cases, for each of the 18 combi-
nations of size and black density. Since those seven
cases use different mapping rules to help the code
conversion, they use the same process to obtain the
result.

Moreover, we can see that the larger the size of

Black i
o ack densty | 1094 | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90%
o Black denstiy | 4 0o, | 209 | 30% | 40% | 50% | 60% | 70% | 80% | 90% Rotate_90 63 | 121 | 157 | 177 | 185 | 178 | 157 | 121 | 63
Rotate 90 s 92 97 Tao T2 T9e T 17 1 3s [ 8 Rotate_180 63 | 121 | 157 | 177 | 185 | 178 | 157 | 121 | 63
Rotate_ 180 s 92 97 T30 20 T30 117 133 [ s Rotate_270 63 | 121 | 157 | 177 | 185 | 178 | 157 | 121 | 63
Rotate_270 8 |14 |17 19|20 |19]17 ] 13] 8

Table 7: Comparison of the CPU-time (ms) on different mir-
roring cases based on the CBLQ with size 64 x 64

cooa Black densty | 400, | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90%
Mirror_X 63 | 121 | 157 | 177 | 185 | 178 | 157 | 121 | 63
Mirror_Y' 63 | 121 | 157 | 177 | 185 | 178 | 157 | 121 | 63

Mirror_MD 63 | 121 | 157 | 177 | 185 | 178 | 157 | 121 | 63
Mirror_CD 63 | 121 | 157 | 177 | 185 | 178 | 157 | 121 | e3




the image is, the longer the needed CPU-time is.
This is because the length of the code representing
the image becomes long, as the size of the image
becomes large. We also can see that the CPU-time
is increased when the black density is no larger
than 50%, and the CPU-time is decreased when
the black density is larger than 50%. It means that
when the black density of combination A is equal
to the white density of combination B, i.e., the
black density is 20% and 80% (the white density
is 20%), the CPU-time of combination A and that
of combination B are similar. This is because the
CBLQ representation is used to code all nodes in
the quadtree, and when the black density of com-
bination A is equal to the white density of combi-
nation B, the number of nodes of combination A
in the quadtree and that of combination B in the
quadtree are similar.

6. Conclusion

In this paper, we have proposed the strategies
to obtain the code of the rotated or mirrored image
based on CBLQ representation. Our strategy can
obtain the code of the rotated or mirrored image
directly from the code of the original image, in-
stead of from the rotated/ mirrored image. From
our simulation, we have shown that the CPU-time
for all cases , whether the rotating cases or the
mirroring cases, are the same by using our strat-
egy on the images which are represented by CBLQ.
When the black density is equal to the white den-
sity (50%) base on CBLQ), it costs the most CPU
time among all combination of the black or white
densities.
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