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Abstract 
Named Entity Recognition (NER) is one of essential tasks for knowledge acquisition from scientific literature. 

In this paper, a full automatic named entities recognition from biomedical literature is presented by using Hidden 
Markov Model in which a rich set of features are concerned and back-off strategy is employed to overcome data 
sparseness problem. Experiments with GENIA corpora of different versions showed that the presented approach 
achieved promising results of 76% and 62% F-score for singular-type and multiple-type entities recognition 
respectively.  

 
1. Introduction 

 
With the rapid growth of biomedical research, huge amounts of biomedical resources are available. For 

example, the amount of biomedical citations available by PubMed increases 68.95% in recent ten years. Hence 
efficient named entity recognition (NER) becomes indispensable task for knowledge acquisition from research 
literature. Unlike the extraction in general domains in which efficient NER approaches may yield 94% and 97% 
F-scores in MUC-7 and MUC-6 respectively, the best result for multi-classes biomedical entities extraction in 
GENIA 3.0 (an annotated corpus in biomedical domain) is 66.5% F-score [7]. This is because the issues such as 
open vocabulary, synonyms, boundaries, semantic crossover become more complicated in biomedical domains. 
For example, the number of entries in SwissProt, a protein knowledge base, increases 277.36% in recent ten years 
[1]. Each protein entity contains 2.54 synonyms in average, and each synonym contains 2.74 tokens in average.  

There are three NER methods, namely rule-based, statistical and hybrid methods, proposed in recent 
literature. Generally, rule-based approaches employ terms and rules (e.g. heuristic rules and decision tree rules) to 
produce candidates which then are verified by using lexical analysis. KeX [3] and Yapex [9] are two famous 
rule-based systems useful for protein entities extraction. Yet rule-based methods are essentially lack of portability 
and scalability. 

Unlike rule-based approaches which demand more domain knowledge in rules construction, statistical 
approaches have been presented for their easy portability and scalability. Different statistical models have been 
applied to biomedical entities extraction, such as Hidden Markov Model (HMM), Support Vector Model (SVM), 
Maximum Entropy (ME), and Naïve Bayes. The recognition accuracy achieved by these models generally depends 
on a well-tagged training corpus and well set of input features [2,5,6,12,13,14,16]. Well-known training corpus like 
GENIA 3.01 [20] has been widely used for training models [5,6,7,11,14,16]. Different sets of features have 
different contribution in different phases of NER tasks [7].  

On the other hand hybrid approaches were proposed by using coded rules, statistical model and outer 
resources like dictionaries. For example, Proux et al. [10] built a system to detect gene symbols and names in 
biological texts. The backbone of the system is a tagger for tokenization, lexical lookup, and disambiguation. To 
deal with unknown words, it used lexical rules to obtain candidates and used a HMM-based disambiguator for 
further verification. Similar approach can be found in [14,15] which extracted chemical names from biomedical 
texts by a rule-based segmentation and a Bayesian classification. 

In this paper, the NER task was conducted purposely for biomedical entities. It is also an essential work at 
constructing the automation of biomedical interaction knowledge base. On the other hand the concise HMM-based 
extractor together with a back-off strategy was implemented. Experimental results on GENIA corpus showed that 
the presented approach could achieve promising results in terms of 76% and 62% F-score for singular-type and 
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multiple-type entities recognition respectively.  
The organization of this paper is as follows. Section 2 describes text preprocessing. Section 3 describes 

internal, external and global features. Section 4 presents the proposed extractors and corresponding experimental 
results. Section 5 gives the conclusion and future works. 

 
2. Text Preprocessing 
 

Two available processors Sentence Splitter [18] and Penn Treebank Tokenizer [19] were adopted for sentence 
segmentation and tokenization respectively. The POS tagging process was based on a traditional HMM which 
forward induction was applied. The goal of HMM is to optimize the probability of a POS sequence in which there 
are 35 kinds of POS tags. In order to train a better model to tag the articles other than GENIA 3.02p, we used the 
whole corpus as training set and it turned out that the presented POS tagger could achieve 94.84% accuracy. 
 
3. Features Extraction 
 

Extraction of those features useful for entity extraction was done on the basis of feature occurrences. In this 
paper rich set of features were concerned, including internal, external and global features. Internal features indicate 
those surface clues in tokens (e.g. initial character is upper case). There are 17 internal features, partly adopted 
from the set in [3,6]. For example, features INIT_UPPER, SUFFIX_NUM, LETTER_DIGITAL, and 
CONTAIN_HYPHEN will be assigned to ‘BK-2’. Besides we consider features not only current token but also 
preceding token in HMM. We also consider the prefix and suffix string, because they benefit the performance in 
our studies. We take the most frequent 1,000 three-character prefixes and suffixes strings. 

External feature indicate the external information associated with tokens. In this paper we treated POS tag as 
our external feature set. This is because tokens of protein entities are normally tagged as nouns. Global features are 
the features extracted from whole training corpus by using statistical method such as Chi-square. The essence of 
the test is to compare the observed frequencies with the expected frequencies for independence. In this paper the 
global features are those significant nouns selected by chi-square test. Furthermore a complete-link clustering 
algorithm was applied to reduce the dimensions of features. The window size set to be three sentences long, we got 
142 clusters in GENIA corpus 3.02p. 

Table 1: Internal, external and global features. 
Features Set Features Example

INIT_UPPER
INIT_LOWER
INIT_NUM
INIT_SYMBOL
SUFFIX_NUM
CONTAIN_GREEK
LETTER_DIGITAL
TWO_CAPS
ALL_UPPER
ALL_LOWER
NUM
OTHER_SINGLE_SYMBOL
CONTAIN_HYPHEN
SINGLE_UPPER
CONTAIN_SLASH

BK-2
c-551
5-HT1B
-p1
MDBP-2-H1
3beta-hydroxysteroid
A43
RasHua
ALP
bombesin
35 kDa protein
'
5-HT1B
A protein
C/EBP

Prefix
Suffix

acetyl-CoA
carboxylase

External POS Tags NNS

Global Global Nouns receptor

Internal

 
4. HMM-based Extraction 

 
Given a token sequence , the goal is to find an optimal state sequence  that 

maximizes , the logarithm probability of state sequence  corresponding to the given token 

sequence . 

tttT n
n ...211 = sssS n

n ...211 =
( TSPr nn

11 |log ) T n
1

S n
1

 
Traditional HMM 

By applying Bayes’s rule to : 
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Mutual Information HMM 
The mutual information HMM (MI-HMM for short) was presented in [17] and produced high F-scores in 

MUC-6 and MUC-7. Different from traditional HMM, MI-HMM is aimed to maximize the equation: 
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In order to simplify the computation, the mutual information independence is assumed to be: 
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Applying it to equation (6), we have: 
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Concise HMM 
The presented concise HMM is based on the idea of maximizing the fundamental . In the 

equation (9),  and  are found to carry less meaning because the weak probabilities of 

states and state transitions are merely 3-by-3 and 3-by-1 matrices respectively. Thus, concise HMM can be 
simplified as equation (10): 

( TSPr nn
11 |log

( )SPr n
1log ( )∑

=

n

i
isPr

1
log

( ) (∑=
=

n

i

n
i

s

nn

S
TsPrTSPr

1
111 |logmaxarg|logmaxarg            (10) 

The concise HMM does not take its state transition into account, therefore we put previous state in the model 
to ensure correct state induction. Because the presented HMM approach concerned many features mentioned above, 
it is possible to train a high-accuracy probability model. However, it is not enough to cover all data, so the data 
sparseness problem arises. To overcome this problem, we used a back-off model and it aims at the token sequence 

 in  or in T n
1 ( TSPr nn

11 | ( )TsPr n
i 1|  where T  represents not only a token sequence but also the sequence’s 

internal, external and global features. We then defined two back-off levels as follows:  

n
1

(A) First level is based on different combinations of tokens and their features, and  will be assigned in the 
descending order: 

T n
1

1.  >< −− ftts 0011 ,,,
2.  >< − fts 001 ,,
3.  >< −− fts 011 ,,
4.  >< − fs 01,
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Where ‘ ’ represents the feature set including internal, external and global features. ‘ ’ is a token, ‘ ’ 
expresses a HMM state, and ‘

f i ti si

i’ is the ith one relative to current token. 
(B) Second level is based on different combinations of features, and ‘ ’ in first level is assigned in the 

descending order: 
f i

1.  >< fff G
i

E
i

I
i ,,

2.  >< ff E
i

I
i ,

3.  >< f I
i

Where ,  and  represent internal, external and global features respectively.  f I
i f E

i f G
i

 
4.1. Method Comparisons 

 
In this paper, we presented two named entities recognition. One is singular-type entities recognition aimed to 

recognize protein entities, and the other is multiple-type entities recognition aimed to tag named entities with one 
of the four major concepts: Protein, DNA/RNA, Source, and Other. Table 2 is the mapping between the concepts 
we addressed and the ones in GENIA corpus 3.02p. Table 3 is the basic statistics in GENIA 3.02p. 

 
Table 2: The target named entities in terms of GENIA ontology. 

Class Semantic 

Protein amino acid, protein, protein molecule, protein family or group, protein domain or region, 
protein structure, protein complex, protein N/A, peptide, amino acid monomer 

DNA/RNA DNA molecule, DNA family or group, DNA domain or region, DNA substructure, DNA 
N/A, RNA molecule, RNA family or group, RNA domain or region, RNA substructure, 
RNA N/A, polynucleotide, nuclotide 

Source multi cell, mono cell, virus, body part, tissue, cell type, cell line, other artificial source 
Other organic, lipid, carbohydrate, other organic compound, inorganic, atom 

 
Table 3: The basic statistics in GENIA corpus 3.02p. 

Count Average

Abstract 1,999

Sentence 18,572 9.29(s/a)

Token 490,469
245.36(t/a)

26.41(t/s)

Protein Entitiy 32,525
11.05(pn/a)

1.14(pn/s)

Entity Token 58,220 1.79(tok/pn)  
 
Method comparisons for the three HMM-based models were made on GENIA corpus for singular-type 

entities recognition in the same environment settings. We used the same back-off model for concise and mutual 
information HMM, but not for traditional HMM. Table 4 shows that concise HMM yielded the best result for 
singular-type entities recognition. Traditional HMM obtains good high precision, but low recall. This reason is that 
we chose a severe probability model to get the best F-score. It is also noticed that the performance of MI-HMM 
turned out to be the worst at the comparison. This is because the back-off model was used to optimize concise 
HMM. On the other hand, the impact of features was verified and the results as listed in Table 5 show that every 
feature turned out to be positive effect ( f E > f I > f G) for concise HMM.  

However, the presented multiple-type recognizer turned out to yield 62.25% F-score in classification phase 
(67.07% F-score in identification phase) less than 13% for singular-type entities recognition. This is because there 
might be some entities whose semantic tags are decided by their last words. For instance, “hematopoietic gene” is 
tagged to be “DNA/RNA” while “hematopoietic gene cell” as “cells” and “hematopoietic cell specific molecules” 
as “protein”.  

Moreover, biomedical named entity is often generated on the behavior of its source, which induces the 
problem of crossover between classes. For example “human NF-kappa B” should be chunked together as: “<cons 
sem="G#protein_molecule">human <cons sem="G#protein_molecule">NF-kappa B</cons></cons>”. But we 
chunk it as “<NE cl=Source>human</NE> <NE cl=Protein>NF-kappa B</NE>”. Even though such tagging result 
was acceptable, we still treated it as wrong answer. 
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Table 4: HMM-based models for singular-type recognizer. 
HMM tp + fn tp + fp tp Recall Precision F-Score Feature #

Concise 3,451 3,285 2,553 73.98% 77.72% 75.80% 19

MI 3,451 3,415 2,305 66.79% 67.50% 67.14% 19

Tradit ional 3,451 2,863 2,263 65.58% 79.04% 71.68% 18  
 

Table 5: The effects of features in concise HMM. 
Features tp + fn tp + fp tp Recall Precision F-Score Diff.

All 3451 3285 2553 73.98% 77.72% 75.80%

All - f G 3451 3267 2534 73.43% 77.56% 75.44% -0.36%

All - f E 3451 3176 2442 70.76% 76.89% 73.70% -2.10%

All - f I 3451 3213 2467 71.49% 76.78% 74.04% -1.76%

Features tp + fn tp + fp tp Recall Precision F-Score Diff.

All 8163 8175 5085 62.29% 62.20% 62.25%

All - f G
8163 8205 5080 62.23% 61.91% 62.07% -0.18%

All - f E
8163 8181 4990 61.13% 60.99% 61.06% -1.19%

All - f I
8163 8152 5001 61.26% 61.35% 61.31% -0.94%

Pr
ot

ei
n 

En
tit

ie
s

B
io

m
ed

ic
al

 E
nt

iti
es

 
The method comparisons were also made with other statistical models on different corpora. First comparison 

was made for singular-type entities recognition with the systems developed by Lee et al. [7] and Shen et al. [11] 
(for 22 and 23 classes NERs) respectively on GENIA version at least 3.0 (GENIA version 3.02p was based on 
version 3.0 but errors were fixed). Shen’s HMM-based NER used semantic features including head noun and 
special verb. Moreover, abbreviation recognition and cascaded phenomena were conducted to recognize 
biomedical entities. Second comparison was made for multiple-type entities recognition on GENIA version 1.1 
(671 abstracts). From tables 6 and 7 it is noticed that the presented concise model is very competitive. 

Table 6: Comparisons with other systems in GENIA version 3.x.  
System Method GENIA Ver. Singular-type F-score Multiple-type F-score Class #

(Lee, 2003) SVM 3.0p 69.20% 66.50% 22

(Shen, 2003) HMM 3.0 70.81% 66.10% 23

KeX Rule-based 3.02p 40.29% 1

Yapex Rule-based 3.03p 47.48% 1

Ours HMM 3.02p 75.80% 62.25% 4  
  

Table 7: Comparisons with other systems in GENIA version 1.1. 
System Method Singular-type F-score Multiple-type F-score Class #

(Kazama, 2002) SVM 56.50% 54.40% 6

(Kazama, 2001) ME 54.80% 53.20% 6

KeX Rule-based 40.55% 1

Yapex Rule-based 48.26% 1

Ours HMM 60.82% 59.82% 4  
 
 

5. Conclusions  
 
In this paper a prototype system for biomedical entities extraction was presented. The kernel part of the 

presented extractor was built on a concise HMM-based model which was justified to outperform other 
HMM-based models by yielding 76% and 62% F-score for singular-type and multiple-type entities recognition 
respectively. The comparisons to other statistical models also show that the proposed model is competitive. 
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