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Abstract

In this paper, we construct the variant of
hypercube X(Qn, {xb, xw}) with node expansion
on one black node xb and one white node xw of hy-
percube Qn = (Vb ∪ Vw, E). Let F = Fb ∪ Fw ∪ F ′

be the faulty set of X(Qn, {xb, xw}) where
Fb ⊂ Vb, Fw ⊂ Vw and F ′ are disjoint sets.
We show that X(Qn, {xb, xw}) − F is Hamil-
tonian if (1).|Fb| = |Fw| = 0, |F ′| ≤ n − 2,
(2).0 < |Fb| = |Fw| ≤ dn

4 e−1, |F ′| ≤ n−1−4|Fb|,
(3).0 ≤ |Fw| 6= |Fb| ≤ dn

4 e−2, |F ′| ≤ n−3−4fmax,
for fmax = max{|Fb|, |Fw|}. We thus derive that
X(Qn, xb, xw) is k-Hamiltonian for k = dn

4 e − 2.
We also investigate the fault tolerance for multi-
spanning disjoint paths of complete graph Kn and
hypercube Qn.

Keywords: Hypercube; Node expansion;
Fault-tolerant; k-Hamiltonian; Spanning disjoint
paths.

1 Introduction

The hypercube is a popular and efficient inter-
connection network. It has been widely use due
to many excellent properties, such as regularity,
symmetry, low diameter and degree, effective and
simple routing, and so on. Component failures are
unavoidable in a large parallel systems. There-
fore, fault tolerance of an interconnection network
is very important research issue.

The interconnection network can be expressed
as a graph. The vertices on the graph repre-
sent processors and edges represent link between
processors. Let G = (V, E) be an undirected
graph, where V (G) is the node set and E(G) is
the edge set. The degree of a vertex v is the
number of edges adjacent to v denote dG(v). A
Hamiltonian cycle(resp. Hamiltonian path) is a
cycle(resp. path) of a graph that visits every ver-
tex exactly once. A graph G is a Hamiltonian
graph if there is a Hamiltonian cycle of G. A graph
G = (V, E) is k-Hamiltonian if G− F is Hamilto-
nian for F ⊂ (V ∪ E) and |F | ≤ k. Some vari-

ants of hypercube are (n− 2)-Hamiltonian graphs
[2, 3, 6].

A graph G = (Vb ∪ Vw, E) is a bipartite graph
if each edge of E consists of one vertex from the
white vertex set Vw and one vertex from the black
vertex set Vb. A bipartite graph G = (Vb∪Vw, E) is
Hamiltonian laceable if there exists a Hamiltonian
path between b, w for any b ∈ Vb, w ∈ Vw. In [7],
Tsai et al. proved that the hypercube Qn − Fe is
Hamiltonian laceable for Fe ⊂ E(Qn) and |Fe| ≤
n− 2.

In [5], the authors investigated the ver-
tices fault-tolerance for multiple spanning disjoint
paths for hypercube Qn = (Vb ∪ Vw, E). Let
Fb ⊂ Vb and Fw ⊂ Vw be two sets of faulty
vertices of Qn. Let Kb ⊂ (Vb − Fb) and Kw ⊂
(Vw − Fw) be two sets of fault-free vertices of Qn

for |Kb|+ |Kw| is even. Let Kb ∪Kw = {si, ti| for
1 ≤ i ≤ |Kb|+|Kw|

2 }. The family {si, ti}Fb,Kb

Fw,Kw
is

connectable if there exist |Kb|+|Kw|
2 spanning dis-

joint paths P (si, ti), for 1 ≤ i ≤ |Kb|+|Kw|
2 , in

Qn−Fb−Fw. The family {si, ti}Fb,Kb

Fw,Kw
is balanced

if |Kw|+ 2|Fw| = |Kb|+ 2|Fb|. Hung et al. proved
that every balanced family {si, ti}Fb,Kb

Fw,Kw
of hyper-

cube Qn is connectable if |Fb|+|Fw|+|Kb|+|Kw| ≤
n, 4|Fb|+2|Kb| = 4|Fw|+2|Kw| ≤ n+1, for n ≥ 3.

Hung et al. presented the t-node expansion for
k-Hamiltonian graph in [4]. Let Xn be the graph
obtained by applying n-node expansion to every
vertex of hypercube Qn. The authors proved that
Xn is (n− 2)-Hamiltonian in [4].

In this paper, we will prove the vertices and
edges fault-tolerance for multiple spanning disjoint
paths of hypercube Qn. Let Fe be the set of faulty
edges of Qn. We will show that every balanced
family {si, ti}Fb,Kb

Fw,Kw
of hypercube Qn − Fe is con-

nectable if |Fb| + |Fw| + |Kb| + |Kw| + |Fe| ≤ n,
4|Fb|+2|Kb|+ |Fe| = 4|Fw|+2|Kw|+ |Fe| ≤ n+1,
for n ≥ 3.

Let xb ∈ Vb and xw ∈ Vw be any two vertices
of Qn. Let X(Qn, {xb, xw}) be the graph obtained
by n-node expansion on xb and xw of Qn. Let F =
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Fb ∪ Fw ∪ F ′ be the faulty set of X(Qn, {xb, xw})
where Fb ⊂ Vb, Fw ⊂ Vw and F ′ are disjoint sets.
We will prove that X(Qn, {xb, xw})−F is Hamil-
tonian if

1. |Fb| = |Fw| = 0, |F ′| ≤ n− 2,
2. 0 < |Fb| = |Fw| ≤ dn

4 e−1, |F ′| ≤ n−1−4|Fb|,
3. 0 ≤ |Fw| < |Fb| ≤ dn

4 e−2, |F ′| ≤ n−3−4|Fb|.
Applying this result, we prove that
X(Qn, {xb, xw}) is k-Hamiltonian for k = dn

4 e−2.

The rest of this paper is organized as follows.
In section 2, we show fault tolerance for spanning
disjoint paths of complete graphs. We will prove
the vertices and edges fault-tolerance for multiple
spanning disjoint paths of hypercube in section 3.
In section 4, the fault tolerance for Hamiltonian
cycle of node expansion on hypercube is proved.
The conclusion is given in section 5.

2 Fault tolerance for spanning
disjoint paths of complete graph

Hung et al. proved the following lemma in [4]

Lemma 1 Let Kn = (V, E) be an n-node com-
plete graph and F ⊂ (V ∪ E) be a faulty set with
|F | ≤ n − 2. There exists a set V ′ ⊆ V (Kn − F )
with |V ′| = n−|F | such that every pair of vertices
in V ′ can be joined by a Hamiltonian path.

The following theorem is the generalization of
Lemma 1.

Theorem 1 Let Kn = (V, E) be an n-node com-
plete graph and F ⊂ (V ∪ E) be a faulty set with
|F | ≤ n − 2. There exists a set V ′ ⊆ V (Kn − F )
with |V ′| = n− |F |. Such that any m pairs of ver-
tices in V ′, there exist m spanning disjoint paths
of Kn − F for 1 ≤ m ≤ bn−|F |

2 c.
Proof:

We prove this theorem by induction on n. Triv-
ially, this theorem is true for |F | = 0, Applying
Lemma 1, we can obtain that this theorem holds
for m = 1. In the following, we can assume that
|F | ≥ 1 and m ≥ 2. Thus, |V ′| = n − |F | ≥ 4.
Hence, we can assume n ≥ 5.

First, we consider |F ∩ V (Kn)| > 0. Let Fv

denote the set of faulty nodes. Then, the graph
Kn−F is isomorphic to Kn−|Fv|−F ′, |F ′| ≤ |F |−
|Fv|. By induction hypotheses, there exists a set
V ′ ⊆ V (Kn−|Fv|−F ′) with |V ′| = n−|Fv|−|F ′| ≥
n − |F |. Such that any m pairs of vertices in V ′,
there exist m spanning disjoint paths of Kn − F

for 2 ≤ m ≤ bn−|Fv|−|F ′|
2 c. This theorem is true

for |F ∩ V (Kn)| > 0.

Next, we consider that F ⊂ E. We only need
to consider that F ⊂ E and |F | ≤ n − 4. Let H
denote the subgraph of Kn given by (V, F ). Let

U = {x|x ∈ V and dH(x) > 0} and v be the
vertex in U with minimum degree. We will prove
this theorem with the following three cases:

Case 1: dH(v) = 1.
In other words, there is exactly one edge of F
incident to v. Thus, the graph Kn−{v}−F is
isomorphic to Kn−1−F ∗ with |F ∗| ≤ |F |−1.
By induction hypotheses, there exists a vertex
set V ′ ⊂ (V − {v}) with |V ′| = n− 1− |F ∗|.
Such that any m pairs of vertices in V ′, there
exist m spanning disjoint paths of Kn−{v}−
F ∗ for 2 ≤ m ≤ bn−1−|F∗|

2 c ≤ bn−|F |
2 c.

Since dH(v) = 1 and m ≥ 2, there exists an
edge (z1, z2) of one of these path, such that
(v, z1), (v, z2) /∈ F . Hence, we can modify
this path by replacing (z1, z2) by (z1, v) and
(v, z2), as illustrated in Figure 1. Therefore,
there exists a set V ′ ⊆ V with |V ′| = n− |F |.
Such that any m pairs of vertices in V ′, there
exist m spanning disjoint paths of Kn−F for
1 ≤ m ≤ bn−|F |

2 c.

Figure 1: Illustration of Case1.

Case 2: dH(v) = 2.
Since v is the vertex in U with minimum
degree and dH(v) = 2, |F | ≥ 3. Thus,
n ≥ |F |+ 4 ≥ 7. The graph Kn − {v} − F is
isomorphic to Kn−1−F ∗ with |F ∗| = |F |−2.
By induction hypotheses, there exists a ver-
tex set V ′ ⊂ (V −{v}) with |V ′| = n−|F |+1.
For every m pairs of vertices in V ′, there exist
m spanning disjoint paths of Kn − {v} − F ∗.
Let x, y ∈ (V − {v}) and (v, x), (v, y) ∈ F .

First, we consider that n = 7. Since |F | ≤
n− 4, |F | = 3. Thus, V ′ ∩ {x, y} 6= ø. With-
out loss of generality, we can assume that
x ∈ (V ′ ∩ {x, y}). We will choose two pairs
of vertices from V ′. Let V ∗ ⊂ V ′ and x ∈ V ∗

with |V ∗| = 4. There exist two spanning
disjoint paths of Kn − {v} − F ∗ between ev-
ery pair of vertices in V ∗. Hence there exists
an edge (z1, z2) of these two paths such that
{z1, z2} ∩ {x, y} = ø. Thus, we can modify
the path by replacing (z1, z2) by (z1, v) and
(v, z2). Therefore, there exists a vertex set V ′
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with |V ′| = n− |F |. Such that every m pairs
of vertices in V ′, there exist m spanning dis-
joint paths of Kn − F for 1 ≤ m ≤ bn−|F |

2 c.
This theorem is true for n = 7.

Next, we will consider that n ≥ 8. Suppose
that m = 2. The number of edges of these
2 spanning disjoint paths of Kn − {v} − F ∗

is at least 5. Suppose that m ≥ 3. Since
dH(v) = 2, there exists one of theses m span-
ning disjoint paths of Kn − {v} − F ∗ such
that every vertex of this path is adjacent to
v. Thus, there exists an edge (z1, z2) of some
path, such that (v, z1), (v, z2) /∈ F . Hence,
we can modify this path by replacing (z1, z2)
by (z1, v) and (v, z2), as illustrated in Figure
2. Therefore, there exists a set V ′ ⊆ V with
|V ′| = n− |F |. Such that any m pairs of ver-
tices in V ′, there exist m spanning disjoint
paths of Kn − F for 1 ≤ m ≤ bn−|F |

2 c.

Figure 2: Illustration of Case2.

Case 3: dH(v) ≥ 3.
The graph Kn − {v} − F is isomorphic to
Kn−1−F ∗ with |F ∗| = |F |− 3. By induction
hypothesis, there exists a set V ′ ⊂ (V − {v})
with |V ′| = n − |F | + 2. For every m pairs
of vertices of V ′, there exist m spanning dis-
joint paths of Kn − {v} − F ∗ for 1 ≤ m ≤
bn−|F |+2

2 c. Since v is the vertex of U with
minimum degree, |F | ≥ dH(v)·(dH(v)+1)

2 . The
number of edges of m spanning disjoint paths
in Kn−{v}−F ∗ is n−m−1. Thus, n−m−1 ≥
|F |+2m−m− 1 ≥ dH(v)·(dH(v)+1)

2 +m− 1 >
2dH(v) for dH(v) ≥ 3 and m ≥ 2. Thus, there
exists an edge (z1, z2) of one of these spanning
disjoint paths such that (v, z1), (v, z2) /∈ F .
Hence, we can modify this path by replacing
(z1, z2) by (z1, v) and (v, z2), as illustrated in
Figure 3. Therefore, there exists a set V ′ ⊆ V
with |V ′| = n−|F |. Such that any m pairs of
vertices in V ′, there exist m spanning disjoint
paths of Kn − F for 1 ≤ m ≤ bn−|F |

2 c. 2

Figure 3: Illustration of Case3.

3 Fault tolerance for spanning
disjoint paths of hypercube

In this section, we mainly construct multiple
spanning paths in hypercube with faulty vertices
and edges.

An n-dimensional hypercube Qn(Vb ∪ Vw, E) is
a bipartite graph whose vertices are labeled by dis-
tinct n-bit binary strings. Two vertices are linked
by an edge if and only if their labels differ exactly
in one bit. An i-edge (x, y) is an edge that x and
y differ in the i-th bit. The hypercube Qn can be
constructed recursively as Qn = Qn−1 ×K2. We
can partition Qn into two subgraphs Q0

n−1 and
Q1

n−1 by choosing any one bit of binary string.
Let Vb be the black vertex set and Vw white

vertex set of Qn. We denote the black and white
vertex set of Qj

n−1 with V j
b and V j

w, for j = 0, 1.
And let V j = V j

b ∪ V j
w for j = 0, 1. Thus, Vb =

V 0
b ∪ V 1

b , Vw = V 0
w ∪ V 1

w , V = Vb ∪ Vw = V 0 ∪ V 1.
Let Fb be the set of black faulty vertices of Qn

and Fw the set of white faulty vertices of Qn,
Fe the set of faulty edges of Qn. Similarly, we
also use F j

b and F j
w and F j

e to denote the black
and white faulty vertex set and faulty edge set
of Qj

n−1, respectively, for j = 0, 1. Thus, Fb =
F 0

b ∪F 1
b , Fw = F 0

w ∪F 1
w, F 0 = F 0

b ∪F 0
w ∪F 0

e , F 1 =
F 1

b ∪ F 1
w ∪ F 1

e , F = Fb ∪ Fw ∪ Fe = F 0 ∪ F 1.
In [1], Caha et al. proposed the multiple span-

ning disjoint paths problem for hypercube. Let
si, ti, for 1 ≤ i ≤ k, be vertices of Qn. The
{si, ti}k

i=1 is a connectable family if there exists
k spanning paths of Qn between si and ti, for
1 ≤ i ≤ k. The {si, ti}k

i=1 is balanced if it has the
same number of vertices in each partite set. Caha
showed that every balanced family {si, ti}n

i=1 is
connectable in Q2n if the distance of every pair
si, ti is odd. Caha also showed that every balanced
family {si, ti}n

i=1 is connectable in Q6n.
In [5], the authors presented the vertex fault

tolerance for multiple spanning disjoint paths in
hypercube. Let {si, ti}Fb,Kb

Fw,Kw
be a family of G =

(Vb ∪ Vw, E) where Kb(⊂ Vb) ∪ Kw(⊂ Vw) =
{si, ti|1 ≤ i ≤ |Kb|+|Kw|

2 } is the set of fault-
free end vertices, Fb ⊂ Vb and Fw ⊂ Vw are
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sets of faulty vertices. The family {si, ti}Fb,Kb

Fw,Kw

is balanced if |Kw| + 2|Fw| = |Kb| + 2|Fb|. The
family {si, ti}Fb,Kb

Fw,Kw
is connectable if there ex-

ist (|Kb| + |Kw|)/2 spanning paths P (si, ti), for
1 ≤ i ≤ (|Kb|+ |Kw|)/2, in G− Fb − Fw.

We also use Kj
b and Kj

w to denote the set of
black and white end vertices of Qj

n−1, respectively,
for j = 0, 1. Let Kj = Kj

b ∪Kj
w for j = 0, 1 and

K = K0 ∪K1. Thus, Kb = K0
b ∪K1

b and Kw =
K0

w ∪K1
w. Let K01

w = {vw|vw ∈ K0
w and u ∈ K1,

for 〈vw, u〉 is a pair of K.}. Let K01
b = {vb|vb ∈ K0

b

and u ∈ K1, for 〈vb, u〉 is a pair of K.}. Let v be a
vertex of V 0 and U be a vertex subset of V 0. We
use φ(v) to denote the neighbor of v in V 1. We
further let φ(U) = {φ(v)|v ∈ U ⊆ V 0}.

The following lemma is proved in [5].

Lemma 2 Every balanced family {si, ti}Fb,Kb

Fw,Kw
of

hypercube Qn is connectable if |Fb|+ |Fw|+ |Kb|+
|Kw| ≤ n, 4|Fb|+ 2|Kb| = 4|Fw|+ 2|Kw| ≤ n + 1,
for n ≥ 3.

In the following, we will investigate the vertex
and edge fault tolerance for multiple spanning dis-
joint paths in hypercube. We will prove the fol-
lowing theorem.

Theorem 2 Every balanced family {si, ti}Fb,Kb

Fw,Kw

of Qn − Fe is connectable if |Fb| + |Fw| + |Kb| +
|Kw| + |Fe| ≤ n, 4|Fb| + 2|Kb| + |Fe| = 4|Fw| +
2|Kw|+ |Fe| ≤ (n + 1), for n ≥ 3.

Proof:
When |Fe| = 0, applying Lemma 2, we can ob-

tain this theorem is hold. In the following, we will
assume that |Fe| ≥ 1. We will prove this theorem
by induction on n. For n ≥ 3, we assume that
every balanced family {si, ti}Fb,Kb

Fw,Kw
of hypercube

Qn−1−Fe is connectable where |Fb|+|Fw|+|Kb|+
|Kw| + |Fe| ≤ (n − 1), 4|Fb| + 2|Kb| + |Fe| ≤ n =
4|Fw|+2|Kw|+|Fe| ≤ n. Since Q3 is 1 edge Hamil-
tonian laceable [7], this theorem is holds for n = 3.
We will partition Qn into two subgraphs Q0

n−1 and
Q1

n−1 with a bit i which some faulty edge is i-edge.
Thus, |F j

e | ≤ |Fe| − 1 for j = 0, 1. Without loss of
generality, we can assume that |Fb| ≥ |Fw|. Thus,
|Kw| ≥ |Kb|.

Case 1: |F 0|+ |K0| = 0 or |F 1|+ |K1| = 0

Without loss of generality, we can assume
that Fb∪Fw ∪K ∈ Q0

n−1. Since |F 0
b |+ |F 0

w|+
|K0

b |+|K0
w|+|Fe|−1 ≤ (n−1), 4|F 0

b |+2|K0
b |+

|Fe| − 1 ≤ n = 4|F 0
w|+ 2|K0

w|+ |Fe| − 1 ≤ n,

{si, ti}F 0
b ,K0

b

F 0
w,K0

w
is connectable family of Q0

n−1−
F 0

e . Therefore, we can construct |K0
b |+|K0

w|
2

spanning paths of Q0
n−1 − F 0

e . One of these
paths is 〈s1, ..., x, y, ..., t1〉. There is a Hamil-
tonian path 〈φ(x), ..., φ(y)〉 of Q1

n−1 − F 1
e .

Thus, we can construct |Kb|+|Kw|
2 spanning

paths of Qn−Fe, as illustrated in Figure 4.(a).

Case 2: |F 0|+ |K0| ≥ 1 and |F 1|+ |K1| ≥ 1
Let U0

b ⊂ (V 0
b − F 0

b − K0
b ) with φ(U0

b ) ⊂
(V 1

w − F 1
w −K1

w), |U0
b | = max(|K01

w |, (2|F 0
w|+

|K0
w|) − (2|F 0

b | + |K0
b |)) and U0

w ⊂ (V 0
w −

F 0
w − K0

w) with φ(U0
w) ⊂ (V 1

b − F 1
b − K1

b ),
|U0

w| = max(|K01
b |, (2|F 0

b | + |K0
b |) + |U0

b | −
(2|F 0

w|+ |K0
w|)).

Since |F 0
b |+ |F 0

w|+ |K0
b |+ |U0

b |+ |K0
w|+ |U0

w| ≤
(n − 1), 4|F 0

b | + 2(|K0
b | + |U0

b |) = 4|F 0
w| +

2(|K0
w| + |U0

w|) ≤ n, {si, ti}F 0
b ,K0

b∪U0
b

F 0
w,K0

w∪U0
w

is con-
nectable family of Q0

n−1, we can construct
|K0

b |+|U0
b |+|K0

w|+|U0
w|

2 spanning paths of Q0
n−1.

Because of |F 1
b | + |F 1

w| + |K1
b | + |φ(U0

w)| +
|K1

w| + |φ(U0
b )| ≤ (n − 1), 4|F 1

b | + 2(|K1
b | +

|φ(U0
w)|) = 4|F 1

w| + 2(|K1
w| + |φ(U0

b )|) ≤ n,

{si, ti}F 1
b ,K0

b∪φ(U0
w)

F 1
w,K0

w∪φ(U0
b
)

is connectable family of

Q1
n−1. There exist |K1

b |+|U0
b |+|K1

w|+|U0
w|

2 span-
ning paths of Q1

n−1. Therefore, we can con-
struct |Kb|+|Kw|

2 spanning paths in Qn, as il-
lustrated in Figure 4.(b). 2

Figure 4: Illustration of Theorem 2.

4 Fault Hamiltonicity for node
expansion of hypercube

In [4], the authors defined the t-node expansion
operation as follows. Let x be a vertex of graph
G = (V, E) with dG(x) = t. Let {x1, x2, · · · , xt}
be the set of neighbor of x. The t-node expan-
sion X(G, x) of G on x is the graph obtained from
G by replacing x with a complete graph Kt. Let
V (Kt) = {k1, k2, · · · , kt}. That is, V (X(G, x)) =
V − {x} ∪ {k1, k2, · · · , kt} and E(X(G, x)) = E ∪
E(Kt) ∪ {(xi, ki)|1 ≤ i ≤ t} − {(x, xi)|1 ≤ i ≤ t}.
Moreover, the node expansion can be applied on a
vertex subset. The node expansion of G = (V,E)
on the subset U ⊆ V , denoted by X(G,U), is
the graph that is obtained from G by a sequence
node expansion operations on every node u ∈ U .
Let NG(x) = {(x, xi)| for all 1 ≤ i ≤ t} and
MX(G,U)(x) = V (Kt) ∪ E(Kt) ∪ {(ki, xi)| for all
1 ≤ i ≤ t} for x ∈ U . The graph G and X(G, x)
are illustrated in Figure 5.

4



Let F be the set of faulty vertices and faulty
edges of X(G,U) and FX(x) = F ∩ MX(G,U)(x)
for x ∈ U . Let V ′ ⊆ V (Kt − FX(x)) be the set
such that every m pairs of vertices in V ′ there
exist m spanning disjoint paths of Kt−FX(x) for
1 ≤ m ≤ bn−|FX(x)|

2 c and |V ′| = n− |FX(x)|. Let
KX(G,U)−F (x) = {xi|(x, xi) ∈ E(G) and ki ∈ V ′

and (xi, ki) /∈ F}. Let F e
X(x) = {(xi, ki)| for ki /∈

V ′ or (xi, ki) ∈ F and 1 ≤ i ≤ t}. Let F e
G(x) =

{(x, xi)| for (xi, ki) ∈ F e
X(x)}. Thus |F e

X(x)| =
|F e

G(x)| = |FX(x)|.The following lemma is proved
in [4].

Figure 5: Illustration of node expansion.

Lemma 3 Given F1 ⊂ (V (G−x)∪E(G−x)). If
we delete any f edges of NG(x) from the graph G−
F1 such that the remaining graph is Hamiltonian
for f ≤ t−2, then the graph X(G, x)−(F1∪F3) is
Hamiltonian, where F3 is a subset of MX(G,x)(x)
and |F3| = f .

Let X(Qn, {xb, xw}) be the n-node expansion
of Qn = (Vb ∪ Vw, E) on {xb, xw} for xb ∈ Vb

and xw ∈ Vw. Let Kb
n and Kw

n be the complete
graphs replacing xb and xw, respectively. That is,
V (X(Qn, {xb, xw})) = Vb∪Vw∪V (Kb

n)∪V (Kw
n )−

{xb}−{xw}. Let F be the set of faulty element of
X(Qn, {xb, xw}). Let Fb = F ∩ Vb, Fw = F ∩ Vw,
F ′ = F−Fb−Fw and fmax = max(|Fb|, |Fw|). Let
FX(xw) = F ′∩MX(Qn,{xb,xw})(xw) and FX(xb) =
F ′ ∩MX(Qn,{xb,xw})(xb). Applying the definition
of F e

X(x), we can define that F e
Qn

(xb) = {(xb, x
i
b)|

for (xi
b, k

i
b) ∈ F e

X(xb)} and F e
Qn

(xw) = {(xw, xi
w)|

for (xi
w, ki

w) ∈ F e
X(xw)}. We also use F e

X to denote
F ′−FX(xb)−FX(xw). We can prove the following
theorem.

Theorem 3 The graph X(Qn, {xb, xw}) − F is
Hamiltonian if

1. |Fb| = |Fw| = 0, |F ′| ≤ n− 2,
2. 0 < |Fb| = |Fw| ≤ dn

4 e−1, |F ′| ≤ n−1−4|Fb|,
3. 0 ≤ |Fw| 6= |Fb| ≤ dn

4 e − 2, |F ′| ≤ n − 3 −
4fmax.

Proof:
The graph Kb

n is the complete graph replacing
xb in X(Qn, {xb, xw}). Let FKb

n
= F ∩ (V (Kb

n ∪

E(Kb
n)) and FKw

n
= F ∩ (V (Kw

n ∪ E(Kw
n )). Let

F e
Qn

= F e
X ∪ F e

Qn
(xw) ∪ F e

Qn
(xb). Thus |F e

Qn
| =

|F e
X |+ |F e

Qn
(xw)|+ |F e

Qn
(xb)| = |F ′| − |FX(xb)| −

|FX(xw)|+ |F e
Qn

(xw)|+ |F e
Qn

(xb)| = |F ′|. We will
prove this theorem by the following cases.

Case 1: |Fb| = |Fw| = 0.
Thus |F ′| ≤ n− 2. Since F = F ′ = FX(xb) ∪
FX(xw) ∪ F e

X , |FX(xb)|+ |FX(xw)|+ |F e
X | ≤

n − 2. When we delete any |FX(xb)| edges
of NQn(xb) and |FX(xw)| edges of NQn(xw)
from Qn−F e

X , the remaining graph is Hamil-
tonian since Qn is (n − 2)-edge Hamilto-
nian. Applying Lemma 3, X(Qn, {xb, xw})−
F e

X(xb)− F e
X(xw) is also Hamiltonian.

Case 2: |Fb| = |Fw| > 0.
Thus |F ′| ≤ n − 4|Fb|. Let F ∗Qn

(xb) be the
set of arbitrary |FX(xb)| edges adjacent to xb

of Qn and F ∗Qn
(xw) be the set of arbitrary

|FX(xw)| edges adjacent to xw of Qn. We
also denote the set F ∗Qn

(xb) ∪ F ∗Qn
(xw) ∪ F e

X

by F ∗Qn
. Since |Fb| + |Fw| + 2 + |F ∗Qn

| ≤
2|Fb|+2+n−1−4|Fb| = n+1−2|Fb| ≤ n−1,
4|Fb| + 2 + |F ∗Qn

| = 4|Fw| + 2 + |F ∗Qn
| ≤

4|Fb|+ 2 + n− 1− 4|Fb| ≤ n + 1, there exists
a Hamiltonian path of Qn − Fb − Fw − F ∗Qn

between every pair of vertices with odd dis-
tance. Thus, Qn − Fb − Fw − F ∗Qn

is Hamil-
tonian laceable. This graph is also Hamilto-
nian. Applying the definition of F e

Qn
, we can

know that |F e
Qn
| ≤ |F ∗Qn

|. Thus Qn − Fb −
Fw−F e

Qn
is Hamiltonian. Applying Lemma 3,

X(Qn, {xb, xw})−Fb−Fw−F ′ is also Hamil-
tonian.

Case 3: |Fb| 6= |Fw|. Thus |F ′| ≤ n− 3− 4fmax.
Without loss of generality, we can assume
that |Fb| ≥ |Fw|. Thus, fmax = |Fb|. Since
FKb

n
⊆ FX(xb) ⊆ F ′, |FKb

n
| ≤ |F ′| ≤ n − 3 −

4|Fb| ≤ n − 2. Applying Theorem 1, we can
obtain a set V ′ ⊆ (V (Kb

n)−FKb
n
) with |V ′| =

n − |FKb
n
|, such that any m pairs of vertices

in |V ′|, there exist m spanning disjoint paths

of Kb
n − FKb

n
for 1 ≤ m ≤ bn−|F

Kb
n
|

2 c. Since
2|Fb|+ 2− 2|Fw| ≤ 4|Fb|+ 3 ≤ n− |FX(xb)|,
we will construct |Fb| + 1 − |Fw| spanning
disjoint paths P (ksi , kti) of Kb

n − FKb
n

for
(ksi , xsi) /∈ FX(xb) and (kti , xti) /∈ FX(xb),
1 ≤ i ≤ |Fb|+ 1− |Fw|.
Let F ′b = {xb} ∪ Fb and Kw ⊂
KX(Qn,{xb,xw})−F (xb) with |Kw| = 2(|F ′b| −
|Fw|) and Kw ∩ Fw = ø. Hence |F ′b|+ |Fw|+
|Kw|+|F e

Qn
| = 3|Fb|+3−|Fw|+n−3−4|Fb| =

n − |Fb| − |Fw| < n, 4|F ′b| + |F e
Qn
| = 4|Fw| +

2|Kw|+|F e
Qn
| = 4|Fb|+4+n−3−4|Fb| ≤ n+1.

Applying Theorem 2, we can obtain that
for any |Kw| vertices there exist |Kw|

2 span-
ning disjoint paths of Qn − F ′b − Fw − F e

Qn

between every pair of vertices of Kw. We
can construct |Kw|

2 spanning disjoint paths
P (xt1 , xs2), P (xt2 , xs3), · · · , P (xt Kw|

2

, xs1) of

5



Figure 6: Illustration of Theorem 3.

Qn − F ′b − Fw − F e
Qn

. Therefore, 〈ks1 →
P (ks1 , kt1) → kt1 , xt1 → P (xt1 , xs2) →
xs2 , ks2 → · · · → P (xt |Kw|

2

, xs1) → xs1 , ks1〉
forms a Hamiltonian cycle of X(Qn, xb) −
Fb − Fw − F e

X − FX(xb) − FQn(xw). Thus,
X(Qn, xb)−Fb−Fw−F e

X−FX(xb)−FQn
(xw)

is Hamiltonian, as illustrated in Figure 6.
Applying Lemma 3, we can obtain that
X(Qn, {xb, xw})− Fb − Fw − F e

X − FX(xb)−
FX(xw) = X(Qn, {xb, xw}) − F is Hamilto-
nian since |FX(xw)| = |FQn(xw)|. 2

Corollary 1 Let X(Qn, {xb, xw}) is k-
Hamiltonian where xb and xw are two vertices in
Qn with odd distance for k = dn

4 e − 2.

5 Conclusion

In this paper, we prove first the fault toler-
ance for multi-spanning disjoint paths in complete
graph Kn. When F ⊂ (V ∪E) is a faulty set with
|F | ≤ n− 2, we show that there exist m spanning
disjoint paths in Kn − F for 1 ≤ m ≤ bn−|F |

2 c.
Secondly, we discuss the fault tolerance for bal-
anced and connectable property of hypercube Qn.
We show that Qn is balanced and connectable if
|Fb|+ |Fw|+ |Kb|+ |Kw|+ |Fe| ≤ n,4|Fb|+2|Kb|+
|Fe| ≤ n+1 and 4|Fw|+2|Fb|+|Fe| ≤ n+1, for n ≥
3. Applying these results described above, we con-
struct the variant of hypercube X(Qn, {xb, xw})
with node expansion on one black node xb and
one white node xw of hypercube. We prove that
X(Qn, {xb, xw}) − (Fb ∪ Fw ∪ F ′) is Hamiltonian
if

1. |Fb| = |Fw| = 0, |F ′| ≤ n− 2.
2. 0 < |Fb| = |Fw| ≤ dn

4 e−1, |F ′| ≤ n−1−4|Fb|.
3. 0 ≤ |Fw| 6= |Fb| ≤ dn

4 e − 2, |F ′| ≤ n − 3 −
4fmax, for fmax = max{|Fb|, |Fw|}.

Thus, we derive that X(Qn, xb, xw) is k-
Hamiltonian for k = dn

4 e − 2.
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