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Abstract

Protein structure provides the opportunity to rec-
ognize homology that is undetectable by sequence
comparison, and it represents a powerful means of
discovering functions, yielding direct insight into
the molecular mechanisms.

Currently, there are several techniques avail-
able in attempting to find the optimal alignment
of shared structural motifs between two proteins.

In this paper, we show the effectiveness of the
proposed refinement methods [11] by a set of ex-
periments, which have improved some previous re-
sults. We propose a better adaptive strategy to
have better parameters, and we can get a better
pairwise alignments of protein structures. We can
apply this strategy to find more accurate and sim-
ilar protein structure pairings.

Keywords: structural proteomics, alignments
and comparisons, refinement, pretest algorithm

1 Introduction

Protein structures play a critical role in vital
biological functions [7]. There are more and more
protein structures determined by the advances
in X-ray crystallography and NMR spectroscopy.
Therefore, more and more people want to analyze
and classify these protein structures in order to
understand their relationships with protein func-
tions [6].

Protein structures determine the protein func-
tion, we are now trying to chase down all possible
relationship about human and all kinds of pro-
teins. According to this reason, the comparisons
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of protein structures come into existence, and
some academics proposed some methods to com-
pare protein structures such as DALI [9],VAST
[15] and CE [21]. All of them can find the simi-
larity score between two or more structures. Their
structural alignments are a form of sequence align-
ment based on comparison of three-dimensional
conformation. But they can only find the struc-
tural alignments with sequencing. Lin publishes
another methods to compare proteins in terms
of three dimensional protein structure alignments
[14]. We can have better score by Lin’s methods if
we use the VAST alignment to be its initial align-
ment [11].

One of the primary goals of structural alignment
programs is to quantitatively measure the level of
structural similarity between all pairs of known
protein structures. This data can provide sev-
eral meaningful insights into the nature of protein
structures and their functional mechanisms. The
three dimensional structure of proteins is highly
conserved during evolution [4]. Protein are con-
structed by one or more polypeptide chains that
fold into complicated 3D structures.

Detection of proteins with a similar fold can
suggest a common ancestor, and often a similar
function [5]. Comparison of 3D structures makes
it possible to establish distant relationships, even
between protein families distinct in terms of se-
quence comparison alone. This is why structural
alignment of proteins increases our understanding
of more distant evolutionary relationships [3, 12].
The link between structural classification and se-
quence families enables us to study functions of
various folds, or whole proteins [14].

In this paper, first we introduce the pro-
cess about why we develop the three parameters
searching programs and what is the tools to com-
pare protein structures in the literatures. Sec-
ondly, we explain about how to develop our meth-
ods and what our methods are. In the third
part, we compare the results between our pro-
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posed methods and the CE methods and then
show the experimental results. In the third, we
use a adaptive strategy to find the initial space
without any suggestion and compare them with
VAST and CE.

2 Previous Work

In this section, we introduce rmsd which is the
standard of measure for structural comparison,
and then according to the rmsd we can find the
key point, rotation matrix, which can rotate the
3D protein coordinates to the better place. Then,
we can be easy to compare the rmsd between the
rotated protein and the other protein. We can
find the other critical analysis by Euler’s rota-
tion theorem [13], and we can use the three an-
gles to stand for the rotation. But our methods
are not the same as Euler’s theorem. We become
deformed the Euler’s theorem and find another
adaptable three angles for our programs. We point
out the two important concepts. One is the rota-
tion matrix, and another is the Minimum Bipar-
tite Matching. Our previous programs integrate
the two important components to compare protein
structures. The algorithm is showed in figure 1.

2.1 Root mean squared deviation

The smallest root mean squared deviation
(rmsd) is a least-squares fitting method for two
sequences of points [10]. The idea is to align atom
vectors of the two given (molecular) structures,
and use the common least averaged squared errors
as a measurement of differences between these two
(paired) sequences. Formally, let P = 〈p1, . . . , pn〉
and Q = 〈q1, . . . , qn〉 be two sequences of points.
We assume that P is translated so that its centroid
( 1

n

∑n
k=1 pk) is at the origin. We also assume that

Q is translated in the same way. For each point
or vector x, let (x)i(i = 1, 2, 3) denote the i-th
(X,Y, Z) coordinate value of x, and ‖x‖ denote
the length of x. Let

rmsd(P, Q, R,a) =

√√√√ 1
n

n∑

k=1

‖Rpk + a− qk‖2,

(1)
where R is a rotation matrix and a is a translation
vector. Then, the rmsd value d(P,Q) between P
and Q is defined by d(P, Q) = minR,a d(P, Q, R,a).
Although complicated as it might appear, the op-
timal rotation matrix and translation vector can
be found simultaneously in O(n) time. Schwartz
[20] showed that d(P, Q, R,a) is minimized when
a = 0 and

R = (AtA)
1
2 A−1, (2)

where the matrix A = (Aij) i, j = 1, 2, 3 is given
by

Aij =
n∑

k=1

(pk)i(qk)j , (3)

where A
1
2 = B means BB = A , and o denotes

the zero vector. Thus, d(P,Q), R and a can be
computed in O(n) time [17].

We adopt Martin’s ProFit package (standing for
protein fitting system) [16] to calculate the rmsd
between C-α atoms of paired protein backbones.
ProFit has many features including flexible spec-
ification of fitting zones and atoms, calculation
of RMS over different zones or atoms, RMS-by-
residue calculation. Fitting was performed using
the McLachlan algorithm [17].

2.2 Euler’s Rotation Theorem

According to Euler’s rotation theorem [13] , any
rotation can about the origin point be described
by using three angles. The rotation is determined
by 3 consecutive rotations with 3 Euler angles
(θ, β′, γ′). The first rotation is done by the angle θ
(= sin−1 α) around the z-axis, the second is done
by the angle β′ (= βπ) around the x-axis, and the
third rotation is done by the angle γ′ around the
z-axis.

As a result, we reduce the problem of finding a
good rotation matrix to the new problem of find-
ing a good 3-parameter. The rotation matrix is
thus characterized by just adjusting the 3 uni-
formly distributed parameters.

2.3 Our Rotation Matrix

our 3-parameter method (α, β, γ) can be sum-
marized as the following:

• Rotation around x-axis:

Given a unit vector p = (x, y, z)T , p is trans-
formed into p′ by a rotation around the x-axis
by angle sin−1 α = θ. That is, let

p′ =




xα

yα

zα


 =




1 0 0
0

√
1− α2 −α

0 α
√

1− α2


·p

Since sin θ = α and thus, cos θ =
√

1− α2.

• Rotation around z-axis:

The vector, p′ = (xα, yα, zα)T , is transformed
into the probe p′′ by a rotation around the z-
axis by angle βπ. That is, let

p′′ =




xβ

yβ

zβ


 =




cos βπ − sin βπ 0
sinβπ cos βπ 0

0 0 1


·p′

then we will get new coordinate of
(xβ , yβ , zβ)T .
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Struc-Align(P,Q, αI , βI , γI ,p)
Input: Two set of 3D coordinates of points P = {p1, p2, . . . , pn} and Q = {q1, q2, . . . , qm} ; n < m.

The αI , βI and γI are real numbers that are between -1 to 1.
B These inputs control the initial position of 3 parameters box and affect the explored area.
B p is the vector (x, y, z)T , explained in section 2.1.

Output: (s, α, β, γ) is a sufficiently low Rmsd s and (α, β, γ).
B (α, β, γ) is the best position of 3 parameters box.

Global : T, t, F, αmax, βmax, γmax.
The threshold T and F are both integer numbers.

B T is total trial number of perturbation.
B t is the count that records the number of perturbation carried out so far.
B F is the maximum number of consecutive failed perturbations for a probe to restart.

αmax, βmax, γmax are real numbers between 0 to 1.
B These inputs control the range of parameters perturbation variances.

1 (α, β, γ) ← (αs, βs, γs) ← (αI , βI , γI).
2 Q′ ← Trans(Q,Rot-m(α, β, γ,p)). B Q′ is a temp array of atoms set of protein.
3 L ← Mbm(P, Q′) ; (R, a) ←Ms-Fit(L,P, Q′) ; s ←Rmsd(P,Q′, R,a).
4 f ← 0. B Initializing the counter.
5 while t ≤ T do
6 (α′, β′, γ′) ←Perturb(α, β, γ).
7 Q′ ← Trans(Q,Rot-m(α′, β′, γ′,p)). B Q′ is a temp array of atoms set of protein.
8 L ← Mbm(P, Q′) ; (R, a) ←Ms-Fit(L,P, Q′) ; s′ ←Rmsd(P, Q′, R, a).
9 if s′ ≤ s then s ← s′;(α, β, γ) ← (αs, βs, γs) ← (α′, β′, γ′) ; f ← 0 ;
10 else f ← f+1.
11 if f ≥ F then return (s, αs, βs, γs).
12 t ← t+1.
13 return (s, αs, βs, γs).

Mbm(P, Q) returns the minimum bipartite matching of two point sets P and Q.

Perturb(α, β, γ).
Input: The α,β and γ are real numbers between -1 to 1.

B These inputs control the present position of 3 parameters box and affect the explore area.
Output: 3 real numbers (α′, β′, γ′).

B These outputs are the new position of 3 parameters box.
1 ∆α ←Rand(−αmax, αmax) ; ∆β ←Rand(−βmax, βmax) ; ∆γ ←Rand(−γmax, γmax).
2 α′ ←Back(α + ∆α) ; β′ ←Round(β + ∆β) ; γ′ ←Round(γ + ∆γ).
3 return (α′, β′, γ′).

Rand(a, b) is a random function returning a real number uniformly distributed between a and b.

Back(α) =




−2− α if α ≤ −1

2− α if α ≥ 1
α otherwise

; Round(θ) =





2 + θ if θ ≤ −1
−2 + θ if θ ≥ 1

θ otherwise

Trans(A,R).
Input: A is an array of 3D points with size n.

R is the rotation matrix.
Output: An array of 3D points,B.
1 for i ← 1 to n do
2 B[i] ← R ·A[i] B B is the array containing the transformed n points.
3 return B.

Figure 1: Aligning two sets of atoms with low rmsd by pairing points according to the minimum bipartite
matching measurement
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Figure 2: Three parameters (α, β, γ), or angles (sin−1 α, βπ, γπ), suffice to determine a rigid 3D rotation
of points about origin.

• Rotation around the probe p′′:

The last rotation matrix, Rγ , do the body ro-
tation around the probe p′′ by angle γπ; see
[8] for related discussions about the transfor-
mation. That is, let

(x, y, z) = (xβ , yβ , zβ)T .
c = cos γπ, s = sin γπ, h = 1− c.

Rγ =




c + x2h xyh− zs xzh + ys
xyh + zs c + y2h yzh− xs
xzh− ys yzh + xs c− z2h




2.4 Minimum Bipartite Matching

There are several proposed algorithms for the
minimum bipartite matching problem; sometimes
it is also referred as the assignment problem. Here
we adopted the Munkres [18, 2, 1, 19] algorithm.
The public available implementation is written
with Perl language. To improve the efficiency
of computation, we implement the Munkres algo-
rithm and write hundreds lines of C Codes, and
and the produced codes are strictly verified by
comparing the results with the public Perl pack-
age.

2.5 Perturb

Note that the methodology of the current sys-
tem is generally a randomized algorithm and a
variable, Perturb algorithm and F . The per-
formance of Perturb algorithm is depended on
various setting of 3-parameter, αmax, βmax, γmax.
The perturb algorithm is displayed in figure 1.

3 The Experiment for Three Pa-
rameters

In order to obtain the suitable 3-parameters, we
select 50 samples of 6,000 samples, and carry fol-
lowing experiments to find out good parameters
of the our programs.

The experiments can help us to analyze how
the 3-parameter, αmax, βmax, γmax, affects the fi-
nal rmsd. The better αmax, βmax, and γmax

are found. We have to assume that T is 50,
and F is 11. The other two parameters of 3-
parameters have to be set to 0.2. For example,
if we want to search a good αmax, we must set
βmax = γmax = 0.2 and so on.

Then, We start to performance the experiment.
First, we test a good αmax among 0.2, 0.4, 0.6, 0.8,
and 1. Secondly, we use uniformly distributed
method to divide the two neighbors of the maxi-
mal result into six number and test the six num-
bers. For example, the maximum result is 0.4,
and its neighbors are 0.2 and 0.6. We have to
test 0.25, 0.3, 0.35, 0.45, 0.5, and 0.55. Thirdly,
in last step we can find another maximal result
from the six value. We use uniformly distributed
method to divide the two neighbors of the max-
imal result into two numbers. For example, if
the maximal result is 0.45, we can get 0.425 and
0.475. Last of all, we test the two value and
choose maximal result for our final parameter. Af-
ter these experiments we find a good 3-parameter,
(αmax, βmax, γmax) = (0.475, 0.2, 0.2), and the re-
sults are shown in Figure 3 and Figure 4.

Furthermore, we have another experiment. We
try to analyze how the variable, F , affects the final
rmsd. We set T = 50, and then we test F between
1
2

√
T and 2

√
T by experience. Now F which we

test is from 3 to 15. Under the good 3-parameters,
(αmax, βmax, γmax) = (0.475, 0.2, 0.2), we find
that the good value of F is 13 and the results
are shown in Figure 4.

4 The Pretest Algorithm

The main idea for the pretest algorithm is to
save the computer times in the finite resource.
We have only finite resource to get the best effect.
Therefore, we develop the Pretest Algorithm. The
main concept of pretest algorithm is to filter the
fitting parameters for our programs. We can use
the algorithm to find a initial alignment from the
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Figure 3: The Experimental improvement ratios under different αmax and βmax, and fix the other pa-
rameters.
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Figure 4: The Experimental improvement ratios under different γmax and F , and fix the other parameters.

Align-TOR-K(P, Q, T, F, αmax, βmax, γmax, TOR,K)
Input: The (P, Q, T, F, αmax, βmax, γmax) parameters are explained in figure 1.

TOR is a real number representing the rmsd threshold for the pretesting phase.
K is a integer that control the maximum number of failed perturbations.

Output: (s, L)
1 s ←∞ ; p ← (0, 1, 0)T .
2 while t ≤ T do
3 α ← Rand(−1, 1) ; β ← Rand(−1, 1) ; γ ← Rand(−1, 1) ; k ← 0.
4 B (α, β, γ) are uniformly distributed random values ranged in (−1, 1).
5 while k ≤ K do
6 (α′, β′, γ′) ←Perturb(α, β, γ).
7 Q′ ← Trans(Q,Rot-m(α′, β′, γ′,p)). B Q′ is a temp array of atoms set of protein.
8 L ← Mbm(P,Q′) ; (R, a) ←Ms-Fit(L,P, Q′) ; s′ ←Rmsd(P, Q′, R, a).
9 if s′ ≤ TOR · s then (s′, α′s, β

′
s, γ

′
s) ←Struc-Align(P,Q, α, β, γ,p) ; k ← K.

10 k ← k + 1 ; t ← t + 1.
11 if s′ ≤ s then s ← s′ ; (αs, βs, γs) ← (α′s, β′s, γ′s).
12 Q′ ← Trans(Q,Rot-m(αs, βs, γs,p)). B Q′ is a temp array of atoms set of protein.
13 L ← Mbm(P, Q′). B L is the matching list of point sets P and Q.
14 return (s, L).

Figure 5: The pretest algorithm can try to filter the fitting parameters for our programs. We can use the
algorithm to find a initial alignment for protein pairings.
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protein pairings, and we use two thresholds, TOR
and K, to filter the possible candidate parame-
ters. TOR is a real number to represent the rmsd
threshold for the pretesting phase. K is a integer
that control the maximum number of failed per-
turbations. We give the program K times to find
a RMSD value which must satisfy the following
condition

s′/s ≤ TOR

, where s is the minimal rmsd which we find in
this time and s’ is the value which we find under
the k times testing. If the s’ is ok, we use this
parameters to run our program and give it more
resource to find a better result. By the way, we can
save a lot of resources to find a good alignment.

5 Experimental Result

In this section, we show the experimental meth-
ods and result between CE methods and our previ-
ous methods. First of all, we illustrate what sam-
ples we use for our experiments, and then we ex-
plain that the samples in VAST are different from
the one in CE. Secondly, we analyze the improve-
ment ratios of our method tested on the given
data. In the third part, we display and analyze
the experimental results about our Pretest algo-
rithms, CE and VAST. Finally, we analyze the
experimental execution time of our programs for
some different conditions.

5.1 Sample Source

In our previous experiment, We choose the PDB
for our experimental sample source, and we ran-
domly pick 200 protein structures in the PDB
database as our experimental subjects by the uni-
form distribution sampling. For each chosen pro-
tein structures We randomly choose 30 structure
alignments listed on the database of VAST as the
tested targets. Totally, there are 6,000 protein
pairings tested by our previous experiment. We
use the term, PA, to stand for one of the 200 ran-
domly picked protein structures, and we use PB
to stand for one of the 30 neighbors of each PA. we
randomly get the three parameters for our meth-
ods to compare with the VAST methods. The
sample distribution is showed in Figure 6. We
illustrate the number of C-α atoms of PA, the
number of protein pairings and the average of im-
proved ratio, at Figure 7. The result which we
improve against the VAST is 9.29%.

We want to use the same samples to test the
CE method. But we find that the alignments
sought out by CE are different from the ones by
VAST. The CE programs always find out its own
alignments, and we can not assign the number of

C-α for our experiments. In this situation, the
VAST and the CE can not be compared for each
other. Therefore, we can only compare the re-
sults between our methods and the CE methods.
We divide the process which we get the new pro-
tein pairings into several parts. First, we use the
6,000 protein pairings from VAST for our origi-
nal samples. We input each pairings into the CE
programs, and the new protein pairings are out-
putted. We use the aligned atoms from PA we
input for our new PA, and the PB is the same as
which we input. We call the new PA, ce-PA. We
use the pairings of ce-PA and PB for our new sam-
ple pairings. The relation between the number of
C-α atoms of ce-PA and the number of protein
pairs are illustrated at Figure 8.

5.2 The Experimental Result With
CE

Now we have 6,000 new protein pairings for our
experiment. We use the better three parameter,
(0.475, 0.2, 0.2), to execute the Struc-align al-
gorithm. We first measures each sample pairings
by calculating its original alignment’s rmsd value.
The measurement is confirmed and double checked
wich the rmsd by the PROFIT package kits [16].

After we finish the 6,000 samples, the results
note that we can improves almost every sampled
CE pairs. By the ascending order on the number
of C-α atoms of ce-PA, we partition the samples
into 40 points, with each point standing for 150
protein pairs. Figure 9 shows the relation between
the number of C-α atoms of PA and the improve-
ment ratios contrast to the given VAST alignment.
The formula of the improvement ratio is defined
by

ρ = (A−B)/A,

where A is the original rmsd value by the CE align-
ment, while B is improved(smaller) rmsd value by
our structure alignment method. The improve-
ment ratios of our samples are mostly distributed
from 8% to 15%. As a total, the average of the
improvement ratios is 11.03%.

The execution time of the experiment for our
method is summarized in Figure 10, which shows
the relation between the number of C-α atoms
of ce-PA and the execution time (CPU processor
time) of our structure alignment system needed for
the samples to run. Note that each drawn point in
Figure 10 represents a group of 150 protein pairs.

The structure alignment system is implemented
and tested under the Linux Red Hat 4.0 system.
Each of the experimental machine is equipped
with Intel(R) Pentium(R) 4 CPU 3.00GHz pro-
cessor and 2GB RAM main memory. The experi-
ment takes approximately 100 hours to finish the
experiment on the total 6,000 protein structure
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Figure 6: The distribution of the 200 randomly picked protein structures in PDB and their 30 neighbor
structures. The total number of protein pairs is 6,000.

The number The number The average The average The standard The standard
of C-α of protein of improved of execution deviation of deviation of

atoms of PA pairings ratio (%) time (Sec) improved ratio (%) execution time (Sec)

50< 1541 7.61 0.57 11.99 1.27
50-100 1586 7.17 5.98 11.98 5.54
100-150 1030 8.42 15.16 12.48 14.83
150-200 674 14.71 41.73 15.61 41.49
200-250 469 11.30 161.01 14.74 160.92
250-300 404 9.57 401.65 15.07 401.90
300-350 186 17.57 873.34 18.21 875.59
350-400 40 12.66 1592.63 25.30 1612.83
400> 70 15.67 10315.05 21.41 10389.45
Total 6000 9.29 206.68 13.22 206.26

Figure 7: The result is to execute the previous algorithm with random parameters and compare with the
VAST. The distribution of our experimental data containing the number of C-α atoms of PA, the number
of protein pairings, the average of improved ratio, the average of execution time,the standard deviation
of improved ratio and the standard deviation of execution time.
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Figure 8: The distribution of the new sample pairings. The total number of protein pairs is 6,000.
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Figure 10: The execution time of our structure align-
ment system with better parameters needed for the
samples to run. Each point stands for 150 sample
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pairings. The Figure 11 is the result which we
compare against the CE, and the average of im-
proved ratio is 11.03%.

5.3 The Experimental Result With
CE for Pretest Algorithm

We execute the pretest algorithm for our exper-
iment.First, we have to set the other parameters.
The parameters for us to execute this experiment
is T = 330, F = 8, α = 0.35, β = 0.1, γ = 0.18. We
give the TOR for 1.23 and the K for 1 to run the
6,000 data. We also use the same ce-PA to run the
program. Our program can find a alignment. We
compared the value of RMSD between our align-
ment and the CE alignment. In this comparison,
our program is 6.93% more than the CE. The exe-
cution time for the program is shoed in Figure 14.
We have finished the 4,445 protein pairings, but
the time we have to spend on the other 1,555 is
for a long time. To date, we continue to run them.

The distribution for the improvement ratio is
showed in Figure 13. When the number of atom
for ce-PA is less than 100, we almost find a better
alignment than the CE. But the result is not good
if the ce-PA is more than 100. This experiment
can indicate that we can find a better value about
TOR and K to have better alignment. The im-
provement ratios opposite to the rmsd of the CE
alignment. The improvement ratios are mostly
greater than 0. The average is 6.93%. The execu-
tion time for the program is shoed in Figure 14.
The experimental result is showed in Figure 12.

6 Conclusion and Future Work

Bioinformatics has become an essential tool not
only to basic research but also to serious research

in biotechnology and biomedical sciences. Cur-
rently, the field is under enormous expansion and
witnessed by the dramatic increase in the number
of related bioinformatic literatures.

In this paper, we use the algorithms which we
proposed previous to improve the rmsd value be-
tween protein structure pairings by finding better
alignment list. We use a set of experiments to
test the parameters. We apply the tested param-
eters to run the experiment results. Our method
with better parameters can improves the align-
ment computed by the CE package and the aver-
age of improvement ratios is 11.03%. Therefore,
the system demonstrates that the method with
3D Euclidean distance, minimum bipartite match-
ing and perturbed parametric searching scheme
indeed improves existed known system like the
VAST and the CE. It is interesting to know what
is the best parameter for our method. We can use
another better one to find them.

We use the pretest algorithm to test the protein
pairings without initial alignment. We can find
the better alignments than the CE. We can have
another better method to find the initial align-
ment for the global alignments. The average which
our result can have is 6.93% more than the result
of CE. Our methods need the better parameters
to have the better results. We can continue to
test them. Besides, we can use our program to
classify the protein and fine the similarity about
all proteins.

Furthermore, since the structure compari-
son problem, like many scientific computa-
tion/simulation problem, is very time-consuming
under cases of large structures and large num-
ber of paired structures, it is desirable to imple-
ment the system under massive parallel machines
cluster, e.g., the grid-environment, to increase the
throughput of the system.
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The number The number The average The average The standard The standard
of C-α of protein of improved of execution deviation of deviation of

atoms of PA pairings ratio (%) time (Sec) improved ratio (%) execution time (Sec)

50< 682 12.23 0.10 10.41 0.09
50-100 2208 14.18 1.01 9.61 0.68
100-150 1150 9.50 5.50 7.13 2.98
150-200 768 8.55 20.79 7.22 9.51
200-250 489 8.16 50.19 6.77 13.99
250-300 450 7.62 96.73 7.31 39.29
300-350 160 7.40 220.59 7.74 61.52
350-400 31 4.55 349.58 4.46 54.06
400> 62 5.02 2772.87 3.58 1602.22
Total 6000 11.03 51.79 8.93 325.64

Figure 11: The result is to execute the previous algorithm with tested parameters and compare with the
CE. The distribution of our experimental data containing the number of C-α atoms of ce-PA, the number
of protein pairings, the average of improved ratio, the average of execution time,the standard deviation
of improved ratio and the standard deviation of execution time.

The number The number The average The average The standard The standard
of C-α of protein of improved of execution deviation of deviation of

atoms of PA pairings ratio (%) time (Sec) improved ratio (%) execution time (Sec)

20< 57 6.29 0.37 19.4 0.95
20-40 360 12.57 1.12 18.6 0.62
40-60 828 16.48 5.59 16.9 2.98
60-80 899 14.56 15.04 18.08 20.08
80-100 697 5.35 37.06 23.52 32.61
100-120 548 -0.15 69.52 32.39 35.25
120-140 430 -3.72 141.87 36.76 119.08
140-160 282 -1.93 370.67 19.61 232.55
160-180 306 -8.31 600.71 31.09 306.28
180-200 31 5.14 1669.88 19.72 477.24
200> 7 9.05 2625.85 6.88 980.68
total 4445 6.93 112.93 25.72 261.52

Figure 12: The result is to execute the pretest algorithm and compare with the CE. The distribution of
our experimental data containing the number of C-α atoms of ce-PA, the number of protein pairings, the
average of improved ratio, the average of execution time,the standard deviation of improved ratio and
the standard deviation of execution time.
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Figure 13: Our pretest algorithm opposite to the
rmsd of the CE alignment. The improvement ratios
are mostly greater than 0. The average is 6.93%.
Each point stands for 150 sample pairings.
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Figure 14: The execution time of our pretest algo-
rithm and structure alignment system needed for the
samples to run. Each point stands for 150 sample
pairings.

There is an important direction of research
about the topic of protein structure alignment.
The problem of local structure alignment is to find
the functional (or active) part of a given query
protein; these active parts imply a substructure
similarity between two proteins. The problem of
identification of the similar substructure of a pro-
tein pair will indeed be a challenge.
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