## Bipanpositionable Bipancyclic of Hypercube<sup>\*</sup>

Yuan-Kang Shih, Cheng-Kuan Lin, and Jimmy J. M. Tan Department of Computer Science National Chiao Tung University, Hsinchu, Taiwan 30010, R.O.C. {ykshih,cklin,jmtan}@cs.nctu.edu.tw

Lih-Hsing Hsu

Department of Computer Science and Information Engineering Providence University Taichung, Taiwan 43301, R.O.C. lhhsu@pu.edu.tw

## Abstract

A bipartite graph is *bipancyclic* if it contains a cycle of every even length from 4 to |V(G)|inclusive. A hamiltonian bipartite graph Gis *bipanpositionable* if, for any two different vertices x and y, there exists a hamiltonian cycle C of G such that  $d_C(x, y) = k$  for any integer k with  $d_G(x,y) \leq k \leq |V(G)|/2$  and  $(k - d_G(x, y))$  being even. A bipartite graph G is k-cycle bipanpositionable if, for any two different vertices x and y, there exists a cycle of G with  $d_C(x, y) = l$  and |V(C)| = kand for any integer l with  $d_G(x,y) \leq l \leq \frac{k}{2}$ and  $(l - d_G(x, y))$  being even. A bipartite graph G is bipanpositionable bipancyclic if G is k-cycle bipanpositionable for every even integer  $k, 4 \leq k \leq |V(G)|$ . We prove that the hypercube  $Q_n$  is bipanpositionable bipancyclic if and only if  $n \geq 2$ .

*Keywords*: bipanpositionable, bipancyclic, hypercube, hamiltonian.

## 1 Introduction

For the graph definitions and notations we follow [4]. Let G = (V, E) be a graph, where V is a finite set and E is a subset of  $\{(u, v) \mid (u, v) \text{ is an unorder pair of } V\}$ . We say that V is the vertex set and Eis the *edge set* of G. Two vertices u and v are *adjacent* if  $(u, v) \in E$ . A path is represented by  $\langle v_0, v_1, v_2, \cdots, v_k \rangle$ , where all vertices are distinct. The *length* of a path Q is the number of edges in Q. We also write the path  $\langle v_0, v_1, v_2, \cdots, v_k \rangle$  as  $\langle v_0, Q_1, v_i, v_{i+1} \cdots, v_j, Q_2, v_t, \cdots, v_k \rangle$ , where  $Q_1$  is the path  $\langle v_0, v_1, \cdots, v_{i-1}, v_i \rangle$  and  $Q_2$ is the path  $\langle v_i, v_{i+1}, \cdots, v_{t-1}, v_t \rangle$ . We use  $d_G(u, v)$  to denote the distance between u and v in G, i.e., the shortest path joining u to vin G. A cycle is a path of at least three vertices such that the first vertex is the same as the last vertex. We use  $d_c(u, v)$  to denote the distance between u and v in a cycle C, i.e., the length of the shortest path joining u to v in C. A hamiltonian cycle of G is a cycle that traverses every vertex of G exactly once. A *hamiltonian graph* is a graph with a hamiltonian cycle. A graph  $G = (V_0 \cup V_1, E)$ 

<sup>\*</sup>This work was supported in part by the National Science Council of the Republic of China under Contract NSC 96-2221-E-009-137-MY3.

is bipactite if  $V(G) = V_0 \cup V_1$  and E(G) is a subset of  $\{(u, v) \mid u \in V_0 \text{ and } v \in V_1\}$ .

The *n*-dimensional hypercube,  $Q_n$ , consists of all n-bit binary strings as its vertices and two vertices  $\mathbf{u}$  and  $\mathbf{v}$  are adjacent if and only if their binary labels different in exactly one bit position. Let  $\mathbf{u} = u_{n-1}u_{n-2}\dots u_1u_0$  and  $\mathbf{v} = v_{n-1}v_{n-2}\ldots v_1v_0$  be two *n*-bit binary strings. The Hamming distance h(u, v) between two vertices u and v is the number of different bits in the corresponding strings of both vertices. The hypercubes  $Q_1, Q_2$ , and  $Q_3$  are illustrated in Figure 1 and  $Q_4$  is illustrated in Figure 2. Let  $Q_n^i$  be the subgraph of  $Q_n$  induced by  $\{u_{n-1}u_{n-2}\dots u_1u_0 \mid u_{n-1}=i\}$ for i = 0, 1. Therefore,  $Q_n$  can be constructed recursively by taking two copies of  $Q_{n-1}, Q_n^0$ and  $Q_n^1$ , and adding a perfect matching between these two copies. Let  $\mathbf{u}$  be a vertex in  $Q_n^0$  (resp.  $Q_n^1$ ), we use  $\bar{\mathbf{u}}$  to denote the unique neighbor of **u** in  $Q_n^1$  (resp.  $Q_n^0$ ). The hyper*cube* is a widely used topology in computer architectures [8]. There are some interesting studies in hypercube [6, 10, 13].

A graph is *pancyclic* if it contains a cycle of every length from 3 to |V(G)| inclu-The concept of pancyclic graphs is sive. proposed by Bondy [3]. It is known that there is no odd cycle in any bipartite graph. For this reason, the concept of bipancyclic graph is proposed [7]. A bipartite graph is *bipancyclic* if it contains a cycle of every even length from 4 to |V(G)| inclusive. It is proved that the hypercube  $Q_n$  is bipancyclic if  $n \geq 2$  [9, 12]. A graph is pancon*nected* if, for any two different vertices x and y, there exists a path of length l joining x and y with  $d_G(x,y) \leq l \leq |V(G)| - 1$ . The concept of panconnected graphs is proposed by Alavi and Williamson [1]. It is easy to see that any bipartite graph with at least 3 vertices is not panconnected. Therefore, the concept of bipanconnected graphs is proposed. A bipartite graph is *bipanconnected* if, for any two different vertices x and y, there exists a path of length l joining x and y with  $d_G(x,y) \le l \le |V(G)| - 1$  and  $(l - d_G(x,y))$ 

being even. It is proved that the hypercube is bipanconnected [9]. A hamiltonian graph G is *panpositionable* if for any two different vertices x and y of G and for any integer k with  $d_G(x,y) \leq k \leq |V(G)|/2$ , there exists a hamiltonian cycle C of G such that  $d_C(x,y) = k$ . A hamiltonian bipartite graph G is *bipanpositionable* if for any two different vertices x and y of G and for any integer k with  $d_G(x,y) \leq k \leq |V(G)|/2$  and  $(k-d_G(x,y))$  being even, there exists a hamiltonian cycle C of G such that  $d_C(x, y) = k$ . The concept of panpositionable and bipanpositionable are proposed by Kao et al. [11]. It is proved that the hypercube  $Q_n$  is bipanpositionable if  $n \geq 2$  [11]. A bipartite graph G is *edge-bipancyclic* if for any edge in G, there is a cycle of every even length from 4 to |V(G)|traversing through this edge. The concept of edge-bipancyclic is proposed by Alspach and Hare [2]. A bipartite graph G is vertex*bipancyclic* if for any vertex in G, there is a cycle of every even length from 4 to |V(G)|going through this vertex. The concept of vertex-bipancyclic is proposed by Hobbs [5]. Obviously, every edge-bipancyclic graph is vertex-bipancyclic. It is proved that the hypercube  $Q_n$  is edge-bipancyclic if  $n \ge 2$  [9].

In this paper, we propose a more interesting property about hypercubes. A k cycle is a cycle of length k. A bipartite graph G is *k-cycle bipanpositionable* if for every different vertices x and y of G and for any integer lwith  $d_G(\mathbf{x}, \mathbf{y}) \leq l \leq \frac{k}{2}$  and  $(l - d_G(x, y))$  being even, there exists a k cycle C of G such that  $d_C(x,y) = l$ . (Note that  $d_C(x,y) \leq \frac{k}{2}$ for every cycle C of length k.) A bipartite graph G is bipanpositionable bipancyclic if Gis k-cycle bipanpositionable for every even integer k with  $4 \leq k \leq |V(G)|$ . In this paper, we prove that the hypercube  $Q_n$  is bipanpositionable bipancyclic if and only if n > 2. As a consequence of this result, we can see that many previous results on hypercubes follows directly from ours. For example, the hypercube is bipancyclic, bipanconnected, bipanpositionable, edge-bipancyclic



Figure 1: The graphs  $Q_1$ ,  $Q_2$  and  $Q_3$ 



Figure 2: The 4-dimensional hypercube

and vertex-bipancyclic. Therefore, our result unify theses results in a general sense.

## 2 Bipanpositionable Pancyclic Property

We prove our main result by induction as stated in Lemma 1 and Theorem 1 below.

**Lemma 1.** The  $Q_3$  is bipanpositionable bipancyclic.

**Proof.** Let  $\mathbf{x}$  and  $\mathbf{y}$  be two different vertices in  $Q_3$ . Obviously,  $d_{Q_3}(\mathbf{x}, \mathbf{y}) = 1, 2$  or 3. Since the hypercube is vertex symmetric, without loss of generality, we may assume that  $\mathbf{x} =$ 000.

**Case 1:** Suppose that  $d_{Q_3}(\mathbf{x}, \mathbf{y}) = 1$ . Since  $Q_3$  is edge symmetric, we assume that  $\mathbf{y} = 001$ . See Table 1

Case 2: Suppose that  $d_{Q_3}(\mathbf{x}, \mathbf{y}) = 2$ . We have  $\mathbf{y} \in \{011, 101, 110\}$ . See Table 1

**Case 3:** Suppose that  $d_{Q_3}(\mathbf{x}, \mathbf{y}) = 3$ . We have  $\mathbf{y} = 111$ . See Table 1

Thus,  $Q_3$  is bipanpositionable bipancyclic.

**Theorem 1.** The  $Q_n$  is bipanpositionable bipancyclic if and only if  $n \ge 2$ .

**Proof.** We observe that  $Q_1$  is not bipanpositionable bipancyclic. So we start with  $n2 \ge 2$ . We prove  $Q_n$  is bipanpositionable bipancyclic by induction on n. It is easy to see that  $Q_2$  is bipanpositionable bipancyclic. By Lemma 1, this statement holds for n = 3. Suppose that  $Q_{n-1}$  is bipanpositionable bipancyclic for some  $n \ge 4$ . Let  $\mathbf{x}$  and  $\mathbf{y}$  be two distinct vertices in  $Q_n$ , and let k be an even integer with  $k \ge \max\{4, 2d_{Q_n}(\mathbf{x}, \mathbf{y})\}$  and  $k \le$  $2^n$ . For every integer l with  $d_{Q_n}(\mathbf{x}, \mathbf{y}) \le l \le \frac{k}{2}$ and  $(l-d_{Q_n}(\mathbf{x}, \mathbf{y}))$  being even, we need to construct a k-cycle C of  $Q_n$  with  $d_C(\mathbf{x}, \mathbf{y}) = l$ . **Case 1:**  $d_{Q_n}(\mathbf{x}, \mathbf{y}) = 1$ . Without loss of gen-

erality, we may assume that both x and y are

| Case 1 | y = 001            | 4-cycle | $d_C(\mathbf{x}, \mathbf{y}) = 1$ | $\langle 000, 001, 011, 010, 000 \rangle$                     |
|--------|--------------------|---------|-----------------------------------|---------------------------------------------------------------|
|        |                    | 6-cycle | $d_C(\mathbf{x}, \mathbf{y}) = 1$ | $\langle 000, 001, 101, 111, 110, 100, 000 \rangle$           |
|        |                    |         | $d_C(\mathbf{x}, \mathbf{y}) = 3$ | $\langle 000, 100, 101, 001, 011, 010, 000 \rangle$           |
|        |                    | 8-cycle | $d_C(\mathbf{x}, \mathbf{y}) = 1$ | $\langle 000, 001, 101, 111, 011, 010, 110, 100, 000 \rangle$ |
|        |                    |         | $d_C(\mathbf{x}, \mathbf{y}) = 3$ | $\langle 000, 100, 101, 001, 011, 111, 110, 010, 000 \rangle$ |
| Case 2 | $\mathbf{y} = 011$ | 4-cycle | $d_C(\mathbf{x}, \mathbf{y}) = 2$ | $\langle 000, 001, 011, 010, 000 \rangle$                     |
|        |                    | 6-cycle | $d_C(\mathbf{x}, \mathbf{y}) = 2$ | $\langle 000, 001, 011, 010, 110, 100, 000 \rangle$           |
|        |                    | 8-cycle | $d_C(\mathbf{x}, \mathbf{y}) = 2$ | $\langle 000, 001, 011, 010, 110, 111, 101, 100, 000 \rangle$ |
|        |                    |         | $d_C(\mathbf{x}, \mathbf{y}) = 4$ | $\langle 000, 001, 101, 111, 011, 010, 110, 100, 000 \rangle$ |
|        | y = 101            | 4-cycle | $d_C(\mathbf{x}, \mathbf{y}) = 2$ | $\langle 000, 001, 101, 100, 000 \rangle$                     |
|        |                    | 6-cycle | $d_C(\mathbf{x}, \mathbf{y}) = 2$ | $\langle 000, 001, 101, 111, 110, 100, 000 \rangle$           |
|        |                    | 8-cycle | $d_C(\mathbf{x}, \mathbf{y}) = 2$ | $\langle 000, 001, 101, 111, 011, 010, 110, 100, 000 \rangle$ |
|        |                    |         | $d_C(\mathbf{x}, \mathbf{y}) = 4$ | $\langle 000, 001, 011, 111, 101, 100, 110, 010, 000 \rangle$ |
|        | $\mathbf{y} = 110$ | 4-cycle | $d_C(\mathbf{x}, \mathbf{y}) = 2$ | $\langle 000, 010, 110, 100, 000 \rangle$                     |
|        |                    | 6-cycle | $d_C(\mathbf{x}, \mathbf{y}) = 2$ | $\langle 000, 100, 110, 111, 101, 001, 000 \rangle$           |
|        |                    | 8-cycle | $d_C(\mathbf{x}, \mathbf{y}) = 2$ | $\langle 000, 100, 110, 010, 011, 111, 101, 001, 000 \rangle$ |
|        |                    |         | $d_C(\mathbf{x}, \mathbf{y}) = 4$ | $\langle 000, 100, 101, 111, 110, 010, 011, 001, 000 \rangle$ |
| Case 3 | y = 111            | 6-cycle | $d_C(\mathbf{x}, \mathbf{y}) = 3$ | $\langle 000, 001, 011, 111, 110, 100, 000 \rangle$           |
|        |                    | 8-cycle | $d_C(\mathbf{x}, \mathbf{y}) = 3$ | $\langle 000, 001, 011, 111, 101, 100, 110, 010, 000 \rangle$ |

Table 1: Proof of Lemma 1

in  $Q_n^0$ .  $(l - d_{Q_n}(\mathbf{x}, \mathbf{y}))$  is even, so l is an odd number.

Case 1.1: l = 1. Suppose that  $k \leq 2^{n-1}$ . By induction, there is a k-cycle C of  $Q_n^0$  with  $d_C(\mathbf{x}, \mathbf{y}) = 1$ . Suppose that  $k \ge 2^{n-1} + 2$ . By induction, there is a  $2^{n-1}$ -cycle C' of  $Q_n^0$  with  $d_C(\mathbf{x}, \mathbf{y}) = 1$ . Without loss of generality, we write  $C' = \langle \mathbf{x}, P, \mathbf{z}, \mathbf{y}, \mathbf{x} \rangle$  such that  $d_P(\mathbf{x}, \mathbf{z}) =$ k-2. Suppose that  $k-2^{n-1}=2$ . Then C= $\langle \mathbf{x}, P, \mathbf{z}, \bar{\mathbf{z}}, \bar{\mathbf{y}}, \mathbf{y}, \mathbf{x} \rangle$  forms a  $(2^{n-1} + 2)$ -cycle with  $d_C(\mathbf{x}, \mathbf{y}) = 1$ . Suppose that  $k - 2^{n-1} \ge 4$ . By induction, there is a  $(k - 2^{n-1})$ -cycle C''of  $Q_n^1$  such that  $d_{C''}(\bar{\mathbf{z}}, \bar{\mathbf{y}}) = 1$ . We write  $C'' = \langle \overline{\mathbf{z}}, R, \overline{\mathbf{y}}, \overline{\mathbf{z}} \rangle$  with  $d_R(\overline{\mathbf{z}}, \overline{\mathbf{y}}) = k - 2^{n-1} - 1$ . Then  $C = \langle \mathbf{x}, P, \mathbf{z}, \overline{\mathbf{z}}, R, \overline{\mathbf{y}}, \mathbf{y}, \mathbf{x} \rangle$  forms a kcycle of  $Q_n$  with  $d_C(\mathbf{x}, \mathbf{y}) = l$ .

Case 1.2:  $l \geq 3$ . Suppose that  $k - l - 1 \leq l \leq k$  $2^{n-1}$ . By induction, there is a (l+2)-cycle C' of  $Q_n^0$  with  $d_{C'}(\mathbf{x}, \mathbf{y}) = 1$ . We write  $C' = \langle \mathbf{x}, P, \mathbf{y}, \mathbf{x} \rangle$  where  $d_P(\mathbf{x}, \mathbf{y}) = l$ . By in- $\langle \bar{\mathbf{y}}, R, \bar{\mathbf{x}}, \bar{\mathbf{y}} \rangle$  such that  $d_R(\bar{\mathbf{y}}, \bar{\mathbf{x}}) = k - l - 1$ . cycle of  $Q_n$  with  $d_C(\mathbf{x}, \mathbf{y}) = 2$ . Suppose that

Then  $C = \langle \mathbf{x}, P, \mathbf{y}, \overline{\mathbf{y}}, R, \overline{\mathbf{x}}, \mathbf{x} \rangle$  forms a kcycle of  $Q_n$  with  $d_C(\mathbf{x}, \mathbf{y}) = l$ . Suppose that  $k - l - 2 \ge 2^{n-1} + 1$ . By induction, there is a  $(k - 2^{n-1})$ -cycle C' of  $Q_n^0$  with  $d_{C'}(\mathbf{x}, \mathbf{y}) = l$ . We write  $C' = \langle \mathbf{x}, P, \mathbf{y}, \mathbf{u}, R, \mathbf{x} \rangle$ with  $d_P(\mathbf{x}, \mathbf{y}) = l$  and  $d_R(\mathbf{u}, \mathbf{x}) = k - (2^{n-1} - 1)$ 1) -l - 2. By induction, there is a  $(2^{n-1})$ cycle C'' of  $Q_n^1$  with  $d_{C''}(\bar{\mathbf{x}}, \bar{\mathbf{u}}) = 1$ . We write  $C'' = \langle \bar{\mathbf{x}}, \bar{\mathbf{u}}, S, \bar{\mathbf{x}} \rangle$  with  $d_S(\bar{\mathbf{u}}, \bar{\mathbf{x}}) = 2^{n-1} - 1$ . Then  $C = \langle \mathbf{x}, P, \mathbf{y}, R, \mathbf{u}, \bar{\mathbf{u}}, S, \bar{\mathbf{x}}, \mathbf{x} \rangle$  forms a kcycle of  $Q_n$  with  $d_C(\mathbf{x}, \mathbf{y}) = l$ .

Case 2:  $d_{Q_n}(\mathbf{x}, \mathbf{y}) \geq 2$  and l = 2. Since  $d_{Q_n}(\mathbf{x}, \mathbf{y}) \leq l$  and l = 2, so  $d_{Q_n}(\mathbf{x}, \mathbf{y}) = 2$ . Without loss of generality, we may assume that  $\mathbf{x}$  is in  $Q_n^0$  and  $\mathbf{y}$  is in  $Q_n^1$ . Then  $d_{O_n}(\bar{\mathbf{x}}, \mathbf{y}) = 1$  and  $d_{Q_n}(\bar{\mathbf{y}}, \mathbf{x}) = 1$ .

Suppose that k = 4. Then C = $\langle \mathbf{x}, \bar{\mathbf{x}}, \mathbf{y}, \bar{\mathbf{y}}, \mathbf{x} \rangle$  forms a 4-cycle of  $Q_n$  with  $d_{Q_n}(\mathbf{x}, \mathbf{y}) = 2$ . Suppose that  $6 \leq k \leq$  $2^{n-1}+2$ . By induction, there is a (k-2)-cycle duction, there is a (k-l-1)-cycle C'' of  $Q_n^1$   $C' = \langle \mathbf{x}, P, \bar{\mathbf{y}}, \mathbf{x} \rangle$  of  $Q_n^0$  such that  $d_P(\mathbf{x}, \bar{\mathbf{y}}) =$ with  $d_{C''}(\bar{\mathbf{x}}, \bar{\mathbf{y}}) = 1$ . We then write C'' = k - 3. Then  $C = \langle \mathbf{x}, P, \bar{\mathbf{y}}, \mathbf{y}, \bar{\mathbf{x}}, \mathbf{x} \rangle$  forms a k $k \geq 2^{n-1} + 4$ . By induction, there is a  $2^{n-1}$ cycle C' of  $Q_n^0$  with  $d_{C'}(\mathbf{x}, \bar{\mathbf{y}}) = 1$ . We write  $C' = \langle \mathbf{x}, P, \mathbf{z}, \bar{\mathbf{y}}, \mathbf{x} \rangle$  with  $d_P(\mathbf{x}, \mathbf{z}) = 2^{n-1} - 2$ . By induction, there is a  $(k - 2^{n-1})$ -cycle C''of  $Q_n^1$  with  $d_{C''}(\mathbf{y}, \bar{\mathbf{z}}) = 1$ . We write  $C'' = \langle \mathbf{y}, \bar{\mathbf{z}}, R, \mathbf{y} \rangle$  with  $d_R(\mathbf{y}, \bar{\mathbf{z}}) = k - 2^{n-1} - 1$ . Then  $C = \langle \mathbf{x}, P, \mathbf{z}, \bar{\mathbf{z}}, R, \mathbf{y}, \bar{\mathbf{y}}, \mathbf{x} \rangle$  forms a k-cycle of  $Q_n$  with  $d_C(\mathbf{x}, \mathbf{y}) = 2$ .

Case 3:  $d_{Q_n}(\mathbf{x}, \mathbf{y}) \geq 2$  and  $l \geq 3$ . Without loss of generality, we may assume that  $\mathbf{x}$  is in  $Q_n^0$  and y is in  $Q_n^1$ . Suppose that k - l - l $d_{Q_n}(\mathbf{x}, \mathbf{y}) + 2 \leq 2^{n-1}$ . By induction, there is a  $(l+d_{Q_n}(\mathbf{x},\mathbf{y})-2)$ -cycle  $C' = \langle \mathbf{x}, P, \bar{\mathbf{y}}, \mathbf{u}, R, \mathbf{x} \rangle$ of  $Q_n^0$  such that  $d_P(\mathbf{x}, \bar{\mathbf{y}}) = l - 1$  and  $d_R(\mathbf{u}, \mathbf{x}) = d_{Q_n}(\mathbf{x}, \mathbf{y}) - 2$ . By induction, there is a  $(k-l-d_{Q_n}(\mathbf{x},\mathbf{y})+2)$ -cycle C'' of  $Q_n^1$  with  $d_{C''}(\mathbf{y}, \mathbf{\bar{u}}) = 1.$  We write  $C'' = \langle \mathbf{y}, S, \mathbf{\bar{u}}, \mathbf{y} \rangle$ with  $d_S(\mathbf{y}, \mathbf{\bar{u}}) = k - l - d_{Q_n}(\mathbf{x}, \mathbf{y}) + 1$ . Then  $C = \langle \mathbf{x}, P, \bar{\mathbf{y}}, \mathbf{y}, S, \bar{\mathbf{u}}, \mathbf{u}, R, \mathbf{x} \rangle$  forms a k-cycle of  $Q_n$  with  $d_C(\mathbf{x}, \mathbf{y}) = l$ . Suppose that k - l $l - d_{Q_n}(\mathbf{x}, \mathbf{y}) + 4 \ge 2^{n-1}$ . By induction, there is a  $(k-2^{n-1})$ -cycle  $C' = \langle \mathbf{x}, P, \bar{\mathbf{y}}, \mathbf{u}, R, \mathbf{x} \rangle$  of  $Q_n^0$  such that  $d_P(\mathbf{x}, \bar{\mathbf{y}}) = l - 1$  and  $d_R(\mathbf{u}, \mathbf{x}) =$  $k - 2^{n-1} - l$ . By induction, there is a  $2^{n-1}$ cycle C'' of  $Q_n^1$  with  $d_{C''}(\mathbf{y}, \mathbf{\bar{u}}) = 1$ . We write  $C'' = \langle \mathbf{y}, S, \overline{\mathbf{u}}, \mathbf{y} \rangle$  with  $d_S(\mathbf{y}, \overline{\mathbf{u}}) = 2^{n-1} - 1$ . Then  $C = \langle \mathbf{x}, P, \bar{\mathbf{y}}, \mathbf{y}, S, \bar{\mathbf{u}}, \mathbf{u}, R, \mathbf{x} \rangle$  forms a kcycle of  $Q_n$  with  $d_C(\mathbf{x}, \mathbf{y}) = l$ .

The theorem is proved.

References

- Y. Alavi and J. E. Williamson, "Panconnected Graphs", Studia Scientiarum Mathematicarum Hungarica, Vol. 10, pp.19–22, 1975.
- [2] B. Alspach and D. Hare, "Edgepancyclic Block-intersection Graphs", Discrete Mathematics, Vol. 97, pp.17– 24, 1997.
- [3] J. A. Bondy, "Pancyclic Graphs", Journal of Combinatorial Theory, Series B, Vol. 11, pp.80–84, 1971.

- [4] J. A. Bondy and U. S. R Murty, "Graph Theory with Applications", North-Holland, New York, 1980.
- [5] A. Hobbs, "The Square of a Block is Vertex Pancyclic", Journal of Combinatorial Theory, Series B, Vol. 20, pp.1–4, 1976.
- [6] L.-H. Hsu, S.-C. Liu, and Y.-N. Yeh, "amiltonicity of Hypercubes with a Constraint of Required and Faulty Edges", Journal of Combinatorial Optimization, Vol. 14, pp.197-204, 2007.
- [7] J. Mitchem and E. Schmeichel, "Pancyclic and Bipancyclic Graphs - a Survey", Graphs and Applications, pp.271– 278, 1982.
- [8] F.T. Leighton, "Introduction to Parallel Algorithms and Architecture: Arrays
  Trees · Hypercubes", Morgan Kaufmann, San Mateo, CA, 1992.
- [9] T.-K. Li, C.-H. Tsai, J. J.-M. Tan, and L.-H. Hsu, "Bipanconnected and Edge-fault-tolerant Bipancyclic of Hypercubes", Information Processing Letters, Vol. 87, pp.107–110, 2003.
- [10] C.-K. Lin, J.J.M. Tan, D. Frank Hsu, L.-H. Hsu, "On the spanning commectively and spanning laceability of hypercubelike networks", Theoretical Computer Science, Vol. 381, pp.218-229, 2007.
- [11] S.-S. Kao, C.-K. Lin, H.-M. Huang, and L.-H. Hsu, "Panpositionable Hamiltonian Graph", Ars Combinatoria, Vol. 81, pp.209–223, 2006.
- [12] Y. Saad and M. H. Schultz, "Topological Properties of Hypercubes", IEEE Transactions on Computers, Vol. 37, pp.867– 872, 1988.
- [13] M.-C. Yang, J.J.M. Tan, and L.-H. Hsu, "Highly Fault-Tolerant Cycle Embeddings of Hypercubes", Journal of Sys-

tems Architecture, Vol. 53, pp.227-232, 2007.