Bipanpositionable Bipancyclic of Hypercube*

Yuan-Kang Shih, Cheng-Kuan Lin, and Jimmy J. M. Tan
Department of Computer Science
National Chiao Tung University, Hsinchu, Taiwan 30010, R.O.C.
\{ykshih,cklin,jmtan\}@cs.nctu.edu.tw
Lih-Hsing Hsu
Department of Computer Science and Information Engineering Providence University
Taichung, Taiwan 43301, R.O.C.
lhhsu@pu.edu.tw

Abstract

A bipartite graph is bipancyclic if it contains a cycle of every even length from 4 to $|V(G)|$ inclusive. A hamiltonian bipartite graph G is bipanpositionable if, for any two different vertices x and y, there exists a hamiltonian cycle C of G such that $d_{C}(x, y)=k$ for any integer k with $d_{G}(x, y) \leq k \leq|V(G)| / 2$ and $\left(k-d_{G}(x, y)\right)$ being even. A bipartite graph G is k-cycle bipanpositionable if, for any two different vertices x and y, there exists a cycle of G with $d_{C}(x, y)=l$ and $|V(C)|=k$ and for any integer l with $d_{G}(x, y) \leq l \leq \frac{k}{2}$ and $\left(l-d_{G}(x, y)\right)$ being even. A bipartite graph G is bipanpositionable bipancyclic if G is k-cycle bipanpositionable for every even integer $k, 4 \leq k \leq|V(G)|$. We prove that the hypercube Q_{n} is bipanpositionable bipancyclic if and only if $n \geq 2$.

Keywords: bipanpositionable, bipancyclic, hypercube, hamiltonian.
*This work was supported in part by the National Science Council of the Republic of China under Contract NSC 96-2221-E-009-137-MY3.

1 Introduction

For the graph definitions and notations we follow [4]. Let $G=(V, E)$ be a graph, where V is a finite set and E is a subset of $\{(u, v) \mid(u, v)$ is an unorder pair of $V\}$. We say that V is the vertex set and E is the edge set of G. Two vertices u and v are adjacent if $(u, v) \in E$. A path is represented by $\left\langle v_{0}, v_{1}, v_{2}, \cdots, v_{k}\right\rangle$, where all vertices are distinct. The length of a path Q is the number of edges in Q. We also write the path $\left\langle v_{0}, v_{1}, v_{2}, \cdots, v_{k}\right\rangle$ as $\left\langle v_{0}, Q_{1}, v_{i}, v_{i+1} \cdots, v_{j}, Q_{2}, v_{t}, \cdots, v_{k}\right\rangle$, where Q_{1} is the path $\left\langle v_{0}, v_{1}, \cdots, v_{i-1}, v_{i}\right\rangle$ and Q_{2} is the path $\left\langle v_{j}, v_{j+1}, \cdots, v_{t-1}, v_{t}\right\rangle$. We use $d_{G}(u, v)$ to denote the distance between u and v in G, i.e., the shortest path joining u to v in G. A cycle is a path of at least three vertices such that the first vertex is the same as the last vertex. We use $d_{c}(u, v)$ to denote the distance between u and v in a cycle C, i.e., the length of the shortest path joining u to v in C. A hamiltonian cycle of G is a cycle that traverses every vertex of G exactly once. A hamiltonian graph is a graph with a hamiltonian cycle. A graph $G=\left(V_{0} \cup V_{1}, E\right)$
is bipaetite if $V(G)=V_{0} \cup V_{1}$ and $E(G)$ is a subset of $\left\{(u, v) \mid u \in V_{0}\right.$ and $\left.v \in V_{1}\right\}$.

The n-dimensional hypercube, Q_{n}, consists of all n-bit binary strings as its vertices and two vertices \mathbf{u} and \mathbf{v} are adjacent if and only if their binary labels different in exactly one bit position. Let $\mathbf{u}=u_{n-1} u_{n-2} \ldots u_{1} u_{0}$ and $\mathbf{v}=v_{n-1} v_{n-2} \ldots v_{1} v_{0}$ be two n-bit binary strings. The Hamming distance $h(u, v)$ between two vertices u and v is the number of different bits in the corresponding strings of both vertices. The hypercubes Q_{1}, Q_{2}, and Q_{3} are illustrated in Figure 1 and Q_{4} is illustrated in Figure 2. Let Q_{n}^{i} be the subgraph of Q_{n} induced by $\left\{u_{n-1} u_{n-2} \ldots u_{1} u_{0} \mid u_{n-1}=i\right\}$ for $i=0,1$. Therefore, Q_{n} can be constructed recursively by taking two copies of Q_{n-1}, Q_{n}^{0} and Q_{n}^{1}, and adding a perfect matching between these two copies. Let \mathbf{u} be a vertex in Q_{n}^{0} (resp. Q_{n}^{1}), we use $\overline{\mathbf{u}}$ to denote the unique neighbor of \mathbf{u} in $Q_{n}^{1}\left(\right.$ resp. $\left.Q_{n}^{0}\right)$. The hypercube is a widely used topology in computer architectures [8]. There are some interesting studies in hypercube $[6,10,13]$.

A graph is pancyclic if it contains a cycle of every length from 3 to $|V(G)|$ inclusive. The concept of pancyclic graphs is proposed by Bondy [3]. It is known that there is no odd cycle in any bipartite graph. For this reason, the concept of bipancyclic graph is proposed [7]. A bipartite graph is bipancyclic if it contains a cycle of every even length from 4 to $|V(G)|$ inclusive. It is proved that the hypercube Q_{n} is bipancyclic if $n \geq 2[9,12]$. A graph is panconnected if, for any two different vertices x and y, there exists a path of length l joining x and y with $d_{G}(x, y) \leq l \leq|V(G)|-1$. The concept of panconnected graphs is proposed by Alavi and Williamson [1]. It is easy to see that any bipartite graph with at least 3 vertices is not panconnected. Therefore, the concept of bipanconnected graphs is proposed. A bipartite graph is bipanconnected if, for any two different vertices x and y, there exists a path of length l joining x and y with $d_{G}(x, y) \leq l \leq|V(G)|-1$ and $\left(l-d_{G}(x, y)\right)$
being even. It is proved that the hypercube is bipanconnected [9]. A hamiltonian graph G is panpositionable if for any two different vertices x and y of G and for any integer k with $d_{G}(x, y) \leq k \leq|V(G)| / 2$, there exists a hamiltonian cycle C of G such that $d_{C}(x, y)=k$. A hamiltonian bipartite graph G is bipanpositionable if for any two different vertices x and y of G and for any integer k with $d_{G}(x, y) \leq k \leq|V(G)| / 2$ and $\left(k-d_{G}(x, y)\right)$ being even, there exists a hamiltonian cycle C of G such that $d_{C}(x, y)=k$. The concept of panpositionable and bipanpositionable are proposed by Kao et al. [11]. It is proved that the hypercube Q_{n} is bipanpositionable if $n \geq 2$ [11]. A bipartite graph G is edge-bipancyclic if for any edge in G, there is a cycle of every even length from 4 to $|V(G)|$ traversing through this edge. The concept of edge-bipancyclic is proposed by Alspach and Hare [2]. A bipartite graph G is vertexbipancyclic if for any vertex in G, there is a cycle of every even length from 4 to $|V(G)|$ going through this vertex. The concept of vertex-bipancyclic is proposed by Hobbs [5]. Obviously, every edge-bipancyclic graph is vertex-bipancyclic. It is proved that the hypercube Q_{n} is edge-bipancyclic if $n \geq 2$ [9].

In this paper, we propose a more interesting property about hypercubes. A k cycle is a cycle of length k. A bipartite graph G is k-cycle bipanpositionable if for every different vertices x and y of G and for any integer l with $d_{G}(\mathbf{x}, \mathbf{y}) \leq l \leq \frac{k}{2}$ and $\left(l-d_{G}(x, y)\right)$ being even, there exists a k cycle C of G such that $d_{C}(x, y)=l$. (Note that $d_{C}(x, y) \leq \frac{k}{2}$ for every cycle C of length k.) A bipartite graph G is bipanpositionable bipancyclic if G is k-cycle bipanpositionable for every even integer k with $4 \leq k \leq|V(G)|$. In this paper, we prove that the hypercube Q_{n} is bipanpositionable bipancyclic if and only if $n \geq 2$. As a consequence of this result, we can see that many previous results on hypercubes follows directly from ours. For example, the hypercube is bipancyclic, bipanconnected, bipanpositionable, edge-bipancyclic

Figure 1: The graphs Q_{1}, Q_{2} and Q_{3}

Figure 2: The 4-dimensional hypercube
and vertex-bipancyclic. Therefore, our result unify theses results in a general sense.

2 Bipanpositionable Pancyclic Property

We prove our main result by induction as stated in Lemma 1 and Theorem 1 below.

Lemma 1. The Q_{3} is bipanpositionable bipancyclic.

Proof. Let \mathbf{x} and \mathbf{y} be two different vertices in Q_{3}. Obviously, $d_{Q_{3}}(\mathbf{x}, \mathbf{y})=1,2$ or 3 . Since the hypercube is vertex symmetric, without loss of generality, we may assume that $\mathbf{x}=$ 000.

Case 1: Suppose that $d_{Q_{3}}(\mathbf{x}, \mathbf{y})=1$. Since Q_{3} is edge symmetric, we assume that $\mathbf{y}=$ 001. See Table 1

Case 2: Suppose that $d_{Q_{3}}(\mathbf{x}, \mathbf{y})=2$. We have $\mathbf{y} \in\{011,101,110\}$. See Table 1

Case 3: Suppose that $d_{Q_{3}}(\mathbf{x}, \mathbf{y})=3$. We have $\mathbf{y}=111$. See Table 1

Thus, Q_{3} is bipanpositionable bipancyclic.

Theorem 1. The Q_{n} is bipanpositionable bipancyclic if and only if $n \geq 2$.

Proof. We observe that Q_{1} is not bipanpositionable bipancyclic. So we start with $n 2 \geq 2$. We prove Q_{n} is bipanpositionable bipancyclic by induction on n. It is easy to see that Q_{2} is bipanpositionable bipancyclic. By Lemma 1, this statement holds for $n=3$. Suppose that Q_{n-1} is bipanpositionable bipancyclic for some $n \geq 4$. Let \mathbf{x} and \mathbf{y} be two distinct vertices in Q_{n}, and let k be an even integer with $k \geq \max \left\{4,2 d_{Q_{n}}(\mathbf{x}, \mathbf{y})\right\}$ and $k \leq$ 2^{n}. For every integer l with $d_{Q_{n}}(\mathbf{x}, \mathbf{y}) \leq l \leq \frac{k}{2}$ and $\left(l-d_{Q_{n}}(\mathbf{x}, \mathbf{y})\right)$ being even, we need to construct a k-cycle C of Q_{n} with $d_{C}(\mathbf{x}, \mathbf{y})=l$.
Case 1: $d_{Q_{n}}(\mathbf{x}, \mathbf{y})=1$. Without loss of generality, we may assume that both \mathbf{x} and \mathbf{y} are

Table 1: Proof of Lemma 1

Case 1	$\mathrm{y}=001$	4-cycle	$d_{C}(\mathbf{x}, \mathbf{y})=1$	$\langle 000,001,011,010,000\rangle$
		6-cycle	$d_{C}(\mathbf{x}, \mathbf{y})=1$	$\langle 000,001,101,111,110,100,000\rangle$
			$d_{C}(\mathbf{x}, \mathbf{y})=3$	$\langle 000,100,101,001,011,010,000\rangle$
		8-cycle	$d_{C}(\mathbf{x}, \mathbf{y})=1$	$\langle 000,001,101,111,011,010,110,100,000\rangle$
			$d_{C}(\mathbf{x}, \mathbf{y})=3$	$\langle 000,100,101,001,011,111,110,010,000\rangle$
Case 2	$\mathrm{y}=011$	4-cycle	$d_{C}(\mathbf{x}, \mathbf{y})=2$	$\langle 000,001,011,010,000\rangle$
		6-cycle	$d_{C}(\mathbf{x}, \mathbf{y})=2$	$\langle 000,001,011,010,110,100,000\rangle$
		8-cycle	$d_{C}(\mathbf{x}, \mathbf{y})=2$	$\langle 000,001,011,010,110,111,101,100,000\rangle$
			$d_{C}(\mathbf{x}, \mathbf{y})=4$	$\langle 000,001,101,111,011,010,110,100,000\rangle$
	$\mathrm{y}=101$	4-cycle	$d_{C}(\mathbf{x}, \mathbf{y})=2$	$\langle 000,001,101,100,000\rangle$
		6 -cycle	$d_{C}(\mathbf{x}, \mathbf{y})=2$	$\langle 000,001,101,111,110,100,000\rangle$
		8-cycle	$d_{C}(\mathbf{x}, \mathbf{y})=2$	$\langle 000,001,101,111,011,010,110,100,000\rangle$
			$d_{C}(\mathbf{x}, \mathbf{y})=4$	$\langle 000,001,011,111,101,100,110,010,000\rangle$
	$\mathrm{y}=110$	4-cycle	$d_{C}(\mathbf{x}, \mathbf{y})=2$	$\langle 000,010,110,100,000\rangle$
		6-cycle	$d_{C}(\mathbf{x}, \mathbf{y})=2$	$\langle 000,100,110,111,101,001,000\rangle$
		8-cycle	$d_{C}(\mathbf{x}, \mathbf{y})=2$	$\langle 000,100,110,010,011,111,101,001,000\rangle$
			$d_{C}(\mathbf{x}, \mathbf{y})=4$	$\langle 000,100,101,111,110,010,011,001,000\rangle$
Case 3	$y=111$	6-cycle	$d_{C}(\mathbf{x}, \mathbf{y})=3$	$\langle 000,001,011,111,110,100,000\rangle$
		8-cycle	$d_{C}(\mathbf{x}, \mathbf{y})=3$	$\langle 000,001,011,111,101,100,110,010,000\rangle$

in $Q_{n}^{0} .\left(l-d_{Q_{n}}(\mathbf{x}, \mathbf{y})\right)$ is even, so l is an odd number.
Case 1.1: $l=1$. Suppose that $k \leq 2^{n-1}$. By induction, there is a k-cycle C of Q_{n}^{0} with $d_{C}(\mathbf{x}, \mathbf{y})=1$. Suppose that $k \geq 2^{n-1}+2$. By induction, there is a 2^{n-1}-cycle C^{\prime} of Q_{n}^{0} with $d_{C}(\mathbf{x}, \mathbf{y})=1$. Without loss of generality, we write $C^{\prime}=\langle\mathbf{x}, P, \mathbf{z}, \mathbf{y}, \mathbf{x}\rangle$ such that $d_{P}(\mathbf{x}, \mathbf{z})=$ $k-2$. Suppose that $k-2^{n-1}=2$. Then $C=$ $\langle\mathbf{x}, P, \mathbf{z}, \overline{\mathbf{z}}, \overline{\mathbf{y}}, \mathbf{y}, \mathbf{x}\rangle$ forms a $\left(2^{n-1}+2\right)$-cycle with $d_{C}(\mathbf{x}, \mathbf{y})=1$. Suppose that $k-2^{n-1} \geq 4$. By induction, there is a $\left(k-2^{n-1}\right)$-cycle $C^{\prime \prime}$ of Q_{n}^{1} such that $d_{C^{\prime \prime}}(\overline{\mathbf{z}}, \overline{\mathbf{y}})=1$. We write $C^{\prime \prime}=\langle\overline{\mathbf{z}}, R, \overline{\mathbf{y}}, \overline{\mathbf{z}}\rangle$ with $d_{R}(\overline{\mathbf{z}}, \overline{\mathbf{y}})=k-2^{n-1}-1$. Then $C=\langle\mathbf{x}, P, \mathbf{z}, \overline{\mathbf{z}}, R, \overline{\mathbf{y}}, \mathbf{y}, \mathbf{x}\rangle$ forms a k cycle of Q_{n} with $d_{C}(\mathbf{x}, \mathbf{y})=l$.
Case 1.2: $l \geq 3$. Suppose that $k-l-1 \leq$ 2^{n-1}. By induction, there is a $(l+2)$-cycle C^{\prime} of Q_{n}^{0} with $d_{C^{\prime}}(\mathbf{x}, \mathbf{y})=1$. We write $C^{\prime}=\langle\mathbf{x}, P, \mathbf{y}, \mathbf{x}\rangle$ where $d_{P}(\mathbf{x}, \mathbf{y})=l$. By induction, there is a $(k-l-1)$-cycle $C^{\prime \prime}$ of Q_{n}^{1} with $d_{C^{\prime \prime}}(\overline{\mathbf{x}}, \overline{\mathbf{y}})=1$. We then write $C^{\prime \prime}=$ $\langle\overline{\mathbf{y}}, R, \overline{\mathbf{x}}, \overline{\mathbf{y}}\rangle$ such that $d_{R}(\overline{\mathbf{y}}, \overline{\mathbf{x}})=k-l-1$.

Then $C=\langle\mathbf{x}, P, \mathbf{y}, \overline{\mathbf{y}}, R, \overline{\mathbf{x}}, \mathbf{x}\rangle$ forms a k cycle of Q_{n} with $d_{C}(\mathbf{x}, \mathbf{y})=l$. Suppose that $k-l-2 \geq 2^{n-1}+1$. By induction, there is a $\left(k-2^{n-1}\right)$-cycle C^{\prime} of Q_{n}^{0} with $d_{C^{\prime}}(\mathbf{x}, \mathbf{y})=l$. We write $C^{\prime}=\langle\mathbf{x}, P, \mathbf{y}, \mathbf{u}, R, \mathbf{x}\rangle$ with $d_{P}(\mathbf{x}, \mathbf{y})=l$ and $d_{R}(\mathbf{u}, \mathbf{x})=k-\left(2^{n-1}-\right.$ $1)-l-2$. By induction, there is a $\left(2^{n-1}\right)$ cycle $C^{\prime \prime}$ of Q_{n}^{1} with $d_{C^{\prime \prime}}(\overline{\mathbf{x}}, \overline{\mathbf{u}})=1$. We write $C^{\prime \prime}=\langle\overline{\mathbf{x}}, \overline{\mathbf{u}}, S, \overline{\mathbf{x}}\rangle$ with $d_{S}(\overline{\mathbf{u}}, \overline{\mathbf{x}})=2^{n-1}-1$. Then $C=\langle\mathbf{x}, P, \mathbf{y}, R, \mathbf{u}, \overline{\mathbf{u}}, S, \overline{\mathbf{x}}, \mathbf{x}\rangle$ forms a k cycle of Q_{n} with $d_{C}(\mathbf{x}, \mathbf{y})=l$.

Case 2: $d_{Q_{n}}(\mathbf{x}, \mathbf{y}) \geq 2$ and $l=2$. Since $d_{Q_{n}}(\mathbf{x}, \mathbf{y}) \leq l$ and $l=2$, so $d_{Q_{n}}(\mathbf{x}, \mathbf{y})=2$. Without loss of generality, we may assume that \mathbf{x} is in Q_{n}^{0} and \mathbf{y} is in Q_{n}^{1}. Then $d_{Q_{n}}(\overline{\mathbf{x}}, \mathbf{y})=1$ and $d_{Q_{n}}(\overline{\mathbf{y}}, \mathbf{x})=1$.

Suppose that $k=4$. Then $C=$ $\langle\mathbf{x}, \overline{\mathbf{x}}, \mathbf{y}, \overline{\mathbf{y}}, \mathbf{x}\rangle$ forms a 4 -cycle of Q_{n} with $d_{Q_{n}}(\mathbf{x}, \mathbf{y})=2$. Suppose that $6 \leq k \leq$ $2^{n-1}+2$. By induction, there is a $(k-2)$-cycle $C^{\prime}=\langle\mathbf{x}, P, \overline{\mathbf{y}}, \mathbf{x}\rangle$ of Q_{n}^{0} such that $d_{P}(\mathbf{x}, \overline{\mathbf{y}})=$ $k-3$. Then $C=\langle\mathbf{x}, P, \overline{\mathbf{y}}, \mathbf{y}, \overline{\mathbf{x}}, \mathbf{x}\rangle$ forms a k cycle of Q_{n} with $d_{C}(\mathbf{x}, \mathbf{y})=2$. Suppose that
$k \geq 2^{n-1}+4$. By induction, there is a 2^{n-1} cycle C^{\prime} of Q_{n}^{0} with $d_{C^{\prime}}(\mathbf{x}, \overline{\mathbf{y}})=1$. We write $C^{\prime}=\langle\mathbf{x}, P, \mathbf{z}, \overline{\mathbf{y}}, \mathbf{x}\rangle$ with $d_{P}(\mathbf{x}, \mathbf{z})=2^{n-1}-2$. By induction, there is a $\left(k-2^{n-1}\right)$-cycle $C^{\prime \prime}$ of Q_{n}^{1} with $d_{C^{\prime \prime}}(\mathbf{y}, \overline{\mathbf{z}})=1$. We write $C^{\prime \prime}=$ $\langle\mathbf{y}, \overline{\mathbf{z}}, R, \mathbf{y}\rangle$ with $d_{R}(\mathbf{y}, \overline{\mathbf{z}})=k-2^{n-1}-1$. Then $C=\langle\mathbf{x}, P, \mathbf{z}, \overline{\mathbf{z}}, R, \mathbf{y}, \overline{\mathbf{y}}, \mathbf{x}\rangle$ forms a k-cycle of Q_{n} with $d_{C}(\mathbf{x}, \mathbf{y})=2$.
Case 3: $d_{Q_{n}}(\mathbf{x}, \mathbf{y}) \geq 2$ and $l \geq 3$. Without loss of generality, we may assume that \mathbf{x} is in Q_{n}^{0} and \mathbf{y} is in Q_{n}^{1}. Suppose that $k-l-$ $d_{Q_{n}}(\mathbf{x}, \mathbf{y})+2 \leq 2^{n-1}$. By induction, there is a $\left(l+d_{Q_{n}}(\mathbf{x}, \mathbf{y})-2\right)$-cycle $C^{\prime}=\langle\mathbf{x}, P, \overline{\mathbf{y}}, \mathbf{u}, R, \mathbf{x}\rangle$ of Q_{n}^{0} such that $d_{P}(\mathbf{x}, \overline{\mathbf{y}})=l-1$ and $d_{R}(\mathbf{u}, \mathbf{x})=d_{Q_{n}}(\mathbf{x}, \mathbf{y})-2$. By induction, there is a $\left(k-l-d_{Q_{n}}(\mathbf{x}, \mathbf{y})+2\right)$-cycle $C^{\prime \prime}$ of Q_{n}^{1} with $d_{C^{\prime \prime}}(\mathbf{y}, \overline{\mathbf{u}})=1$. We write $C^{\prime \prime}=\langle\mathbf{y}, S, \overline{\mathbf{u}}, \mathbf{y}\rangle$ with $d_{S}(\mathbf{y}, \overline{\mathbf{u}})=k-l-d_{Q_{n}}(\mathbf{x}, \mathbf{y})+1$. Then $C=\langle\mathbf{x}, P, \overline{\mathbf{y}}, \mathbf{y}, S, \overline{\mathbf{u}}, \mathbf{u}, R, \mathbf{x}\rangle$ forms a k-cycle of Q_{n} with $d_{C}(\mathbf{x}, \mathbf{y})=l$. Suppose that $k-$ $l-d_{Q_{n}}(\mathbf{x}, \mathbf{y})+4 \geq 2^{n-1}$. By induction, there is a $\left(k-2^{n-1}\right)$-cycle $C^{\prime}=\langle\mathbf{x}, P, \overline{\mathbf{y}}, \mathbf{u}, R, \mathbf{x}\rangle$ of Q_{n}^{0} such that $d_{P}(\mathbf{x}, \overline{\mathbf{y}})=l-1$ and $d_{R}(\mathbf{u}, \mathbf{x})=$ $k-2^{n-1}-l$. By induction, there is a 2^{n-1} cycle $C^{\prime \prime}$ of Q_{n}^{1} with $d_{C^{\prime \prime}}(\mathbf{y}, \overline{\mathbf{u}})=1$. We write $C^{\prime \prime}=\langle\mathbf{y}, S, \overline{\mathbf{u}}, \mathbf{y}\rangle$ with $d_{S}(\mathbf{y}, \overline{\mathbf{u}})=2^{n-1}-1$. Then $C=\langle\mathbf{x}, P, \overline{\mathbf{y}}, \mathbf{y}, S, \overline{\mathbf{u}}, \mathbf{u}, R, \mathbf{x}\rangle$ forms a k cycle of Q_{n} with $d_{C}(\mathbf{x}, \mathbf{y})=l$.

The theorem is proved.

References

[1] Y. Alavi and J. E. Williamson, "Panconnected Graphs", Studia Scientiarum Mathematicarum Hungarica, Vol. 10, pp.19-22, 1975.
[2] B. Alspach and D. Hare, "Edgepancyclic Block-intersection Graphs", Discrete Mathematics, Vol. 97, pp.1724, 1997.
[3] J. A. Bondy, "Pancyclic Graphs", Journal of Combinatorial Theory, Series B, Vol. 11, pp.80-84, 1971.
[4] J. A. Bondy and U. S. R Murty, "Graph Theory with Applications", North-Holland, New York, 1980.
[5] A. Hobbs, "The Square of a Block is Vertex Pancyclic", Journal of Combinatorial Theory, Series B, Vol. 20, pp.1-4, 1976.
[6] L.-H. Hsu, S.-C. Liu, and Y.-N. Yeh, "amiltonicity of Hypercubes with a Constraint of Required and Faulty Edges", Journal of Combinatorial Optimization, Vol. 14, pp.197-204, 2007.
[7] J. Mitchem and E. Schmeichel, "Pancyclic and Bipancyclic Graphs - a Survey", Graphs and Applications, pp.271278, 1982.
[8] F.T. Leighton, " Introduction to Parallel Algorithms and Architecture: Arrays - Trees • Hypercubes", Morgan Kaufmann, San Mateo, CA, 1992.
[9] T.-K. Li, C.-H. Tsai, J. J.-M. Tan, and L.-H. Hsu, "Bipanconnected and Edge-fault-tolerant Bipancyclic of Hypercubes", Information Processing Letters, Vol. 87, pp.107-110, 2003.
[10] C.-K. Lin, J.J.M. Tan, D. Frank Hsu, L.H. Hsu, "On the spanning commectively and spanning laceability of hypercubelike networks", Theoretical Computer Science, Vol. 381, pp.218-229, 2007.
[11] S.-S. Kao, C.-K. Lin, H.-M. Huang, and L.-H. Hsu, "Panpositionable Hamiltonian Graph", Ars Combinatoria, Vol. 81, pp.209-223, 2006.
[12] Y. Saad and M. H. Schultz, "Topological Properties of Hypercubes", IEEE Transactions on Computers, Vol. 37, pp.867872, 1988.
[13] M.-C. Yang, J.J.M. Tan, and L.-H. Hsu, "Highly Fault-Tolerant Cycle Embeddings of Hypercubes", Journal of Sys-
tems Architecture, Vol. 53, pp.227-232, 2007.

