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Abstract 
 

For a given recommended item, a collaborative 
recommendation association rule set is the smallest 
association rule set that makes the same recommendation 
as the entire association rule set by confidence priority.  
In this work, we propose an efficient one-scan 
sanitization algorithm to hide collaborative 
recommendation association rules. To hide association 
rules, previously proposed algorithms based on Apriori 
approach usually require multiple scanning of database to 
calculate the supports of the large itemsets.  We propose 
here using a pattern-inversion tree to store related 
information so that only one scan of database is required.  
Numerical experiments show that the proposed algorithm 
out performs previous algorithms, with similar side 
effects. 

 
摘要 

 

給定一個推薦項目，一個協同推薦關聯規則集是

一組根據信賴值排序之最小關聯規則集，且具備相同

之推薦結果。在本文中，我們提出一個有效率之一次

掃瞄清除演算法以隱藏協同推薦關聯規則集。一般隱

藏關聯規則之演算法皆須做多次之資料庫掃瞄。我們

則提出一個利用式樣反轉樹(pattern-inverse tree)

儲存相關資料並且只須掃瞄資料庫一次之演算法。數

值實驗顯示我們所提之演算法比其他方法更有效率且

具有類似之副作用。 

 
Keywords: privacy preserving, data mining, collaborative 
recommendation, association rule 
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1. Introduction 

 
Privacy-preserving data mining, is a novel research 

direction in data mining and statistical databases, where 
data mining algorithms are analyzed for the side effects 
they incur in data privacy [25].  For example, through 

data mining, one is able to infer sensitive information, 
including personal information or even patterns, from 
non-sensitive information or unclassified data.  There 
have been two types of privacy concerning data mining.  
The first type of privacy, called output privacy, is that the 
data is minimally altered so that the mining result will not 
disclose certain privacy.  Many techniques have been 
proposed for the output privacy [1,6,7,8,9,20,21,23,25].  
For example, perturbation, blocking, aggregation or 
merging, swapping, and sampling are some alternation 
methods that have recently been proposed.  The second 
type of privacy, called input privacy, is that the data is 
manipulated so that the mining result is not affected or 
minimally affected [10,11,12,15,24].  For example, the 
reconstruction-based technique tries to randomize the data 
so that the original distribution or patterns of the data can 
be reconstructed.  The cryptography-based techniques 
like secure multiparty computation allow users access to 
only a subset of data while global data mining results can 
still be discovered. 

In output privacy, given specific rules or patterns to be 
hidden, many data altering techniques for hiding 
association, classification and clustering rules have been 
proposed.  For association rules hiding, two basic 
approaches have been proposed.  The first approach [9, 
23, 26] hides one rule at a time.  It first selects 
transactions that contain the items in a give rule.  It then 
tries to modify transaction by transaction until the 
confidence or support of the rule fall below minimum 
confidence or minimum support.  The modification is 
done by either removing items from the transaction or 
inserting new items to the transactions.  The second 
approach [19-21] deals with groups of restricted patterns 
or association rules at a time.  It first selects the 
transactions that contain the intersecting patterns of a 
group of restricted patterns.  Depending on the disclosure 
threshold given by users, it sanitizes a percentage of the 
selected transactions in order to hide the restricted 
patterns.  

However, all these approaches require hidden rules or 
patterns been given in advance.  This selection of rules 
would require data mining process to be executed first.  
Based on the discovered rules and privacy requirements, 
hidden rules or patterns are then selected manually.  But, 
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for some applications, we are only interested in hiding 
certain constrained classes of association rules such as 
collaborative recommendation association rule sets [27], 
which can be used for recommendation using less number 
of association rules.  To hide such rule sets, the pre-
process of finding these hidden rules can be integrated 
into the hiding process as long as the recommended items 
are given.  In addition, these approaches, all based on 
Apriori algorithm, require multiple scanning of database 
to calculate the supports of the large itemsets.  In this 
work, we propose using a pattern-inversion tree to store 
related information so that only one scan of database is 
required.  Examples illustrating the proposed algorithm 
are given.  Numerical experiments show that the proposed 
algorithm out performs previous multiple scanning 
algorithms, with similar side effects. 

The rest of the paper is organized as follows.  Section 
2 presents the statement of the problem and the notation 
used in the paper.  Section 3 presents the proposed 
algorithm for sanitizing collaborative recommendation 
association rule sets that contain the specified 
recommended items. Section 4 shows an example of the 
proposed algorithm.  Section 5 shows the experimental 
results of the performance and various side effects of the 
proposed algorithm compared with multiple-scanning 
algorithm.  Concluding remarks and future works are 
described in section 6. 

 
2. Problem statement 

 
2.1. Collaborative recommendation association 
rules 
 

The problem of mining association rules was 
introduced in [2]. Let  be a set of 
literals, called items.  Given a set of transactions D, where 
each transaction 

}   ,,  , { 21 miiiI L=

T  in D is a set of items such that 
 an association rule is an expression  

where   and 
,IT ⊆ YX ⇒

,IX ⊆ ,IY ⊆ .φ=∩YX   The X and 
Y  are called respectively the body (left hand side) and 
head (right hand side) of the rule.  An example of such a 
rule is that 90% of customers buy hamburgers also buy 
Coke.  The 90% here is called the confidence of the rule, 
which means that 90% of transaction that contains X  
(hamburgers) also contains Y (Coke).  The confidence is 
calculated as |||| XYX ∪ , where |X| is the number of 
transactions containing X and |X∪Y| is the number of 
transactions containing both X and Y.  The support of the 
rule is the percentage of transactions that contain both X 
and Y, which is calculated as NYX || ∪ , where N is 
the number of transactions in D.  The problem of mining 
association rules is to find all rules that are greater than 

the user-specified minimum support and minimum 
confidence. 

As an example, for a given database in Table 1, a 
minimum support of 33% and a minimum confidence of 
70%, nine association rules can be found as follows: 
B=>A (66%, 100%), C=>A (66%, 100%), B=>C (50%, 
75%), C=>B (50%, 75%), AB=>C (50%, 75%), AC=>B 
(50%, 75%), BC=>A(50%, 100%), C=>AB(50%, 75%), 
B=>AC(50%, 75%), where the percentages inside the 
parentheses are supports and confidences respectively. 

However, mining association rules usually generates a 
large number of rules, most of which are unnecessary for 
the purpose of collaborative recommendation.  For 
example, to recommend a target item {C} to a customer, 
the collaborative recommendation association rule set that 
contains only two rules, B=>C (50%, 60%) and AB=>C 
(50%, 60%), will generate the same recommendations as 
the entire nine association rules found from Table 1.  This 
means that if the new customer has shown interests in 
purchasing item {B} or items {AB}, then the collaborative 
recommender will recommend the new customer to 
purchase target item {C}.  Therefore, a collaborative 
recommendation association rule set can be informally 
defined as the smallest association rule set that makes the 
same recommendation as the entire association rule set by 
confidence priority. 

 
Table 1: Database D 

TID Items 
T1 ABC 
T2 ABC 
T3 ABC 
T4 AB 
T5 A 
T6 AC 

 
Formally, given an association rule set R and a target 

itemset P, we say that the collaborative recommendation 
for P from R is a sequence of items Q.  Using the rules in 
R in descending order of confidence generates the 
sequence of Q.  For each rule r that matches P (i.e., for 
each rule whose conclusion is a subset of P), each 
antecedent of r is added to Q.  After adding a 
consequence to Q, all rules whose antecedents are in Q 
are removed from R. 

The following is the definition of collaborative 
recommendation association rule set: 
Definition Let RA be an association rule set and RA

1 the set 
of single-target rules in RA.  A set Rc is a collaborative 
recommender over RA if (1) Rc ⊂ RA

1, (2) ∀ r ∈ Rc, there 
does not exist r’ ∈ Rc such that r’ ⊂ r and conf(r’)> 
conf(r), and (3) ∀ r’’ ∈ RA

1 – Rc, ∃ r ∈ Rc such that r’’ ⊃ r 
and conf(r’’) < conf(r). 

 2



 
2.2. Problem description 
 

The objective of data mining is to extract hidden or 
potentially unknown but interesting rules or patterns from 
databases.  However, the objective of privacy preserving 
data mining is to hide certain sensitive information so that 
they cannot be discovered through data mining techniques 
[1,4-12,16].  In this work, we assume that only 
recommended (also called target or hidden) items are 
given and propose an algorithm to modify data in 
database so that collaborative recommendation 
association rule sets cannot be inferred through 
association rule mining.  More specifically, given a 
transaction database D, a minimum support, a minimum 
confidence and a set of recommended items Y, the 
objective is to minimally modify the database D such that 
no collaborative recommendation association rules 
containing Y on the right hand side of the rule will be 
discovered. 

As an example, for a given database in Table 1, a 
minimum support of 33%, a minimum confidence of 70%, 
and a hidden item Y = {C}, if transaction T1 is modified 
from ABC to AB, then the following rules that contain 
item C on the right hand side will be hidden: B=>C (33%, 
50%), AB=>C (33%, 50%).  However, four rules are lost, 
C=>B (33%, 60%), AC=>B (33%, 66%), C=>AB (33%, 
66%), B=>AC (33%, 50%), and no new rule is generated 
as side effects. 

 
3. Proposed algorithm 

 
In order to hide an association rule, X=>Y, we can 

either decrease its supports, ( NX || or NYX || ∪ ), 
to be smaller than pre-specified minimum support or its 
confidence ( |||| XYX ∪ ) to be smaller than pre-
specified minimum confidence.  To decrease the 
confidence of a rule, two strategies can be considered.  
The first strategy is to increase the support count of X, i.e., 
the left hand side of the rule, but not support count of X ∪ 
Y.  The second strategy is to decrease the support count of 
the itemset X ∪ Y.  For the second strategy, there are in 
fact two options.  One option is to lower he support count 
of the itemset X ∪ Y so that it is smaller than pre-defined 
minimum support count.   The other option is to lower the 
support count of the itemset X ∪ Y so that 

|||| XYX ∪  is smaller than pre-defined minimum 
confidence.  In addition, in the transactions containing 
both X and Y, if we decrease the support of Y only, the 
right hand side of the rule, it would reduce the confidence 
faster than reducing the support of X.  In fact, we can pre-
calculate the number of transactions required to hide the 
rule.  If there are not enough transactions exist, then the 

rule cannot be hidden.  To decrease support count of an 
item, we will remove one item at a time in a selected 
transaction by changing from 1 to 0.  To increase the 
support count of an item, we will add one item by 
changing from 0 to 1. 

In order to hide collaborative recommendation 
association rules, we will consider hiding association 
rules with 2 items, x=>z, where z is a recommended item 
and x is a single large one item.  In theory, collaborative 
recommendation association rules may have more 
specific rules that contain more items, e.g., xY => z, 
where Y is a large itemset.   However, for such rule to 
exist, its confidence must be greater than the confidence 
of x=>z, i.e., conf(xY=>z) > conf(x=>z) or |xYz| > 
conf(x=>z) * |xY|.  For higher confidence rules, such as 
conf(x=>z) = 1, there will be no more specific rules.  In 
addition, once the more general rule is hidden, the more 
specific rule might be hidden as well. 

To reduce the number of database scanning in 
generating large or frequent itemsets in association rule 
mining, a one scan of database method was proposed in 
[14].  The basic idea is to construct a tree structure, called 
Pattern tree (P-tree) and a frequency list which contains 
the frequency counts of each item in one database scan.  
The pattern tree is then restructured to a compact 
Frequent-Pattern tree (FP-tree) proposed by [13], which 
can store more information in less space.  A FP-tree based 
pattern growth method (FP-growth) is used to find all the 
large tiemsets from the FP-tree. 

In this work, we propose a Pattern-Inversion tree (PI-
tree) based on the pattern tree.  A PI-tree is similar to a P-
tree except the following.  Each node in a PI-tree contains 
three fields: item name (or item number), number of 
transactions containing the items on the path from the 
root to current node, and list of transaction ID that 
contains all the items on the path from the root to current 
node.  For example, the PI-tree for the six transactions in 
Table 1 is shown in Figure 1.  The frequency list is L = 
<(A:6), (B:4), (C:4)>. 

A:6:[T5]

B:4:[T4]

C:3:[T1,T2,T3]

Root

C:1:[T6]

 
Figure 1 Pattern Inversion Tree for data in Table 1 

 
The construction of a PI-tree contains two steps.  In 
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step one, we read transactions one by one from database.  
Each transaction is sorted according to item name (or item 
number) and inserted into the PI-tree.  The frequency list 
is updated accordingly.  In the second step, we sort the 
frequency list according to item support counts first.  
Then the PI-tree is restructured similar to the first step.  
Each branch of the original PI-tree is sorted according to 
the new frequency list and inserted to the restructured PI-
tree. 

Based on the strategies mentioned above, we propose 
a data-mining algorithm for sanitizing collaborative 
recommendation association rules, namely Decrease 
Confidence By Support (DCBS).  The detail of the 
algorithm is described as follow. 
 

Algorithm DCBS 
Input: (1) a source database D,  
 (2) a min_support,  
 (3) a min_confidence, 
 (4) a set of hidden items Y 
Output: a sanitized database D’, where rules containing 

items of Y on RHS will be hidden 
 
Step 1: Build Pattern Inversion Tree (PI-tree) and 

frequency list L 
1.1 Construct an initial PI-tree and item frequency list 

L 
  For each transaction t in D 
   Sort t according to item name (or item #) 
   Insert t into PI-tree 
   Update L with items in t 
1.2 Restructure the initial PI-tree 
  For each path p’ from root to leaf 
  Set support count of each node of p’ to 

common support count; 
   Sort p’ according to L; 
   Insert p’ to a new PI-tree 
Step 2: Sanitize all rules of the form:  U: x→  y 
2.1 For each y ∈  Y and y is a frequent item { 
 For each large 2-itemset containing x { // e.g. 

{xy} and rule U: x→  y  
 If confidence(U) >=  min_conf, then { 
 //# of transactions required to lower the 

confidence 
 iterNumConf =⎡|D|*(supp(xy) - min_conf 

* supp(x))⎤;  
 //# of transactions required to lower the 

support  
  iterNumSupp = ⎡|D|*(supp(xy) - 

min_supp)⎤; 
  k = minimum (iterNumConf, 

iterNumSupp); 

   Sanitize the shortest k transactions 
containing xy by updating PI-tree, 
frequency list and D;  

  };  //end if 
 }; // end for each large 2-itemset 
 remove y from Y; 
 }; // end for each y ∈  Y 
Step 3: Output updated database D’; 
 

4. Example 
 

This section shows an example to demonstrate the 
proposed algorithm in sanitizing collaborative 
recommendation association rule sets.  For a given 
database D in Table 2, a minimum support of 33% and a 
minimum confidence of 70%, the result of running the 
DCBS algorithm is given as follow.  

In step one, a Pattern Inversion Tree and a frequency 
list L is built. Transactions are read one by one and the 
corresponding PI-trees and frequency lists are as follows. 
After reading T1, root – A:1 – B:1 – C:1:[T1], L = <(A:1), 
(B:1), (C:1)>.  After reading T2, root – A:2 – B:2 – 
C:2:[T1, T2], L = <(A:2), (B:2), (C:2)>.  After reading T3, 
root– A:3 – B:3 – C:3:[T1, T2, T3], L = <(A:3), (B:3), 
(C:3)>.  After reading T4, root – A:4 – B:4:[T4] – C:3:[T1, 
T2, T3], L = <(A:4), (B:4), (C:3)>.  After reading T5, 
root – A:5:[T5] – B:4:[T4] – C:3:[T1, T2, T3], L= <(A:5), 
(B:4), (C:3)>.  After reading T6, the PI-tree is shown in 
Figure 1and L = <(A:6), (B:4), (C:4)>.  The restructured 
PI-tree is the same as the original PI-tree. 

Table 2: Databases before and after sanitization 
TID D D’

T1 111 110
T2 111 111 
T3 111 111 
T4 110 110 
T5 100 100 
T6 101 101 

In step 2, we sanitize all rules of the form, U: x→  y.  
For hidden item C, which is a frequent item, we find all 
large two itemsets that contain C, which includes {AC, 
BC}.  For AC, the A=>C (66%, 66%) is not an 
association rule.  For BC, the estimated number of 
transaction need to be sanitized is calculated as follows.  
The iterNumConf = ⎡3-70%*4⎤ = ⎡3 – 2.8⎤ = ⎡0.2⎤ = 1, 
iterNumSupp = ⎡3-33%*6⎤ = ⎡3 – 1.8⎤  = ⎡1.2⎤  = 2, and 
k = min [1, 2] = 1.  Therefore, the shortest transaction 
containing BC, T1 is sanitized.  The resulting PI-tree has 
two paths from the root, root – A:6:[T5] – B:4:[ T1, T4] – 
C:2:[T2, T3], and root – A:6:[T5] – C:1:[ T6], and L = 
<(A:4), (B:4), (C:3)>. 

The resulting database is shown as D’ in Table 2.  Two 
rules are hidden, B=>C (33%, 50%), AB=>C (33%, 50%), 
four rules are lost, C=>B (33%, 60%), AC=>B (33%, 
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66%), C=>AB (33%, 66%), B=>AC (33%, 50%), and no 
new rule is generated as side effects. 
 

5. Numerical experiments 
 

In order to better understand the characteristics of the 
proposed algorithm numerically, we perform a series of 
experiments to measure various effects.  The following 
effects are considered: time effects, database effects, side 
effects, and item ordering effects.  For time effects, we 
measure the running time required to hide one and two 
recommended items, i.e., one and two collaborative 
recommendation association rule sets respectively.  The 
database effects measure the percentage of altered 
transactions in the database.  For side effects, we measure 
the hiding failures, new rules generated and lost rules.  
The hiding failure side effect measures the number of 
collaborative recommendation association rules that 
cannot be hidden.  The new rule side effect measures the 
number of new rules appeared in the transformed 
database but is not in the original database.  The lost rule 
side effect measures the number of rules that are in the 
original database but not in the transformed database.  
The item order effects examine the previous effects when 
the order of recommended item is changed. 

The experiments are performed on a PC with Pentium 
four 498 MHz processor and 128 MB RAM running on 
Windows XP operating system.  The data sets used are 
generated from IBM synthetic data generator.  The sizes 
of the data sets range from 5K to 25K transactions with 
average transaction length, |ATL| = 5, and total number of 
items, |I| = 50 

For each data set, various sets of association rules are 
generated under various minimum supports and minimum 
confidences.  The minimum support range tested is from 
0.5% to 10%.  The minimum confidence range tested is 
from 20% to 40%.  Total number of association rules is 
from 6 to 404.  The number of hidden rules ranges from 0 
to 73, which in percentage over total association rules is 
from 0% to 66%.  The number of recommended items 
considered here are one and two items.  For the following 
results, the minimum support and minimum confidence 
used are 3% of 20% respectively.  The total numbers of 
association rules are 150, 177, 177, 175, 176 for 5k to 
25k data sizes respectively.  The percentage of hidden 
rule over association rules is about 8% and 17% for one 
and two recommended items respectively. 

Figure 1 shows the time required for multiple-scan 
DCDS [27] and one-scan DCBS algorithms to hide 
collaborative recommendation association rule sets for 
one and two recommended items.  The processing times 
increase in proportion to the sizes of the data sets and the 
number of recommended items for both algorithms.  
However, the one-scan DCBS requires less processing 

time than the multiple-scan DCDS algorithm.  Noted that 
the results of multiple-scan DCDS algorithm are 
performed under faster platform of 3 GHz processor and 
256 MB RAM.  Figure 2 shows the percentages of 
transaction altered for multiple-scan DCDS and one-scan 
DCBS algorithms.  The percentages of altered 
transactions remain constant for both algorithms as well 
as one and two items respectively.  Even though DCBS 
algorithm modifies more transactions, it is still faster than 
DCDS algorithm.  Figure 3 and 4 show the various side 
effects of multiple-scan DCDS and one-scan DCBS 
algorithms for hiding two recommended items.  For 
multiple-scan DCDS, there is no hiding failure, meaning 
every rule can be hidden.  There is about 1% or less of 
new rules generated and about 4% of association rules are 
lost on the average.  For one-scan DCBS, there is at most 
9% hiding failures and at most 11% new rules but no lost 
rules.  
 

6. Conclusion 
 
In this work, we have studied the database privacy 
problems caused by data mining technology and proposed 
an efficient one-scan algorithm for sanitizing 
collaborative recommendation association rule sets.  The 
proposed algorithm can automatically sanitize 
collaborative recommendation rule sets without pre-
mining and selection of a class of rules under one 
database scan.  Example illustrating the proposed 
algorithm is given.  Numerical experiments are performed 
to show the time effects, database effects, and side effects 
of the algorithm and compared with multiple-scan 
algorithm.  It can be seen that the proposed one-scan 
algorithm out performs the multiple scan algorithm in 
processing time with similar side effects.  In the future, 
we will consider the problem of efficient maintenance of 
privacy when databases are updated frequently. 
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Figure 2 Database Effects 
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Figure 4 Side Effects of DCBS 
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