
One-Scan Sanitization of Collaborative Recommendation Association Rules
協同推薦關聯規則之一次掃瞄清除

Shyue-Liang Wang

Department of Information Management
National University of Kaohsiung, Taiwan

slwang@nuk.edu.tw

Tzung-Pei Hong
Department of Electrical Engineering

National University of Kaohsiung, Taiwan
tphong@nuk.edu.tw

Abstract

For a given recommended item, a collaborative
recommendation association rule set is the smallest
association rule set that makes the same recommendation
as the entire association rule set by confidence priority.
In this work, we propose an efficient one-scan
sanitization algorithm to hide collaborative
recommendation association rules. To hide association
rules, previously proposed algorithms based on Apriori
approach usually require multiple scanning of database to
calculate the supports of the large itemsets. We propose
here using a pattern-inversion tree to store related
information so that only one scan of database is required.
Numerical experiments show that the proposed algorithm
out performs previous algorithms, with similar side
effects.

摘要

給定一個推薦項目，一個協同推薦關聯規則集是

一組根據信賴值排序之最小關聯規則集，且具備相同

之推薦結果。在本文中，我們提出一個有效率之一次

掃瞄清除演算法以隱藏協同推薦關聯規則集。一般隱

藏關聯規則之演算法皆須做多次之資料庫掃瞄。我們

則提出一個利用式樣反轉樹(pattern-inverse tree)

儲存相關資料並且只須掃瞄資料庫一次之演算法。數

值實驗顯示我們所提之演算法比其他方法更有效率且

具有類似之副作用。

Keywords: privacy preserving, data mining, collaborative
recommendation, association rule

關鍵字: 隱私保護、資料探勘、協同推薦、關聯規則

1. Introduction

Privacy-preserving data mining, is a novel research

direction in data mining and statistical databases, where
data mining algorithms are analyzed for the side effects
they incur in data privacy [25]. For example, through

data mining, one is able to infer sensitive information,
including personal information or even patterns, from
non-sensitive information or unclassified data. There
have been two types of privacy concerning data mining.
The first type of privacy, called output privacy, is that the
data is minimally altered so that the mining result will not
disclose certain privacy. Many techniques have been
proposed for the output privacy [1,6,7,8,9,20,21,23,25].
For example, perturbation, blocking, aggregation or
merging, swapping, and sampling are some alternation
methods that have recently been proposed. The second
type of privacy, called input privacy, is that the data is
manipulated so that the mining result is not affected or
minimally affected [10,11,12,15,24]. For example, the
reconstruction-based technique tries to randomize the data
so that the original distribution or patterns of the data can
be reconstructed. The cryptography-based techniques
like secure multiparty computation allow users access to
only a subset of data while global data mining results can
still be discovered.

In output privacy, given specific rules or patterns to be
hidden, many data altering techniques for hiding
association, classification and clustering rules have been
proposed. For association rules hiding, two basic
approaches have been proposed. The first approach [9,
23, 26] hides one rule at a time. It first selects
transactions that contain the items in a give rule. It then
tries to modify transaction by transaction until the
confidence or support of the rule fall below minimum
confidence or minimum support. The modification is
done by either removing items from the transaction or
inserting new items to the transactions. The second
approach [19-21] deals with groups of restricted patterns
or association rules at a time. It first selects the
transactions that contain the intersecting patterns of a
group of restricted patterns. Depending on the disclosure
threshold given by users, it sanitizes a percentage of the
selected transactions in order to hide the restricted
patterns.

However, all these approaches require hidden rules or
patterns been given in advance. This selection of rules
would require data mining process to be executed first.
Based on the discovered rules and privacy requirements,
hidden rules or patterns are then selected manually. But,

 1

mailto:slwang@nuk.edu.tw
mailto:tphong@nuk.edu.tw

for some applications, we are only interested in hiding
certain constrained classes of association rules such as
collaborative recommendation association rule sets [27],
which can be used for recommendation using less number
of association rules. To hide such rule sets, the pre-
process of finding these hidden rules can be integrated
into the hiding process as long as the recommended items
are given. In addition, these approaches, all based on
Apriori algorithm, require multiple scanning of database
to calculate the supports of the large itemsets. In this
work, we propose using a pattern-inversion tree to store
related information so that only one scan of database is
required. Examples illustrating the proposed algorithm
are given. Numerical experiments show that the proposed
algorithm out performs previous multiple scanning
algorithms, with similar side effects.

The rest of the paper is organized as follows. Section
2 presents the statement of the problem and the notation
used in the paper. Section 3 presents the proposed
algorithm for sanitizing collaborative recommendation
association rule sets that contain the specified
recommended items. Section 4 shows an example of the
proposed algorithm. Section 5 shows the experimental
results of the performance and various side effects of the
proposed algorithm compared with multiple-scanning
algorithm. Concluding remarks and future works are
described in section 6.

2. Problem statement

2.1. Collaborative recommendation association
rules

The problem of mining association rules was
introduced in [2]. Let be a set of
literals, called items. Given a set of transactions D, where
each transaction

} ,, , { 21 miiiI L=

T in D is a set of items such that
 an association rule is an expression

where and
,IT ⊆ YX ⇒

,IX ⊆ ,IY ⊆ .φ=∩YX The X and
Y are called respectively the body (left hand side) and
head (right hand side) of the rule. An example of such a
rule is that 90% of customers buy hamburgers also buy
Coke. The 90% here is called the confidence of the rule,
which means that 90% of transaction that contains X
(hamburgers) also contains Y (Coke). The confidence is
calculated as |||| XYX ∪ , where |X| is the number of
transactions containing X and |X∪Y| is the number of
transactions containing both X and Y. The support of the
rule is the percentage of transactions that contain both X
and Y, which is calculated as NYX || ∪ , where N is
the number of transactions in D. The problem of mining
association rules is to find all rules that are greater than

the user-specified minimum support and minimum
confidence.

As an example, for a given database in Table 1, a
minimum support of 33% and a minimum confidence of
70%, nine association rules can be found as follows:
B=>A (66%, 100%), C=>A (66%, 100%), B=>C (50%,
75%), C=>B (50%, 75%), AB=>C (50%, 75%), AC=>B
(50%, 75%), BC=>A(50%, 100%), C=>AB(50%, 75%),
B=>AC(50%, 75%), where the percentages inside the
parentheses are supports and confidences respectively.

However, mining association rules usually generates a
large number of rules, most of which are unnecessary for
the purpose of collaborative recommendation. For
example, to recommend a target item {C} to a customer,
the collaborative recommendation association rule set that
contains only two rules, B=>C (50%, 60%) and AB=>C
(50%, 60%), will generate the same recommendations as
the entire nine association rules found from Table 1. This
means that if the new customer has shown interests in
purchasing item {B} or items {AB}, then the collaborative
recommender will recommend the new customer to
purchase target item {C}. Therefore, a collaborative
recommendation association rule set can be informally
defined as the smallest association rule set that makes the
same recommendation as the entire association rule set by
confidence priority.

Table 1: Database D

TID Items
T1 ABC
T2 ABC
T3 ABC
T4 AB
T5 A
T6 AC

Formally, given an association rule set R and a target

itemset P, we say that the collaborative recommendation
for P from R is a sequence of items Q. Using the rules in
R in descending order of confidence generates the
sequence of Q. For each rule r that matches P (i.e., for
each rule whose conclusion is a subset of P), each
antecedent of r is added to Q. After adding a
consequence to Q, all rules whose antecedents are in Q
are removed from R.

The following is the definition of collaborative
recommendation association rule set:
Definition Let RA be an association rule set and RA

1 the set
of single-target rules in RA. A set Rc is a collaborative
recommender over RA if (1) Rc ⊂ RA

1, (2) ∀ r ∈ Rc, there
does not exist r’ ∈ Rc such that r’ ⊂ r and conf(r’)>
conf(r), and (3) ∀ r’’ ∈ RA

1 – Rc, ∃ r ∈ Rc such that r’’ ⊃ r
and conf(r’’) < conf(r).

 2

2.2. Problem description

The objective of data mining is to extract hidden or
potentially unknown but interesting rules or patterns from
databases. However, the objective of privacy preserving
data mining is to hide certain sensitive information so that
they cannot be discovered through data mining techniques
[1,4-12,16]. In this work, we assume that only
recommended (also called target or hidden) items are
given and propose an algorithm to modify data in
database so that collaborative recommendation
association rule sets cannot be inferred through
association rule mining. More specifically, given a
transaction database D, a minimum support, a minimum
confidence and a set of recommended items Y, the
objective is to minimally modify the database D such that
no collaborative recommendation association rules
containing Y on the right hand side of the rule will be
discovered.

As an example, for a given database in Table 1, a
minimum support of 33%, a minimum confidence of 70%,
and a hidden item Y = {C}, if transaction T1 is modified
from ABC to AB, then the following rules that contain
item C on the right hand side will be hidden: B=>C (33%,
50%), AB=>C (33%, 50%). However, four rules are lost,
C=>B (33%, 60%), AC=>B (33%, 66%), C=>AB (33%,
66%), B=>AC (33%, 50%), and no new rule is generated
as side effects.

3. Proposed algorithm

In order to hide an association rule, X=>Y, we can

either decrease its supports, (NX || or NYX || ∪),
to be smaller than pre-specified minimum support or its
confidence (|||| XYX ∪) to be smaller than pre-
specified minimum confidence. To decrease the
confidence of a rule, two strategies can be considered.
The first strategy is to increase the support count of X, i.e.,
the left hand side of the rule, but not support count of X ∪
Y. The second strategy is to decrease the support count of
the itemset X ∪ Y. For the second strategy, there are in
fact two options. One option is to lower he support count
of the itemset X ∪ Y so that it is smaller than pre-defined
minimum support count. The other option is to lower the
support count of the itemset X ∪ Y so that

|||| XYX ∪ is smaller than pre-defined minimum
confidence. In addition, in the transactions containing
both X and Y, if we decrease the support of Y only, the
right hand side of the rule, it would reduce the confidence
faster than reducing the support of X. In fact, we can pre-
calculate the number of transactions required to hide the
rule. If there are not enough transactions exist, then the

rule cannot be hidden. To decrease support count of an
item, we will remove one item at a time in a selected
transaction by changing from 1 to 0. To increase the
support count of an item, we will add one item by
changing from 0 to 1.

In order to hide collaborative recommendation
association rules, we will consider hiding association
rules with 2 items, x=>z, where z is a recommended item
and x is a single large one item. In theory, collaborative
recommendation association rules may have more
specific rules that contain more items, e.g., xY => z,
where Y is a large itemset. However, for such rule to
exist, its confidence must be greater than the confidence
of x=>z, i.e., conf(xY=>z) > conf(x=>z) or |xYz| >
conf(x=>z) * |xY|. For higher confidence rules, such as
conf(x=>z) = 1, there will be no more specific rules. In
addition, once the more general rule is hidden, the more
specific rule might be hidden as well.

To reduce the number of database scanning in
generating large or frequent itemsets in association rule
mining, a one scan of database method was proposed in
[14]. The basic idea is to construct a tree structure, called
Pattern tree (P-tree) and a frequency list which contains
the frequency counts of each item in one database scan.
The pattern tree is then restructured to a compact
Frequent-Pattern tree (FP-tree) proposed by [13], which
can store more information in less space. A FP-tree based
pattern growth method (FP-growth) is used to find all the
large tiemsets from the FP-tree.

In this work, we propose a Pattern-Inversion tree (PI-
tree) based on the pattern tree. A PI-tree is similar to a P-
tree except the following. Each node in a PI-tree contains
three fields: item name (or item number), number of
transactions containing the items on the path from the
root to current node, and list of transaction ID that
contains all the items on the path from the root to current
node. For example, the PI-tree for the six transactions in
Table 1 is shown in Figure 1. The frequency list is L =
<(A:6), (B:4), (C:4)>.

A:6:[T5]

B:4:[T4]

C:3:[T1,T2,T3]

Root

C:1:[T6]

Figure 1 Pattern Inversion Tree for data in Table 1

The construction of a PI-tree contains two steps. In

 3

step one, we read transactions one by one from database.
Each transaction is sorted according to item name (or item
number) and inserted into the PI-tree. The frequency list
is updated accordingly. In the second step, we sort the
frequency list according to item support counts first.
Then the PI-tree is restructured similar to the first step.
Each branch of the original PI-tree is sorted according to
the new frequency list and inserted to the restructured PI-
tree.

Based on the strategies mentioned above, we propose
a data-mining algorithm for sanitizing collaborative
recommendation association rules, namely Decrease
Confidence By Support (DCBS). The detail of the
algorithm is described as follow.

Algorithm DCBS
Input: (1) a source database D,
 (2) a min_support,
 (3) a min_confidence,
 (4) a set of hidden items Y
Output: a sanitized database D’, where rules containing

items of Y on RHS will be hidden

Step 1: Build Pattern Inversion Tree (PI-tree) and

frequency list L
1.1 Construct an initial PI-tree and item frequency list

L
 For each transaction t in D
 Sort t according to item name (or item #)
 Insert t into PI-tree
 Update L with items in t
1.2 Restructure the initial PI-tree
 For each path p’ from root to leaf
 Set support count of each node of p’ to

common support count;
 Sort p’ according to L;
 Insert p’ to a new PI-tree
Step 2: Sanitize all rules of the form: U: x→ y
2.1 For each y ∈ Y and y is a frequent item {
 For each large 2-itemset containing x { // e.g.

{xy} and rule U: x→ y
 If confidence(U) >= min_conf, then {
 //# of transactions required to lower the

confidence
 iterNumConf =⎡|D|*(supp(xy) - min_conf

* supp(x))⎤;
 //# of transactions required to lower the

support
 iterNumSupp = ⎡|D|*(supp(xy) -

min_supp)⎤;
 k = minimum (iterNumConf,

iterNumSupp);

 Sanitize the shortest k transactions
containing xy by updating PI-tree,
frequency list and D;

 }; //end if
 }; // end for each large 2-itemset
 remove y from Y;
 }; // end for each y ∈ Y
Step 3: Output updated database D’;

4. Example

This section shows an example to demonstrate the
proposed algorithm in sanitizing collaborative
recommendation association rule sets. For a given
database D in Table 2, a minimum support of 33% and a
minimum confidence of 70%, the result of running the
DCBS algorithm is given as follow.

In step one, a Pattern Inversion Tree and a frequency
list L is built. Transactions are read one by one and the
corresponding PI-trees and frequency lists are as follows.
After reading T1, root – A:1 – B:1 – C:1:[T1], L = <(A:1),
(B:1), (C:1)>. After reading T2, root – A:2 – B:2 –
C:2:[T1, T2], L = <(A:2), (B:2), (C:2)>. After reading T3,
root– A:3 – B:3 – C:3:[T1, T2, T3], L = <(A:3), (B:3),
(C:3)>. After reading T4, root – A:4 – B:4:[T4] – C:3:[T1,
T2, T3], L = <(A:4), (B:4), (C:3)>. After reading T5,
root – A:5:[T5] – B:4:[T4] – C:3:[T1, T2, T3], L= <(A:5),
(B:4), (C:3)>. After reading T6, the PI-tree is shown in
Figure 1and L = <(A:6), (B:4), (C:4)>. The restructured
PI-tree is the same as the original PI-tree.

Table 2: Databases before and after sanitization
TID D D’

T1 111 110
T2 111 111
T3 111 111
T4 110 110
T5 100 100
T6 101 101

In step 2, we sanitize all rules of the form, U: x→ y.
For hidden item C, which is a frequent item, we find all
large two itemsets that contain C, which includes {AC,
BC}. For AC, the A=>C (66%, 66%) is not an
association rule. For BC, the estimated number of
transaction need to be sanitized is calculated as follows.
The iterNumConf = ⎡3-70%*4⎤ = ⎡3 – 2.8⎤ = ⎡0.2⎤ = 1,
iterNumSupp = ⎡3-33%*6⎤ = ⎡3 – 1.8⎤ = ⎡1.2⎤ = 2, and
k = min [1, 2] = 1. Therefore, the shortest transaction
containing BC, T1 is sanitized. The resulting PI-tree has
two paths from the root, root – A:6:[T5] – B:4:[T1, T4] –
C:2:[T2, T3], and root – A:6:[T5] – C:1:[T6], and L =
<(A:4), (B:4), (C:3)>.

The resulting database is shown as D’ in Table 2. Two
rules are hidden, B=>C (33%, 50%), AB=>C (33%, 50%),
four rules are lost, C=>B (33%, 60%), AC=>B (33%,

 4

66%), C=>AB (33%, 66%), B=>AC (33%, 50%), and no
new rule is generated as side effects.

5. Numerical experiments

In order to better understand the characteristics of the
proposed algorithm numerically, we perform a series of
experiments to measure various effects. The following
effects are considered: time effects, database effects, side
effects, and item ordering effects. For time effects, we
measure the running time required to hide one and two
recommended items, i.e., one and two collaborative
recommendation association rule sets respectively. The
database effects measure the percentage of altered
transactions in the database. For side effects, we measure
the hiding failures, new rules generated and lost rules.
The hiding failure side effect measures the number of
collaborative recommendation association rules that
cannot be hidden. The new rule side effect measures the
number of new rules appeared in the transformed
database but is not in the original database. The lost rule
side effect measures the number of rules that are in the
original database but not in the transformed database.
The item order effects examine the previous effects when
the order of recommended item is changed.

The experiments are performed on a PC with Pentium
four 498 MHz processor and 128 MB RAM running on
Windows XP operating system. The data sets used are
generated from IBM synthetic data generator. The sizes
of the data sets range from 5K to 25K transactions with
average transaction length, |ATL| = 5, and total number of
items, |I| = 50

For each data set, various sets of association rules are
generated under various minimum supports and minimum
confidences. The minimum support range tested is from
0.5% to 10%. The minimum confidence range tested is
from 20% to 40%. Total number of association rules is
from 6 to 404. The number of hidden rules ranges from 0
to 73, which in percentage over total association rules is
from 0% to 66%. The number of recommended items
considered here are one and two items. For the following
results, the minimum support and minimum confidence
used are 3% of 20% respectively. The total numbers of
association rules are 150, 177, 177, 175, 176 for 5k to
25k data sizes respectively. The percentage of hidden
rule over association rules is about 8% and 17% for one
and two recommended items respectively.

Figure 1 shows the time required for multiple-scan
DCDS [27] and one-scan DCBS algorithms to hide
collaborative recommendation association rule sets for
one and two recommended items. The processing times
increase in proportion to the sizes of the data sets and the
number of recommended items for both algorithms.
However, the one-scan DCBS requires less processing

time than the multiple-scan DCDS algorithm. Noted that
the results of multiple-scan DCDS algorithm are
performed under faster platform of 3 GHz processor and
256 MB RAM. Figure 2 shows the percentages of
transaction altered for multiple-scan DCDS and one-scan
DCBS algorithms. The percentages of altered
transactions remain constant for both algorithms as well
as one and two items respectively. Even though DCBS
algorithm modifies more transactions, it is still faster than
DCDS algorithm. Figure 3 and 4 show the various side
effects of multiple-scan DCDS and one-scan DCBS
algorithms for hiding two recommended items. For
multiple-scan DCDS, there is no hiding failure, meaning
every rule can be hidden. There is about 1% or less of
new rules generated and about 4% of association rules are
lost on the average. For one-scan DCBS, there is at most
9% hiding failures and at most 11% new rules but no lost
rules.

6. Conclusion

In this work, we have studied the database privacy
problems caused by data mining technology and proposed
an efficient one-scan algorithm for sanitizing
collaborative recommendation association rule sets. The
proposed algorithm can automatically sanitize
collaborative recommendation rule sets without pre-
mining and selection of a class of rules under one
database scan. Example illustrating the proposed
algorithm is given. Numerical experiments are performed
to show the time effects, database effects, and side effects
of the algorithm and compared with multiple-scan
algorithm. It can be seen that the proposed one-scan
algorithm out performs the multiple scan algorithm in
processing time with similar side effects. In the future,
we will consider the problem of efficient maintenance of
privacy when databases are updated frequently.

Time Effects

0
200
400
600
800

1000
1200

5k 10k 15k

Data Size

S
ec

on
ds

DCDS-1-
Item
DCDS-2-
Item
DCBS-1-
Item
DCBS-2-
Item

Figure 1 Time Effects

 5

Altered Transactions

0%
2%
4%
6%
8%

10%
12%
14%

5k 10k 15k

Data Size

P
er

ce
nt

ag
e

DCDS-1-
Item
DCDS-2-
Item
DCBS-1-
Item
DCBS-2-
Item

Figure 2 Database Effects

DCDS Side Effects

0%
1%
2%
3%
4%
5%

5k 10k 15k

Data Size

P
er

ce
nt

ag
e

Hiding
Failures
New Rules

Lost Rules

Figure 3 Side Effects of DCDS

DCBS Side Effects

0%

2%

4%

6%

8%

10%

12%

5k 10k 15k

Data Size

P
er

ce
nt

ag
e Hiding Failures

New Rules

Lost Rules

Figure 4 Side Effects of DCBS

7. References

[1] D. Agrawal and C. C. Aggarwal, “On the design and

quantification of privacy preserving data mining
algorithms”, In Proceedings of the 20th Symposium on
Principles of Database Systems, Santa Barbara, California,
USA, May 2001.

[2] R. Agrawal, T. Imielinski, and A. Swami, “Mining
Association Rules between Sets of Items in Large
Databases”, In Proceedings of ACM SIGMOD
International Conference on Management of Data,

Washington DC, May 1993.
[3] R. Agrawal and R. Srikant, ”Privacy preserving data

mining”, In ACM SIGMOD Conference on Management
of Data, pages 439–450, Dallas, Texas, May 2000.

[4] Ljiljana Brankovic and Vladimir Estivill-Castro, “Privacy
Issues in Knowledge Discovery and Data Mining”,
Australian Institute of Computer Ethics Conference, July,
1999, Lilydale.

[5] C. Clifton and D. Marks, “Security and Privacy
Implications of Data Mining”, in SIGMOD Workshop on
Research Issues on Data Mining and knowledge Discovery,
1996.

[6] C. Clifton, “Protecting Against Data Mining Through
Samples”, in Proceedings of the Thirteenth Annual IFIP
WG 11.3 Working Conference on Database Security, 1999.

[7] C. Clifton, “Using Sample Size to Limit Exposure to Data
Mining”, Journal of Computer Security, 8(4), 2000.

[8] Chris Clifton, Murant Kantarcioglu, Xiaodong Lin and
Michael Y. Zhu, “ Tools for Privacy Preserving Distributed
Data Mining”, SIGKDD Explorations, 4(2), 1-7, Dec. 2002.

[9] E. Dasseni, V. Verykios, A. Elmagarmid and E. Bertino,
“Hiding Association Rules by Using Confidence and
Support” in Proceedings of 4th Information Hiding
Workshop, 369-383, Pittsburgh, PA, 2001.

[10] A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke,
“Privacy preserving mining of association rules”, In Proc.
Of the 8th ACM SIGKDD Int’l Conference on Knowledge
Discovery and Data Mining, Edmonton, Canada, July 2002.

[11] Alexandre Evfimievski, “Randomization in Privacy
Preserving Data Mining”, SIGKDD Explorations, 4(2),
Issue 2, 43-48, Dec. 2002.

[12] Alexandre Evfimievski, Johannes Gehrke and
Ramakrishnan Srikant, “Limiting Privacy Breaches in
Privacy Preserving Data Mining”, PODS 2003, June 9-12,
2003, San Diego, CA.

[13] H. Huang, X. Wu, and R. Relue, “Association Analysis
with One Scan of Databases”, Proceedings of IEEE
International Conference on Data Mining, Maebashi City,
Japan, December, 2002, 629-632.

[14] J. Han, J. Pei, and Y. Yin, “Mining Frequent Patterns
without Candidate Generation”, Proceedings of ACM
International Conference on Management of Data
(SIGMOD), 2002, 1-12.

[15] M. Kantarcioglu and C. Clifton, “Privacy-preserving
distributed mining of association rules on horizontally
partitioned data”, In ACM SIGMOD Workshop on
Research Issues on Data Mining and Knowledge Discovery,
June 2002.

[16] Jiuyong Li, Hong Shen and Rodney Topor, “Mining the
Smallest Association Rule Set for Predictions”,
Proceedings of the 2001 IEEE International Conference on
Data Mining, 361-368.

[17] Y. Lindell and B. Pinkas, “Privacy preserving data mining”,
In CRYPTO, pages 36–54, 2000.

[18] D. E. O’ Leary, “Knowledge Discovery as a Threat to
Database Security”, In G. Piatetsky-Shapiro and W. J.
Frawley, editors, Knowledge Discovery in Databases, 507-
516, AAAI Press/ MIT Press, Menlo Park, CA, 1991.

[19] S. Oliveira, O. Zaiane, “Privacy Preserving Frequent
Itemset Mining”, Proceedings of IEEE International
Conference on Data Mining, November 2002, 43-54.

 6

[20] S. Oliveira, O. Zaiane, “Algorithms for Balancing Privacy
and Knowledge Discovery in Association Rule Mining”,
Proceedings of 7th International Database Engineering and
Applications Symposium (IDEAS03), Hong Kong, July
2003.

[21] S. Oliveira, O. Zaiane, “Protecting Sensitive Knowledge by
Data Sanitization”, Proceedings of IEEE International
Conference on Data Mining, November 2003.

[22] S. J. Rizvi and J. R. Haritsa, “Privacy-preserving
association rule mining”, In Proc. of the 28th Int’l
Conference on Very Large Databases, August 2002.

[23] Y. Saygin, V. Verykios, and C. Clifton, “Using Unknowns
to Prevent Discovery of Association Rules”, SIGMOND
Record 30(4): 45-54, December 2001.

[24] J. Vaidya and C.W. Clifton. “Privacy preserving
association rule mining in vertically partitioned data”, In
Proc. of the 8th ACM SIGKDD Int’l Conference on
Knowledge Discovery and Data Mining, Edmonton,
Canada, July 2002.

[25] V. Verykios, E. Bertino, I.G. Fovino, L.P. Provenza, Y.
Saygin, and Y. Theodoridis, “State-of-the-art in Privacy
Preserving Data Mining”, SIGMOD Record, Vol. 33, No. 1,
50-57, March 2004.

[26] V. Verykios, A. Elmagarmid, E. Bertino, Y. Saygin, and E.
Dasseni, “Association Rules Hiding”, IEEE Transactions
on Knowledge and Data Engineering, Vol. 16, No. 4, 434-
447, April 2004.

[27] S.L. Wang, D. Patel, A. Jafari, and T.P. Hong “Hiding
Collaborative Recommendation Association Rules”,
Applied Intelligence, Vol. 26, No. 1, 66-77, 2007.

 7

