
An Adaptive Predator/Prey Game

 Hao-Min Hsieh Ling-Ling Wang
Dept. of Information and Design Dept. of Information Communication

 Asia University Asia University
 louis.tech@m2k.com.tw ling@asia.edu.tw

Abstract

In most of current computer games, computer-
controlled opponents are often guided by a limited set
of fixed strategies. The behavioral repetition of
computer-controlled opponents reduces the human
player’s enjoyment. Furthermore, the predefined
fixed difficulty levels of a game are not satisfied by
most human players. Human players prefer
challenging games which keep level with them.
Hence, in this study we proposed a fuzzy approach to
adapting the opponents’ tactics to behavior of the
player such that the player’s win/loss rate is kept at a
desired rate. The value of the desired rate can be
preset by the player according to the player’s
preference for challenge. Our experiments are
conducted on a predator/prey game. The
experimental results demonstrate that adaptation
efficiency and robustness of the proposed method is
sufficient for the game played by human players.

Keywords: adaptive game, artificial intelligence,
fuzzy logic, predator/prey game

1. Introduction

Traditionally, game developers invest most

resources in creating realistic graphics and sound
effects. However, in recent years game developers
have paid more resources in developing challenging
games. Game artificial intelligence (AI) is the key to
providing challenging gameplay experiences for most
games [5]. Game AI refers to techniques needed in
computer games to produce the illusion of
intelligence in the behavior of computer-controlled
opponents. Some AI techniques have been adopted in
game AI [10]. Although the use of these techniques
produces an improvement in game AI, it is currently
still unsatisfactory. One reason is that computer-
controlled opponents are often guided by a limited set
of fixed strategies. Human players can thus predict
behaviors of computer-controlled opponents after
playing a game several times, and then feel the game
boring [7]. Some game developers lend variety to
behaviors of computer-controlled opponents through
writing lots of elaborate scripts. Nevertheless, the
process of script writing may be tedious and error-
prone.

To solve the aforementioned problem, researches

about adaptive game AI [1, 3-4, 9, 11-15] have been
proposed. Adaptive game AI is game AI with the
capabilities of self-correction and creativity [13]. It is
traditional game AI incorporated with machine
learning techniques. Learning can be applied before
or after a game’s release. Learning is called offline if
it is applied before a game’s release (or in the period
of game development), whereas it is called online if
applied after a game’s release (or during gameplay).
Spronck et al. [12] proposed a neuro-evolutionary
technique to train offline a computer-controlled
opponent of a shooting game by playing with a
scripted opponent. Ponsen et al. [9] used an
evolutionary algorithm to offline generate tactics for
a real-time strategy game. Houlette [4] proposed
player modeling to change opponents’ tactics
according to the player’s profile which is a record of
the player’s behavior during gameplay. Demasi and
Cruz [3] proposed coevolutionary approaches to
online evolving computer-controlled opponents’
tactics of a simple action game. Yannakakis and
Hallam [14, 15] applied a neuro-evolutionary
technique to train opponents offline for a multi-agent
cooperation game. The trained opponents also evolve
during gameplay based on the proposed interest-
judging criteria so that the player has a continuous
interest in the game. Andrade et al. [1] applied
reinforcement learning to learn tactics of a fighting
game. If the game is hard for the player, the opponent
chooses a suboptimal tactic to achieve game balance.
Spronck et al. [11] proposed dynamic scripting to
online create scripts for the opponents. A script is
composed of a set of if-then rules selected from a
rulebase. Whether a rule is selected for a script
depends on the weight of the rule. The weight of a
selected rule is adjusted according to the results of
battles after each round ends.

Although the above-mentioned approaches can
adapt opponents’ tactics to the player, the numbers of
rounds needed for adaptation sometimes vary greatly
even when playing against the same fixed-strategy
opponent [11, 14-15]. Hence in this paper, a new
fuzzy approach is proposed to adapt the game’s
tactics to behavior of the player such that “balance”
between the player and computer-controlled
opponents can be achieved effectively. In this study,
we model intuitive and subjective human ideas of
controlling opponents in a game into fuzzy rules.
Fuzzy inference is applied during gameplay to guide
the opponents. After each round of the game, we

 1

strengthen or weaken the opponents’ skill according
to the player’s performance. Skill balance between
the player and opponents is achieved through rules
enabling and disabling.

The rest of the paper is organized as follows. In
Sec. 2, we present a detailed description of a
predator/prey game which is used as the test bed of
our research. In Sec. 3, we describe the proposed
fuzzy adaptive approach for the predator/prey game.
The experiments conducted for evaluating the
performance of the proposed approach are described
in Sec. 4. Finally in Sec. 5, conclusions are
summarized.

2. The Dead End World

In this study, we choose a predator/prey game
called Dead End [15] as our test bed because it is an
interesting multi-agent game and its graphics is
simple. Hence, we can place emphasis on
investigation of game AI but not graphics. Dead End
is a two-dimensional multi-agent predator/prey game.
Fig. 1 shows a snapshot of a Dead End game. In the
game field, the x axis directs from left to right and
the y axis from top to bottom. The characters at the
upper place of the game field are Ghosts, and the one
at the lower is Player. The top of the game field with
no barrier is assumed as the exit. The dimension of
the game field is 320 × 480 pixels, and that of Ghosts
and Player is 20 × 20 pixels. Player is initially at the
lower place of the game field, while Ghosts are at the
upper ones.

Fig. 1. The snapshot of the Dead End game

Player aims to reach the exit and avoid Ghosts,

whereas Ghosts aim to defend the exit and to kill
Player. Player owns health points which denote
Player’s health. A Ghost attack Player by touching
Player. Once Player is touched by a Ghost, Player’s

health points decrease one by one until Player leaves
the Ghost. Player dies and loses the game if the
number of health points equals to zero. Additionally,
if Player cannot reach the exit within a predefined
period of time, Player loses the game. After Player
either wins or loses the game, a new round starts.
Player moves at double the Ghosts’ speed, and thus it
is impossible for a single Ghost to catch Player.
Hence, all Ghosts must hunt cooperatively. In this
research, our goal is to develop an adaptive approach
to controlling these Ghosts effectively.

To test the adaptability of computer-controlled
Ghosts during experiments, we design three types of
fixed-strategy Player. These fixed strategies are
somewhat like those which human players may adopt.
They are described below from simple to complicated.

(a) Simple-avoidance (SA) Player: An SA Player
can move in four directions (north, south, east, and
west). It moves directly toward the closest exit if no
Ghost is in its visible area (40 pixels around it).
However, if Ghosts approach it and enter its visible
area, the Player moves in the direction which is not
blocked by Ghosts. It behaves similarly to a novice
human player.

(b) Advanced-avoidance (AA) Player: The
strategy of an AA Player is the same as that of an SA
Player except that an AA Player may move in eight
directions (plus northeast, northwest, southeast, and
southwest). Therefore it can reach the exit more
effectively than an SA Player.

(c) Cost-based (CB) Player: This strategy is
obtained by modifying that proposed by Yannakakis
et al. [15]. Compared with the other two types of
Player, the CB Player performs a more effective
ghost-avoiding and exit-achieving strategy. Its
movement is determined based on the costs of its
eight possible moving directions. In Fig. 2, the eight
grid squares of dimension 20 × 20 pixels denote eight
moving directions of the CB Player, and the
coordinate of the dot on the perimeter of a grid
square denotes the coordinate of the grid square. The
cost of each moving direction is calculated through
the function C(x, y):

),()(),(yxGyEyxC +Δ= (1)

eyyyE −=Δ)((2)

∑
= −+−

=
N

n ngng yyxx
yxG

1 ,,

),(ρ

 (3)

where (x, y) denotes the coordinate of a grid square,
()yEΔ is the distance from the grid square to the exit,

and is the y-axis coordinate of the exit. We
ignore the distance in x-axis while evaluating

ey
()yEΔ

since the whole top of the game field is assumed as
the exit. N is the number of Ghosts; is),ngy,(,ngx

 2

the coordinate of the Ghost’s center. thn ρ is a
parameter that indicates the weight of G(x, y) to C(x,
y). Before starting a movement, CB Player first
calculates the costs of the eight moving directions,
and then moves 20 pixels in the direction with the
minimal cost.

Player

N

E

NENW

W

SW S SE

Fig. 2. Eight moving directions of CB Player

3. Generation of Adaptive

Opponents

3.1 The fuzzy rulebase

In this study, intuitive and subjective ideas or
strategy of controlling Ghosts are beforehand
modeled into fuzzy rules. These rules with fuzzy
inference are used to guide Ghosts during gameplay.
In the following paragraphs, we first describe the
proposed strategy for Ghosts, and then explain the
implementation of this strategy in fuzzy logic.

To catch Player efficiently, Ghosts appear in the
role of vanguard or fullback. Every time the game
starts, one of Ghosts at the lowest place plays the
vanguard and the others the fullbacks. The vanguard
leads fullbacks to chase Player, and the fullbacks
follow the vanguard and form a fan-like formation as
shown in Fig. 1. We design five types of movement
for the vanguard and fullbacks as summarized in
Table 1. The type A and type C movements are used
to chase Player to catch it. The type B movement is
used to block Player by predicting Player’s moving
direction while Player tries to bypass Ghosts from the
flanks. The use of type D and type E movements let
Ghosts form a fan-like formation to prevent Player
from approaching the exit.

To model the five types of movement into fuzzy
rules, we define five fuzzy and one crisp input
variables used in the antecedents of fuzzy rules, and
five fuzzy output variables used in the consequents of
fuzzy rules. The six input variables provide Ghost
with information about distances to Player, to the exit,
to the vanguard, to the closest fullback, and whether
Player passes ghost, as listed in Table 2. The five
fuzzy output variables are used to derive Ghost’s
moving directions, as listed in Table 3. The

defuzzified output of a fuzzy rule is used as a weight
of the derived moving direction. For example, the
defuzzified output of a rule whose consequent is
chasePlayer is used as a weight of the moving
direction toward Player. When two or more rules are
activated at a time, the weights corresponding to the
same derived moving direction are summed. Then
Ghost’s moving direction is the derived one with
highest weight.

Table 1. Five types of Ghosts’ movement
Role Movement

A: Chase Player.
Vanguard B: Block Player by predicting Player’s

moving direction.
C: Chase Player.
D: Approach or part from the vanguard

to keep an appropriate distance. Fullback
E: Part from the closest fullback to

keep an appropriate distance.

Table 2. Input variables
Variable name Meaning
distToPlayer The distance from Ghost to Player

distToExitY The y-axis distance from Ghost to
the exit

distToPlayerX The x-axis distance from Ghost to
Player.

distToVanguard The distance from Ghost to the
vanguard

distToFullbackX The x-axis distance from Ghost to
the closest fullback

bePassed A Boolean value denoting whether
Player passes Ghost

Table 3. Output variables

Variable name Meaning
chasePlayer Move toward Player

partFromPlayerY Part from Player in y axis
approachVanguard Move toward the vanguard

partFromVanguardY Part from the vanguard in y
axis

partFromFullbackX Part from the fullback in x
axis

The fuzzy sets of each fuzzy input and output

variable are designed by our experience. As shown in
Figs. 3 to 12, we define each fuzzy variable with only
two or one fuzzy set whose membership function is
of triangle or trapezoid shape. To implement the five
types of movement for Ghosts, we designed 40 fuzzy
rules in total, 12 rules for the vanguard and 28 rules
for the fullbacks. The correlation-minimum inference
method proposed by Mamdani [6] is applied to fuzzy
inference and the weighted average method [2] to
defuzzification. The use of fuzzy rules and fuzzy
inference results in the robustness of Ghosts’
behavior during gameplay.

 3

Fig. 3. The membership functions of distToPlayer

-320 -10 0 10 320

1.0
far

pixels

Membership
degree

Fig. 4. The membership function of distToPlayerX

Fig. 5. The membership functions of distToExitY

Fig. 6. The membership functions of

distToVanguard

Fig. 7. The membership functions of

distToFullbackX

0.125 0.5 0.625 1.0

1.0
low high

weight

Membership
degree

Fig. 8. The membership functions of chasePlayer

Fig. 9. The membership functions of

partFromPlayerY

Fig. 10. The membership functions of

approachVanguard

Fig. 11. The membership functions of

partFromVanguardY

Fig. 12. The membership functions of

partFromFullbackX

 4

3.2 Online rule enabling/disabling

In this study an online rule-selection method is
used to adapt Ghosts’ tactics to behavior of the
Player. This method is based on a rule
enabling/disabling mechanism. As mentioned above,
Ghosts are controlled by a fuzzy controller with a
rulebase of 40 fuzzy rules. They behave well when
all 40 rules are enabled. However, if some rules in
the rulebase are disabled, Ghosts may behave
unskillfully and become weaker due to the
incompleteness of the strategy. Thus, if the game is
hard for Player, we weaken Ghosts’ skill level by
disabling rules in the rulebase. In contrast, if the
game is easy, we increase Ghosts’ level by enabling
rules which are disabled previously. Through the rule
enabling/disabling mechanism, Ghosts may keep
level with Player after a few rounds of adaptation.
Fig. 13 shows the flowchart of the online rule-
selection method, and each step of the flowchart is
described in detail in the following.

Fig. 13. Flowchart of online rule

enabling/disabling

Whenever a win/loss occurs during gameplay

(that is, a round ends), we evaluate whether the
difficulty level of the game fits for Player according
to Player’s current win/loss rate. The win/loss rate is
defined as the ratio of the number of wins to the
number of losses from the game begins. Player’s and

Ghosts’ skill levels are said to be balanced if Player’s
win/loss rate achieves a desired rate. The value of the
desired rate can be preset by the player according to
the player’s preference for challenge. If the player
wants a game with more (or less) challenge, he/she
can set a desired rate with the value smaller (or larger)
than 50%. The default value of the desired rate is
50% if the player does not set its value. The game is
considered hard for Player if Player loses the game
and the current win/loss rate is lower than the desired
rate. On the other hand, if Player wins the game and
the current win/loss rate is higher than the desired
rate, we consider the game easy for Player.

When the game is hard for Player, we disable a
rule in the rulebase to decrease Ghosts’ skill level.
Which rule is disabled depends on the contribution of
the rule. The contribution of a rule is defined as the
number of times for which the rule is adopted in the
current round. A rule is said to be adopted if the
moving direction derived by the rule is selected as
the Ghost’s moving direction. The least-contribution
rule (a rule with least contribution but with
contribution larger than zero) is disabled if the game
is hard for Player. Zero-contribution rules are not
considered for disabling since Ghosts’ tactics may
not be changed if they are disabled or not. The reason
why we choose the least-contribution rule but not the
most-contribution one is that Ghosts＇ skill level
may change dramatically if the most-contribution
rule is disabled. Since there are five fullbacks but
only one vanguard in the Ghosts’ team, the
probability that the rules for fullbacks are adopted is
five times of that for the vanguard. Therefore the
contributions of the rules for the fullbacks are
divided by five when selecting rules for disabling.

If the game is easy for Player, we enable a rule
which is disabled previously in the rulebase to
increase Ghosts’ skill level. The procedure of
enabling rules is different from that of disabling rules.
First, we divide all rules in the rulebase into groups
according to the types of the consequents of rules and
then calculate the contribution of each group. The
contribution of a group is the sum of contributions of
all enabled rules in this group. Second, we calculate
the sum of input membership degree values for each
rule disabled previously. Then, the rule with the
highest sum value is enabled. If there are two or more
rules with the same sum of input membership degree
values, the rule whose group has less contribution is
prioritized. The reason why we prioritize the least-
contribution group but not the most-contribution one
is that if the game is easy for Player, Ghosts’ current
strategy might be ineffective, and thus the rules in the
most-contribution group might also be ineffective.

4. Experimental Results

In the study, we implemented the proposed
approach in Java language and utilized the NRC

 5

FuzzyJ Toolkit [8] (a comprehensive API of fuzzy
logic) for fuzzy inference. In our experiments, there
are five Ghosts and one Player in the Dead End game.
The initial number of Player’s health points is 40, and
the value of the parameter of CB Player is 2950.
The time limit of a round is 20 seconds. That is, if
Player does not reach the exit after playing the game
for 20 seconds, Player loses the game and a new
round starts. During gameplay if all rules are disabled
or the outputs of all enabled rules are zero, a specific
rule which guides Ghost directly toward Player is
enabled. The use of the specific rule prevents Ghosts
from being at a standstill.

The experiments were aimed at evaluating
adaptation efficiency and the flexibility for achieving
different desired win/loss rates. In the experiments,
we ran the game with 20 initially enabled rules which
are obtained by manually selecting core rules from
the total 40 rules. The experiments were conducted
by playing against three types of fixed-strategy
Player, that is, SA, AA, and CB Players. We set three
desired win/loss rates: 25%, 50%, and 75%. For each
Player, we ran one hundred rounds and recorded the
win/loss rates every round. The experimental results
shown in Figs. 14 to 16 demonstrate that the
proposed method can adapt Ghosts’ tactics for each
type of Players and achieves the desired win/loss
rates after fifty or even less of rounds. These figures
also show the robustness of our method because the
win/loss rates are kept well.

5. Conclusions

In this study we proposed a fuzzy approach to
adapting opponent’s tactics to the player based on a
rule enabling/disabling mechanism, and the player’s
win/loss rate can be kept at a desired rate by our
method. This approach was tested on a multi-agent
predator/prey game called Dead End. The
experimental results show that the proposed method
can efficiently adapt opponents’ tactics to different
types of fixed-strategy player and achieve the desired
win/loss rates in fifty or even less of rounds. Thus
adaptation efficiency of this method is well sufficient
for the games played with human players.

0

25

50

75

100

1 11 21 31 41 51 61 71 81 91

Rounds

W
in

ni
ng

 r
at

e
(%

)

SA

AA

CB

Fig. 14. The variation of win/loss rates (desired

rate = 25%)

0

25

50

75

100

1 11 21 31 41 51 61 71 81 91

Rounds

W
in

ni
ng

 r
at

e
(%

)

SA

AA

CB

Fig. 15. The variation of win/loss rates (desired

rate = 50%)

0

25

50

75

100

1 11 21 31 41 51 61 71 81 91

Rounds

W
in

ni
ng

 r
at

e
(%

)

SA

AA

CB

10 20 30 40 50 60 70 80 90 100

25

50

75

100

0

Fig. 16. The variation of win/loss rates (desired

rate = 75%)

Acknowledgements

This work was supported by the National Science
Council of Taiwan under the grant NSC 96-2221-E-
468-010-MY2.

References

[1] G. Andrade, G. Ramalho, H. Santana, V.

Corruble, “Challenge-sensitive action selection:
an application to game balancing,” Proc. of
IEEE/WIC/ACM International Conference on
Intelligent Agent Technology, 2005, pp. 194-
200.

[2] R. Babuska, Fuzzy Modeling for Control,
Kluwer Academic Publishers, Boston, 1998.

[3] P. Demasi and A.J. de O. Cruz, “Online
coevolution for action games,” International
Journal of Intelligent Games and Simulation,
Vol. 2, No. 2, 2003, pp. 80-88.

[4] R. Houlette, “Player modeling for adaptive
games,” in AI Game Programming Wisdom 2,
S. Rabin Ed. Charles River Media, Hingham,
MA, 2004, pp. 557-566.

[5] J.E. Laird and M. van Lent, “Human-level AI’s
killer application: computer game AI,” Proc. of
AAAI 2000 Fall Symposium on Simulating
Human Agents, 2000, pp. 80-87.

[6] E.H. Mamdani, “Application of fuzzy logic to
approximate reasoning using linguistic
synthesis,” IEEE Transactions on Computers,
Vol. 26, No. 12, 1977, pp. 1182-1191.

[7] J. Manslow, “Learning and Adaptation,” in AI
Game Programming Wisdom, S. Rabin Ed.
Charles River Media, Hingham, MA, 2002, pp.
557-566.

[8] NRC FuzzyJ Toolkit,

 6

 7

http://www.iit.nrc.ca/IR_public/fuzzy/fuzzyJTo
olkit2.html

[9] M. Ponsen, H. Muñoz-Avila, P. Spronck, and
D.W. Aha, “Automatically generating game
tactics with evolutionary learning,” AI
Magazine, Vol. 27, No. 3, 2006, pp.75-84.

[10] S. Rabin, “Common game AI techniques,” in
AI Game Programming Wisdom 2, S. Rabin Ed.
Charles River Media, Hingham, MA, 2004, pp.
3-14.

[11] P. Spronck, M. Ponsen, I. Sprinkhuizen-Kuyper,
and E. Postma, “Adaptive game AI with
dynamic scripting,” Machine Learning, Vol. 63,
No. 3, 2006, pp. 217-248.

[12] P. Spronck, I. Sprinkhuizen-Kuyper, and E.
Postma, “Improving opponent intelligence
through offline evolutionary learning,”
International Journal of Intelligent Games and
Simulation, Vol. 2, No. 1, February 2003, pp.
20-27.

[13] P.H.M. Spronck, “Adaptive game AI,” Ph.D.
dissertation, Maastricht University, Maastricht,
The Netherlands, 2005.

[14] G.N. Yannakakis, and J. Hallam, “A generic
approach for generating interesting interactive
Pac-Man opponents,” Proc. of the IEEE
Symposium on Computational Intelligence and
Games, Essex University, UK, April 2005, pp.
94-101.

[15] G.N. Yannakakis, J. Levine, and J. Hallam, “An
evolutionary approach for interactive computer
games,” Proc. of the 2004 Congress on
Evolutionary Computation, Portland, Oregon,
USA, June 2004, pp. 986-993.

