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Abstract 
 

In most of current computer games, computer-
controlled opponents are often guided by a limited set 
of fixed strategies. The behavioral repetition of 
computer-controlled opponents reduces the human 
player’s enjoyment. Furthermore, the predefined 
fixed difficulty levels of a game are not satisfied by 
most human players. Human players prefer 
challenging games which keep level with them. 
Hence, in this study we proposed a fuzzy approach to 
adapting the opponents’ tactics to behavior of the 
player such that the player’s win/loss rate is kept at a 
desired rate. The value of the desired rate can be 
preset by the player according to the player’s 
preference for challenge. Our experiments are 
conducted on a predator/prey game. The 
experimental results demonstrate that adaptation 
efficiency and robustness of the proposed method is 
sufficient for the game played by human players. 

Keywords: adaptive game, artificial intelligence, 
fuzzy logic, predator/prey game 
 

1. Introduction 
 
Traditionally, game developers invest most 

resources in creating realistic graphics and sound 
effects. However, in recent years game developers 
have paid more resources in developing challenging 
games. Game artificial intelligence (AI) is the key to 
providing challenging gameplay experiences for most 
games [5]. Game AI refers to techniques needed in 
computer games to produce the illusion of 
intelligence in the behavior of computer-controlled 
opponents. Some AI techniques have been adopted in 
game AI [10]. Although the use of these techniques 
produces an improvement in game AI, it is currently 
still unsatisfactory. One reason is that computer-
controlled opponents are often guided by a limited set 
of fixed strategies. Human players can thus predict 
behaviors of computer-controlled opponents after 
playing a game several times, and then feel the game 
boring [7]. Some game developers lend variety to 
behaviors of computer-controlled opponents through 
writing lots of elaborate scripts. Nevertheless, the 
process of script writing may be tedious and error-
prone. 

To solve the aforementioned problem, researches 

about adaptive game AI [1, 3-4, 9, 11-15] have been 
proposed. Adaptive game AI is game AI with the 
capabilities of self-correction and creativity [13]. It is 
traditional game AI incorporated with machine 
learning techniques. Learning can be applied before 
or after a game’s release. Learning is called offline if 
it is applied before a game’s release (or in the period 
of game development), whereas it is called online if 
applied after a game’s release (or during gameplay). 
Spronck et al. [12] proposed a neuro-evolutionary 
technique to train offline a computer-controlled 
opponent of a shooting game by playing with a 
scripted opponent. Ponsen et al. [9] used an 
evolutionary algorithm to offline generate tactics for 
a real-time strategy game. Houlette [4] proposed 
player modeling to change opponents’ tactics 
according to the player’s profile which is a record of 
the player’s behavior during gameplay. Demasi and 
Cruz [3] proposed coevolutionary approaches to 
online evolving computer-controlled opponents’ 
tactics of a simple action game. Yannakakis and 
Hallam [14, 15] applied a neuro-evolutionary 
technique to train opponents offline for a multi-agent 
cooperation game. The trained opponents also evolve 
during gameplay based on the proposed interest-
judging criteria so that the player has a continuous 
interest in the game. Andrade et al. [1] applied 
reinforcement learning to learn tactics of a fighting 
game. If the game is hard for the player, the opponent 
chooses a suboptimal tactic to achieve game balance. 
Spronck et al. [11] proposed dynamic scripting to 
online create scripts for the opponents. A script is 
composed of a set of if-then rules selected from a 
rulebase. Whether a rule is selected for a script 
depends on the weight of the rule. The weight of a 
selected rule is adjusted according to the results of 
battles after each round ends. 

Although the above-mentioned approaches can 
adapt opponents’ tactics to the player, the numbers of 
rounds needed for adaptation sometimes vary greatly 
even when playing against the same fixed-strategy 
opponent [11, 14-15]. Hence in this paper, a new 
fuzzy approach is proposed to adapt the game’s 
tactics to behavior of the player such that “balance” 
between the player and computer-controlled 
opponents can be achieved effectively. In this study, 
we model intuitive and subjective human ideas of 
controlling opponents in a game into fuzzy rules. 
Fuzzy inference is applied during gameplay to guide 
the opponents. After each round of the game, we 
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strengthen or weaken the opponents’ skill according 
to the player’s performance. Skill balance between 
the player and opponents is achieved through rules 
enabling and disabling. 

The rest of the paper is organized as follows. In 
Sec. 2, we present a detailed description of a 
predator/prey game which is used as the test bed of 
our research. In Sec. 3, we describe the proposed 
fuzzy adaptive approach for the predator/prey game. 
The experiments conducted for evaluating the 
performance of the proposed approach are described 
in Sec. 4. Finally in Sec. 5, conclusions are 
summarized. 
 

2. The Dead End World 
 

In this study, we choose a predator/prey game 
called Dead End [15] as our test bed because it is an 
interesting multi-agent game and its graphics is 
simple. Hence, we can place emphasis on 
investigation of game AI but not graphics. Dead End 
is a two-dimensional multi-agent predator/prey game. 
Fig. 1 shows a snapshot of a Dead End game. In the 
game field, the x axis directs from left to right and 
the y axis from top to bottom. The characters at the 
upper place of the game field are Ghosts, and the one 
at the lower is Player. The top of the game field with 
no barrier is assumed as the exit. The dimension of 
the game field is 320 × 480 pixels, and that of Ghosts 
and Player is 20 × 20 pixels. Player is initially at the 
lower place of the game field, while Ghosts are at the 
upper ones. 
 

 
Fig. 1. The snapshot of the Dead End game 

 
Player aims to reach the exit and avoid Ghosts, 

whereas Ghosts aim to defend the exit and to kill 
Player. Player owns health points which denote 
Player’s health. A Ghost attack Player by touching 
Player. Once Player is touched by a Ghost, Player’s 

health points decrease one by one until Player leaves 
the Ghost. Player dies and loses the game if the 
number of health points equals to zero. Additionally, 
if Player cannot reach the exit within a predefined 
period of time, Player loses the game. After Player 
either wins or loses the game, a new round starts. 
Player moves at double the Ghosts’ speed, and thus it 
is impossible for a single Ghost to catch Player. 
Hence, all Ghosts must hunt cooperatively. In this 
research, our goal is to develop an adaptive approach 
to controlling these Ghosts effectively. 

To test the adaptability of computer-controlled 
Ghosts during experiments, we design three types of 
fixed-strategy Player. These fixed strategies are 
somewhat like those which human players may adopt. 
They are described below from simple to complicated. 

(a) Simple-avoidance (SA) Player: An SA Player 
can move in four directions (north, south, east, and 
west). It moves directly toward the closest exit if no 
Ghost is in its visible area (40 pixels around it). 
However, if Ghosts approach it and enter its visible 
area, the Player moves in the direction which is not 
blocked by Ghosts. It behaves similarly to a novice 
human player. 

(b) Advanced-avoidance (AA) Player: The 
strategy of an AA Player is the same as that of an SA 
Player except that an AA Player may move in eight 
directions (plus northeast, northwest, southeast, and 
southwest). Therefore it can reach the exit more 
effectively than an SA Player. 

(c) Cost-based (CB) Player: This strategy is 
obtained by modifying that proposed by Yannakakis 
et al. [15]. Compared with the other two types of 
Player, the CB Player performs a more effective 
ghost-avoiding and exit-achieving strategy. Its 
movement is determined based on the costs of its 
eight possible moving directions. In Fig. 2, the eight 
grid squares of dimension 20 × 20 pixels denote eight 
moving directions of the CB Player, and the 
coordinate of the dot on the perimeter of a grid 
square denotes the coordinate of the grid square. The 
cost of each moving direction is calculated through 
the function C(x, y): 
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where (x, y) denotes the coordinate of a grid square, 
( )yEΔ is the distance from the grid square to the exit, 

and  is the y-axis coordinate of the exit. We 
ignore the distance in x-axis while evaluating 

ey
( )yEΔ  

since the whole top of the game field is assumed as 
the exit. N is the number of Ghosts; is ),ngy,( ,ngx
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the coordinate of the  Ghost’s center. thn ρ  is a 
parameter that indicates the weight of G(x, y) to C(x, 
y). Before starting a movement, CB Player first 
calculates the costs of the eight moving directions, 
and then moves 20 pixels in the direction with the 
minimal cost. 
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Fig. 2. Eight moving directions of CB Player 

 
3. Generation of Adaptive 

Opponents 
 
3.1 The fuzzy rulebase 
 

In this study, intuitive and subjective ideas or 
strategy of controlling Ghosts are beforehand 
modeled into fuzzy rules. These rules with fuzzy 
inference are used to guide Ghosts during gameplay. 
In the following paragraphs, we first describe the 
proposed strategy for Ghosts, and then explain the 
implementation of this strategy in fuzzy logic. 

To catch Player efficiently, Ghosts appear in the 
role of vanguard or fullback. Every time the game 
starts, one of Ghosts at the lowest place plays the 
vanguard and the others the fullbacks. The vanguard 
leads fullbacks to chase Player, and the fullbacks 
follow the vanguard and form a fan-like formation as 
shown in Fig. 1. We design five types of movement 
for the vanguard and fullbacks as summarized in 
Table 1. The type A and type C movements are used 
to chase Player to catch it. The type B movement is 
used to block Player by predicting Player’s moving 
direction while Player tries to bypass Ghosts from the 
flanks. The use of type D and type E movements let 
Ghosts form a fan-like formation to prevent Player 
from approaching the exit. 

To model the five types of movement into fuzzy 
rules, we define five fuzzy and one crisp input 
variables used in the antecedents of fuzzy rules, and 
five fuzzy output variables used in the consequents of 
fuzzy rules. The six input variables provide Ghost 
with information about distances to Player, to the exit, 
to the vanguard, to the closest fullback, and whether 
Player passes ghost, as listed in Table 2. The five 
fuzzy output variables are used to derive Ghost’s 
moving directions, as listed in Table 3. The 

defuzzified output of a fuzzy rule is used as a weight 
of the derived moving direction. For example, the 
defuzzified output of a rule whose consequent is 
chasePlayer is used as a weight of the moving 
direction toward Player. When two or more rules are 
activated at a time, the weights corresponding to the 
same derived moving direction are summed. Then 
Ghost’s moving direction is the derived one with 
highest weight. 
 

Table 1. Five types of Ghosts’ movement 
Role Movement 

A: Chase Player. 
Vanguard B: Block Player by predicting Player’s 

moving direction. 
C: Chase Player. 
D: Approach or part from the vanguard 

to keep an appropriate distance. Fullback 
E: Part from the closest fullback to 

keep an appropriate distance. 
 

Table 2. Input variables 
Variable name Meaning 
distToPlayer The distance from Ghost to Player

distToExitY The y-axis distance from Ghost to 
the exit 

distToPlayerX The x-axis distance from Ghost to 
Player. 

distToVanguard The distance from Ghost to the 
vanguard 

distToFullbackX The x-axis distance from Ghost to 
the closest fullback 

bePassed A Boolean value denoting whether 
Player passes Ghost 

 
Table 3. Output variables 

Variable name Meaning 
chasePlayer Move toward Player 

partFromPlayerY Part from Player in y axis 
approachVanguard Move toward the vanguard 

partFromVanguardY Part from the vanguard in y 
axis 

partFromFullbackX Part from the fullback in x 
axis 

 
The fuzzy sets of each fuzzy input and output 

variable are designed by our experience. As shown in 
Figs. 3 to 12, we define each fuzzy variable with only 
two or one fuzzy set whose membership function is 
of triangle or trapezoid shape. To implement the five 
types of movement for Ghosts, we designed 40 fuzzy 
rules in total, 12 rules for the vanguard and 28 rules 
for the fullbacks. The correlation-minimum inference 
method proposed by Mamdani [6] is applied to fuzzy 
inference and the weighted average method [2] to 
defuzzification. The use of fuzzy rules and fuzzy 
inference results in the robustness of Ghosts’ 
behavior during gameplay. 
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Fig. 3. The membership functions of distToPlayer 
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Fig. 4. The membership function of distToPlayerX 

 

 
Fig. 5. The membership functions of distToExitY 

 

 
Fig. 6. The membership functions of 

distToVanguard 
 

 
Fig. 7. The membership functions of 

distToFullbackX 
 

0.125 0.5 0.625 1.0

1.0
low high

weight

Membership 
degree

 
Fig. 8. The membership functions of chasePlayer 

 

 
Fig. 9. The membership functions of 

partFromPlayerY 
 

 
Fig. 10. The membership functions of 

approachVanguard 
 

 
Fig. 11. The membership functions of 

partFromVanguardY 
 

 
Fig. 12. The membership functions of 

partFromFullbackX 
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3.2 Online rule enabling/disabling 
 

In this study an online rule-selection method is 
used to adapt Ghosts’ tactics to behavior of the 
Player. This method is based on a rule 
enabling/disabling mechanism. As mentioned above, 
Ghosts are controlled by a fuzzy controller with a 
rulebase of 40 fuzzy rules. They behave well when 
all 40 rules are enabled. However, if some rules in 
the rulebase are disabled, Ghosts may behave 
unskillfully and become weaker due to the 
incompleteness of the strategy. Thus, if the game is 
hard for Player, we weaken Ghosts’ skill level by 
disabling rules in the rulebase. In contrast, if the 
game is easy, we increase Ghosts’ level by enabling 
rules which are disabled previously. Through the rule 
enabling/disabling mechanism, Ghosts may keep 
level with Player after a few rounds of adaptation. 
Fig. 13 shows the flowchart of the online rule-
selection method, and each step of the flowchart is 
described in detail in the following. 

 

 
Fig. 13. Flowchart of online rule 

enabling/disabling 
 
Whenever a win/loss occurs during gameplay 

(that is, a round ends), we evaluate whether the 
difficulty level of the game fits for Player according 
to Player’s current win/loss rate. The win/loss rate is 
defined as the ratio of the number of wins to the 
number of losses from the game begins. Player’s and 

Ghosts’ skill levels are said to be balanced if Player’s 
win/loss rate achieves a desired rate. The value of the 
desired rate can be preset by the player according to 
the player’s preference for challenge. If the player 
wants a game with more (or less) challenge, he/she 
can set a desired rate with the value smaller (or larger) 
than 50%. The default value of the desired rate is 
50% if the player does not set its value. The game is 
considered hard for Player if Player loses the game 
and the current win/loss rate is lower than the desired 
rate. On the other hand, if Player wins the game and 
the current win/loss rate is higher than the desired 
rate, we consider the game easy for Player. 

When the game is hard for Player, we disable a 
rule in the rulebase to decrease Ghosts’ skill level. 
Which rule is disabled depends on the contribution of 
the rule. The contribution of a rule is defined as the 
number of times for which the rule is adopted in the 
current round. A rule is said to be adopted if the 
moving direction derived by the rule is selected as 
the Ghost’s moving direction. The least-contribution 
rule (a rule with least contribution but with 
contribution larger than zero) is disabled if the game 
is hard for Player. Zero-contribution rules are not 
considered for disabling since Ghosts’ tactics may 
not be changed if they are disabled or not. The reason 
why we choose the least-contribution rule but not the 
most-contribution one is that Ghosts＇  skill level 
may change dramatically if the most-contribution 
rule is disabled. Since there are five fullbacks but 
only one vanguard in the Ghosts’ team, the 
probability that the rules for fullbacks are adopted is 
five times of that for the vanguard. Therefore the 
contributions of the rules for the fullbacks are 
divided by five when selecting rules for disabling. 

If the game is easy for Player, we enable a rule 
which is disabled previously in the rulebase to 
increase Ghosts’ skill level. The procedure of 
enabling rules is different from that of disabling rules. 
First, we divide all rules in the rulebase into groups 
according to the types of the consequents of rules and 
then calculate the contribution of each group. The 
contribution of a group is the sum of contributions of 
all enabled rules in this group. Second, we calculate 
the sum of input membership degree values for each 
rule disabled previously. Then, the rule with the 
highest sum value is enabled. If there are two or more 
rules with the same sum of input membership degree 
values, the rule whose group has less contribution is 
prioritized. The reason why we prioritize the least-
contribution group but not the most-contribution one 
is that if the game is easy for Player, Ghosts’ current 
strategy might be ineffective, and thus the rules in the 
most-contribution group might also be ineffective. 
 

4. Experimental Results 
 

In the study, we implemented the proposed 
approach in Java language and utilized the NRC 
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FuzzyJ Toolkit [8] (a comprehensive API of fuzzy 
logic) for fuzzy inference. In our experiments, there 
are five Ghosts and one Player in the Dead End game. 
The initial number of Player’s health points is 40, and 
the value of the parameter   of CB Player is 2950. 
The time limit of a round is 20 seconds. That is, if 
Player does not reach the exit after playing the game 
for 20 seconds, Player loses the game and a new 
round starts. During gameplay if all rules are disabled 
or the outputs of all enabled rules are zero, a specific 
rule which guides Ghost directly toward Player is 
enabled. The use of the specific rule prevents Ghosts 
from being at a standstill. 

The experiments were aimed at evaluating 
adaptation efficiency and the flexibility for achieving 
different desired win/loss rates. In the experiments, 
we ran the game with 20 initially enabled rules which 
are obtained by manually selecting core rules from 
the total 40 rules. The experiments were conducted 
by playing against three types of fixed-strategy 
Player, that is, SA, AA, and CB Players. We set three 
desired win/loss rates: 25%, 50%, and 75%. For each 
Player, we ran one hundred rounds and recorded the 
win/loss rates every round. The experimental results 
shown in Figs. 14 to 16 demonstrate that the 
proposed method can adapt Ghosts’ tactics for each 
type of Players and achieves the desired win/loss 
rates after fifty or even less of rounds. These figures 
also show the robustness of our method because the 
win/loss rates are kept well. 
 

5. Conclusions 
 

In this study we proposed a fuzzy approach to 
adapting opponent’s tactics to the player based on a 
rule enabling/disabling mechanism, and the player’s 
win/loss rate can be kept at a desired rate by our 
method. This approach was tested on a multi-agent 
predator/prey game called Dead End. The 
experimental results show that the proposed method 
can efficiently adapt opponents’ tactics to different 
types of fixed-strategy player and achieve the desired 
win/loss rates in fifty or even less of rounds. Thus 
adaptation efficiency of this method is well sufficient 
for the games played with human players. 
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Fig. 14.  The variation of win/loss rates (desired 

rate = 25%) 
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Fig. 15.  The variation of win/loss rates (desired 

rate = 50%) 
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Fig. 16.  The variation of win/loss rates (desired 

rate = 75%) 
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