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Abstract - In this paper, a novel algorithm for
approximate pattern matching from multiple DNA or
amino acid sequences is designed. To improve
efficiencies in approximate matching, interval jumping
searching algorithms and voting mechanism are
combined and applied in this system. Since k-mismatch
problem of DNA or amino acid sequences from the giant
genomic database is usually time consuming, we
developed a parametric encoding methodology to
search tolerant sub-strings and reduce the time
complexity. In this paper, we have shown that the system
can rapidly identify potential binding motifs for the
transcription factor, such as GAL4 in the promoter
regions of gal4 and gal6, which are neither predicted
nor demonstrated to be regulated by GAL4 previously.

1. Background and Motive

Approximate matching is an important research
topic with application to a variety of problems including
DNA sequence matching, degraded signals detection,
and pattern matching for typos in texts. There are
numerous approximate matching techniques developed
for various applications, and they can be classified into
two main categories: indexed searching techniques and
online searching algorithms [1,2,3,4,5]. Indexed
approximate searching algorithms build a persistent data
structure prior to the searching processes and there are
several reasons that prevent keeping the indices on the
text including extra space requirements, volatility of text
(indices building is quite costly and needs to be
amortized over multiple searches), and satisfied
adequate performance in real applications of huge texts.
Online searching algorithms process the pattern
matching without preprocessing the text and building an
index at the beginning. Their practical problems of
statistical behavior, history, development, and relative
computational complexities were well described and
discussed by Navarro[1]. These online approximate
searching algorithms can be mainly grouped into four

categories: Dynamic Programming Matrices, Finite
Automata, Filters, and Bit-Parallelism. There are also
several combinations of different categories such as Bit-
parallel techniques based on automata or dynamic
programming matrices. All these different algorithms
face various weakness properties in either speed or space
considerations [1]. In this paper, the proposed
approximate matching methodology is based on interval
jumping searching algorithms[6], which focused on the
transformed number sets, and employed voting
mechanism to efficiently match tolerant patterns from
multiple sequences. More technical details are described
in the following sections, and its main application will
focus on bioinformatics areas. In the post-genomic era,
genomic sequences of many species have been
completely determined. Important subsequent studies are
gene annotation and functional analysis [7], in order to
gain the insights in features, structures, and functions of
the regulatory segments of genes. Generally, high
similarities are found among nucleotide sequences and
the deduced amino acid sequences of conserved protein
families. Employing the tools provided by existing DNA
or protein databases, matching of such characteristics
can be found quickly. However, vast areas on
chromosomes still contain segments with unknown
genetic functions, which require new bioinformatic tools
to perform analysis. Chromosomes often contain special
patterns for protein recognition and binding. Such DNA
and protein interaction can affect gene expression or
protein functions. For example, the upstream promoter
region of an eukaryotic gene possesses so called
“transcription element” for regulatory protein to bind,
and its corresponding protein is named as transcription
factor. Though features of known short DNA sequences
can be identified by several programs[8,9,10], they are
often obtained by one-to-multiple string matching,
which means sending a DNA string sequence into a
database and retrieving segments with known features.
However, unknown or novel k-mismatch segments are
difficult to be identified using the conventional methods.
Thus, we
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Figure 1: System Architecture

have developed a complete program as a new solution
and we can search for special consensus DNA sequences
that are not well aligned in a set of gene family
efficiently by employing the so called approximate
matching methodologies based on Ladderlike Stepping
and Interval Jumping Searching Algorithms [6].

2. System Description

The architecture of our system is shown in Fig. 1.
Through encoding, interval segmentation, and voting
mechanism, we can search all approximate patterns
meeting the occurrence threshold values. The detailed
algorithms are described in the following sections

2.1. Subsequence representation feature of
occurrence

The concepts of coding theory and interval
segmentation, as well as the listed data structure in[6]
are applied for exact or approximate matching among
multiple sequences. Both matching algorithms require
finding existed common substrings at the first step. Here
we propose an intuitive statistic model which requires
common substrings to appear only in part of family
sequences with respect to user-defined occurrence rate,
which is also known as representation characteristic of
occurrence. The common substrings in certain family
with occurrence rate means that they only occur in K
sequences among all N input sequences, where NK ≤ .
For example, searching for common subsequences with
at least 80% representation percentage in 10 sequences
means that the selected common substrings occur in at
least 8 sequences from the family set.

2.2. Interval Segmentation

The searching pattern and text are encoded into number
set by our previously developed algorithm, LIJSA

(Ladderlike Stepping and Interval Jumping Searching
Algorithms ), based on Karp-Rabin(Ricardo, B.Y.
1992). To improve computational efficiency, the
algorithm applies the bitwise and uniform interval
segmentation from [6]. With uniform segmentation as
⎣ ⎦sbaseA , the interval location of encoded value can
be calculated, where A is the encoded value and sbase is
the fundamental segmentation base with respect to the
pattern length. Based on the process of interval
segmentation, the computational complexity can be
effectively reduced by appropriately allocating the
encoded data by comparison.

2.3. Cumulative Voting  Algorithm

We apply voting theorem algorithm (VTA) on N
encoded sequences for its statistical features. Each
different encoded value is a representative as a
subsequence candidate, and if such a value occurs in one
sequence, one vote is obtained. Thus each candidate
subsequence representative can obtain at most N votes.
The parameter K is the threshold to be assigned. If the
user-defined possibility parameter is P%, K can be
calculated from ⎡ ⎤%PNK ×= . The sample with P%
representation percentage means that they appear at least
in K sequences among N sequences. Fig. 2 describes the
modules for searching substrings with occurrence rate.
In the first module, the number of intervals with sample
length m is calculated through numeric interval
segmentation. The second module encodes the
sequences and the third module obtains the interval
allocation and vote counting. By rapid searching method
and the interpolation nature of list structure, we could
locate values and place nodes for cumulative voting. The
data structure is described as follows: 

Figure 2: Flowchart of String Searching Algorithm with
Substring occurrence rate
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In the third module for list searching and interpolation
we use a three-level data structure, DS[||], where,, and
refer to the first, second and third level, respectively.
Data structure of level is an array, in which each
element indicates an interval: [Interval 0|interval 1…|
interval Itotal]；level is a list structure, where each node
contains data structure {pn; tn; tfes}, in which pn, tn,
tfes refers to pattern number, ticket number, and ticket
flag for each sequences, respectively. pn is defined as
unique numbers for each encoded values. For
distinguishing different encoded values, list searching
algorithm is applied. tn is the total votes for each
encoded value obtained. tfes is the flag annotation to
record whether an encoded sample value is obtained
from sequence N, and should be a set with N elements,
in which set the 1st element refers to occurrence flag of
encoded pattern from the 1st sequence. “1” implies at
least one votes, “0” implies no vote for encoded sample.
For example, while N =5，tfes={1,1,0,0,1}, the encoded
pattern has votes from sequences 1,2, and 5. Level is an
array structure, which is represented as {{pis1()};{pis2

()};…;{pisN()}} for the pattern allocation in N
sequences. For example, while N =5, DS(6;24, 8;2;
{1,0,0,0,1},{7,,,,56;158}) means that the 8th encoded
pattern is located in the 6th interval, position 24, and
totally 2 votes obtained from sequence 1 and 5. These
common patterns are located at the 7th and 56th site
position in sequence 1, and 158th site position in
sequence 5. If Ktn ≥ , the sample is selected,
otherwise , it will be ignored.

2.4. String Searching Algorithms with Site-
Fixed/Site-Opened Tolerance  

In previous sections, the algorithm searches for
common substrings in N nucleotide or amino acid
sequences. And the symbols in each site in common
substrings are fixed. However in practical biological
evolution, degeneracy in each site is possible while the
chemical properties remain similar. In the process of
mRNA to protein transcription, three base pairs are
transcribed to 20 proteins through the codon table with
64 combinations. Obviously, site tolerance is important
while searching for common patterns, especially while
searching for meaningful samples such as TATA-box,
CG-box, or TT-box. Thus in this section we introduce
the site tolerance searching system we developed. 

The searching algorithms with tolerant
characteristics are classified into site-fixed and site-
opened tolerance algorithms, respectively. In determined
or randomized approximate searching, named as site-
fixed algorithm, user decides which site position of
pattern are allowed with tolerance in the user interface.
Each site has a corresponding checking box for option
True (default) or False. False setting means that this site
is with tolerance, so the base pair can be represented
with that symbol N. In the second site-opened algorithm,
user-defined parameters are pattern length and number
of tolerance sites. The system will search all

combination of possible mismatch patterns according to
these settings.      

For the first algorithm, site-fixed tolerant pattern
matching algorithm is based on a modification from the
ladder-like interval jumping searching algorithms[6]. To
approach the function, the tolerance sites are encoded as
0 during the encoding phase. Then the ladder-like
interval jumping searching algorithm rules can be
rapidly performed to search common pattern with
specified site tolerance. In the second algorithm, site-
opened tolerance algorithm, users only need to input the
number of tolerance sites and searching pattern length as
parameters. Suppose there are N sequences and the
searching pattern length is m, when the length of longest
sequence in N sequences is Lmax and there are maxP
different substrings with pattern length m, where

1maxmax +−≤ mLP , user-defined parameter k is the
number of tolerance sites in a sample, where k ≤m,
there are k variant tolerance sites in a pattern. Thus each
pattern has kmm

kC −× 4 possible combinations. Users
could also search for all possible common substrings
with 0~k tolerance sites. In this case, the k mismatch

pattern combinations become∑
=
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k

i
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4 . In the worst

case, only after the system has compared with all
combinations of a certain pattern in all other sequences
for all possible combination of this pattern, the system
can verify if a certain combination is the final common
substring. Thus the time complexity becomes
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4 can be viewed as a constant C. If

maxP is replaced by 1max +−mL , and mL >>max , the time
complexity is approximate to )( 2

max
2 LCNO . To search all

common subsequences for all possible tolerance sites
rapidly, we propose such an algorithm which lowers
searching time complexity to ))(( maxmax CNnLO +×× ,
where maxn represents the quantity of values in intervals
containing the most quantity of values after uniform
interval segmentation, )1( maxmax −+≤ mLNn ,the
procedure as shown in Fig. 3. According to Fig. 3, in the
first module users input the data for sequence searching.
In the second module, the system runs the cumulative
VTA, for classifying all the patterns of input sequences
into common subsequences and non-common substrings.
All the common substrings are satisfied for final
solutions, while non-common substrings require further
analysis and comparison. Once non-common substrings
are extracted, they are viewed as input data for further
analysis and voting module, as non-common substrings
module in Fig. 3. There are slight differences between
Fig. 3 and Cumulative Voting Theorem Algorithm in
their purpose, data structure, and algorithm. After site-
opened tolerance voting algorithm, the system outputs
all possible substrings.  
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Figure 3: Site Tolerance Searching Algorithm 

There are two steps required for the Site-Opened
Tolerance Voting Algorithm, and depicted in Fig. 4. The
system produces all possible combinations of substrings
from non-common substring set with tolerance sites
number equal or less than k, given by users. The method
to produce combinations, for example, given pattern
length= 4，k=2, as in Fig. 5, ‘x’ refers to the positions
of tolerance sites, and the positions without ‘x’ refers to
non-tolerance sites positions. Produced tolerance
positions in the first time is marked as ’x1’ ,and ’x2’ in
the second time. Dotted lined ’x2’ means that the
position before the continuous line’x2’ is placed on. The
arrow between ‘x’ and ‘x’ represents the moving
direction of ‘x’. The leftmost column represents the
results of the first round. 

Figure 4: Site-opened Tolerance Voting Algorithm

When all the possible combination is produced, the
third procedure, classification and voting module as
shown in Fig. 4 is applied. The encoded values of all
combinations are placed in intervals and were counted
for votes while placing patterns. Placing methods are list
searching and interpolation algorithms. If the same
combination occurs in one sequence, one vote is added.
To be elected, the pattern must occur in N sequences and
obtain combination pattern with N votes.  

Figure 5: Method to produce combinations

3. Results and Discussions

In the worst case of the original searching
algorithms, each pattern requires comparing once with
patterns from other sequences to ensure it is the final
common subsequence. Suppose maxL represents the
length of the longest sequence among N sequences, with
searching pattern length m, the worst case time
complexity is ))1()1(( 2

max mNmLNO ×−×+−× . If
mL >>max , time complexity can be reduced to

)( 2
max

2 mLNO . If we apply the encoding technique in

this paper to the searching algorithm, time complexity
can be reduced to )( 2

max
2 LNO . As for the voting

algorithm in this section, time complexity for finding
common substrings is ))1(( maxmax nmLNO ×+−× , maxn
represents the number of elements in the interval with
most elements after bitwise segmentation, where

)1( maxmax +−≤ mLNn , while mL >>max ,in the worst case,
time complexity becomes )( 2

max
2 LNO . In practical

application, maxmax NLn << , searching time is reduced
significantly. However in practical example,

maxmax NLn << , as in Fig.6, we apply the proposed
algorithms on RNase, primates and non-primates, yeast
GAL promoter, and yeast MATalpha2 promoter. The
RNase family contains 8 nucleotide sequences, 3000 bps
each, primates and non-primates families contain 8
nucleotide sequences with 500 bps each, yeast GAL
promoter family includes 6 sequences, 350 bps each, and
yeast MATalpha2 promoter family includes 7 sequences,
1300 bps each. We compared the speed of VTA with
other similar traditional searching algorithms: KR(Karp-
Rabin), and TKR(Tuned Karp-Rabin). With the same
hardware environments and pattern length settings, VTA
with interval jumping techniques performs obviously
superior to other algorithms.

Rnase nucleotide family sequences(8,~3000)
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Figure 6(a): Execution time comparison between
VTA,BFA,KR, TKR, with RNase Family nucleotide family

sequences

Yeast Promoter GAL Family nucleotide family sequences(6,~450)
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Figure 6(c): Execution time comparison between
VTA,BFA,KR, TKR, with Yeast Promoter GAL Family

nucleotide family sequences

Primates and Non-primates Family nucleotide family sequences(8,~500)
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Figure 6(b): Execution time comparison between
VTA,BFA,KR, TKR, with primates and non-primates Family
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Yeast Promoter MATalpha2 Family nucleotide family sequences(7,~1300)
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Figure 6(d): Execution time comparison between
VTA,BFA,KR, TKR, with Yeast Promoter MATalpha2 Family

nucleotide family sequences

For the applications of k-mismatch pattern searching,
we utilize the GAL protein family for demonstrating the
effectiveness of the proposed algorithms against other
existing searching tools. The GAL protein family
consists of twelve members, GAL1, GAL2, GAL3,
GAL4, GAL5, GAL6, GAL7, GAL10, GAL11, GAL22,
GAL80 and GAL83. It is one of the most well-studied
systems in budding yeast Saccharomyces cerevisiae.
The GAL genes are strongly regulated at transcription
level via carbon source and some of them were
underlying the genetic relationships [11]. It has been
reported that transcription of gal1, gal2, gal7, gal10 and
gal80 were regulated by a transcription factor GAL4
[12] and the consensus sequence of its binding site was

defined as CGGNNNNNNNNNNNCCG according to
the Promoter Database of Saccharomyces cerevisiae
(http://cgsigma.cshl.org/jian/index.html). In order to
investigate whether the other genes of the GAL family
were also regulated by GAL4, we retrieved the upstream
1,000 nucleotides of the twelve GAL genes and analyzed
these sequences via TRANSPOLER® 1.2 downloaded
from Biobase (http://www.gene-regulation.com) and our
proposed algorithms. The results revealed that among
twelve query sequences, TRANSPOLER® 1.2 could
only identify 6 GAL4 binding sites, one for each of the 6
genes, gal1, gal2, gal3, gal7, gal10 and gal80. Utilizing
our program to search for a sequence motif of 17 bases
containing 3 consensus nucleotides at 5’ and 3’ ends
with 11 degenerate nucleotides in between, we found
that different representation percentages from sequence
family, 100%, 80%, 70%, and 65%, resulting in 0, 7, 24,
60 motifs, respectively (Table1). When tolerance of
65% was used, the specific binding motif for GAL4 was
located in the upstream sequences of each of the 8
genes, gal1, gal2, gal3,gal4, gal6, gal7, gal10 and
gal80. Of which the GAL4 binding sites of gal4 and
gal6 were not predicted by TRANSPOLER® 1.2. Our
results indicated that gal3, gal4, and gal6 were potential
genes co-regulated by GAL4. 

Table 1. The different representation percentages from GAL family, 100%, 80%, 70%, and 65%, resulted in 0, 7,
24, 60 motifs, respectively

k-mismatch motifs found with
100% representation 

k-mismatch motifs found with 80% representation

None TTT***********GTT(17)
TTT***********AAT(17)
TTT***********AAA(17)
GTT***********TTT(17)

TAA***********TTT(17)
AAG***********CTT(17)
GAA***********AAA(17)

k-mismatch motifs found with
70% representation

k-mismatch motifs found with 65% representation

TTT***********GTT(17)
GAA***********AAA(17)
GTT***********TTT(17)
TAA***********TTT(17)
AAG***********CTT(17)
TTT***********AAA(17)
TTT***********AAT(17)
AAT***********ATT(17)
TTA***********TTT(17)
AAA***********CTT(17)
TAA***********ATA(17)
TAA***********AAA(17)
TGT***********TTT(17)
ATT***********CTT(17)
ATA***********ATA(17)
AAA***********AAA(17)
TTT***********CTT(17)
TCA***********AAT(17)
AAA***********TTT(17)
AAA***********AAT(17)
ATG***********TTT(17)
TTT***********TTC(17)
AAG***********AAA(17)

GAA***********AAG(17)
GAA***********AAA(17)
GTT***********TTT(17)
GCA***********TTT(17)
AAG***********AAA(17)
AAG***********CTT(17)
AAA***********GAA(17)
AAA***********AGA(17)
AAA***********AAG(17)
AAA***********AAA(17)
AAA***********AAT(17)
AAA***********AAC(17)
AAA***********ATT(17)
AAA***********TTA(17)
AAA***********TTT(17)
AAA***********CTT(17)
AAT***********AAA(17)
AAT***********AAT(17)
AAT***********ATT(17)
AAT***********TGA(17)
AAT***********TAC(17)
ATG***********ATT(17)
ATG***********TTT(17)

TAG***********TTT(17)
TAA***********AAA(17)
TAA***********ATA(17)
TAA***********TTT(17)
TAT***********GGA(17)
TAT***********TTT(17)
TTG***********TGC(17)
TTA***********TTT(17)
TTT***********GTT(17)
TTT***********AGA(17)
TTT***********AAA(17)
TTT***********AAT(17)
TTT***********ATA(17)
TTT***********ATC(17)
TTT***********ACT(17)
TTT***********TAA(17)
TTT***********TAT(17)
TTT***********TTG(17)
TTT***********TTA(17)
TTT***********TTT(17)
TTT***********TTC(17)
TTT***********CAA(17)
TTT***********CTT(17)
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TTT***********AGA(17) ATA***********ATA(17)
ATA***********TTT(17)
ATT***********AAT(17)
ATT***********CTT(17)
ATC***********CAA(17)
TGA***********AAA(17)
TGT***********TTT(17)

TTC***********AAA(17)
TTC***********TTT(17)
TCA***********AGC(17)
TCA***********AAT(17)
CGG***********CCG(17)
CAA***********TAA(17)
CAA***********TTG(17)

4. Conclusions

A novel algorithm for approximate matching
tolerant segments based on interval jumping
searching algorithm for multiple DNA or amino acid
sequence analysis is designed. To improve
efficiencies and effectiveness in approximate
matching, ladderlike interval jumping searching
algorithms (LIJSA) and voting mechanism are
combined and applied in this system. The k-
mismatch problem of DNA or amino acid sequences
from the giant genomic database is usually time-
consuming, we developd a parametric encoding
methodology to search tolerant substrings so that the
time complexity in the comparison can be reduced.
For the proposed interval jumping and voting
theorem algorithms, the computational complexities
are ))(( 2

max CNNLO +× in the worst case and k-
approximate mismatch in )2))((( 2

max CNNLO +× on
average, where N is the number of sequences, Lmax is
the maximal length of the set of sequences, C is the
total possible k-mismatch combinational number. In
our experiment, with different sequence occurrence
rate and k-mismatch settings, result shows our
system can locate degenerated transcription factors,
binding sites, in multiple sequences, for example,
GAL4 in the promoter regions of gal4 and gal6,
which are neither predicted nor demonstrated to be
regulated by GAL4 previously by other tools.
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