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Abstract. In reality, sequential patterns may exist in multiple sequence databases. In this paper, we explore a 

novel sequential pattern mining problem: mining multi-domain sequential patterns across multiple domain 

sequence databases. We propose two algorithms, IndividualMine and PropagatedMine, for efficiently mining 

multi-domain sequential patterns. In algorithm IndividualMine, sequential patterns in each domain should 

first be discovered and then by iteratively combining sequential patterns among domain sequence databases, 

multi-domain sequential patterns are generated. Algorithm PropagatedMine performs sequential pattern min-

ing only in one domain sequence database and propagates sequential patterns mined to other domain to gen-

erate corresponding sequential patterns so as to reduce the cost of mining. A comprehensive performance 

study is conducted and experimental results show the scalability and the efficiency of our proposed algo-

rithms. 

Keywords:      

1 Introduction 

Sequential pattern mining has attracted a significant amount of research efforts recently. The problem of sequen-

tial pattern mining is discovering frequent sequences with their occurrence counts being larger than or equal to 

the user-specified number, min_support, among a set of sequences [1]. Sequential pattern mining can be applied 

on business and marketing analysis, web page browsing behavior, symptomatic pattern of a disease, DNA se-

quence, hacker invasion detecting and to name a few. Due to the importance of sequential pattern mining, many 

efficient sequential pattern mining algorithms have been proposed recently [1][2][3][4][5]. However, existing 

sequential pattern mining algorithms only discover sequential behavior (e.g., buying behavior) in one domain, 

which are not sufficient for behavior analysis. One would like to discover sequential patterns across multiple 

domains. Such a sequential pattern across multiple domain sequence databases is referred to a multi-domain 

sequential pattern in this paper. A multidomain sequential pattern consists of sequences across multiple domains 

and for each item of a sequence, the corresponding items having the same order in different domain sequences 

occur in the same time slot. Note that a multi-domain sequential pattern captures cross relationship among mul-

tiple domains which in turn provides more significant knowledge. Applications of multi-domain sequential pat-

terns include but are not limited to the following two. 

 

� User behavior analysis in a mobile computing environment. Consider a mobile computing environment in 

Fig. 1, where mobile users can access three services (i.e., location tracking service, data searching service, 

and credit payment service) via mobile devices and each service is referred to one domain in this paper. 

Given a log of movements of a user from the location tracking service, one would mine user moving pat-

terns referred to those areas in which the user frequently travels. As such, in Fig. 1, for each domain, se-

quential patterns in each domain are discovered by existing algorithms [1][2][6]. Note that in order to reflect 

behavior of a user in such environment, one would like to find more complex sequential patterns across 

multiple domains. An example of a multi-domain sequential pattern is shown in Fig. 1, where a user stays at 

area {A}, searches data items {1, 2}, and buys goods {α, β}; then moves to area {B, C}, searches data {3, 4, 

5}, and buys goods {γ}; and finally moves to area {D}, searches data {6, 7}, and buys goods {θ, δ}. Such a 

sequential pattern consists of sequences across multiple domains and provides more information to analyze 

user behaviors. For example, the user is motivated by the scene at location A and then buys goods {α, β} af-

ter surfing some web pages of {1, 2}. 

                                                 
* Correspondence author 
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Fig. 1. An example of multi-domain sequential patterns in mobile computing environments. 

 
� Behavior or event analysis in a sensor network. Imagine that a large amount of sensors are deployed in a 

smart home for behavior analysis. Sensors with different sensing capabilities (i.e., water, motion and vibra-

tion) are viewed as different domains. As such, mining a multidomain sequential patterns could be used to 

analyze behaviors of users. For example, to recognize one user behavior (i.e., cleaning behavior), one could 

mine multi-domain sequential patterns, which comprise of sequential patterns in water, motion and vibration 

domains, from those data logs generated by sensors with various sensing capabilities. 

 
Though many sequential pattern mining algorithms are able to efficiently mine patterns in one domain, these 

algorithms cannot directly be applied in mining multi-domain sequential patterns. Existing sequential pattern 

mining algorithms suffer from poor performance when being applied in mining multi-domain sequential patterns 

across multiple domain sequence databases. Specifically, one could apply a sequential pattern mining algorithm 

in each individual domain and composite multi-domain sequential patterns by examining whether each element 

of sequential patterns occurs in the same time slot or not. For example, in Fig. 1, mining moving patterns, search 

patterns, and payment patterns in the corresponding sequence databases. Then, for each pattern mined in these 

three domains, we examine whether each element of these patterns occurs in the same time slot or not. However, 

the above method unavoidably leads to the poor performance in terms of efficiency and scalability. Note that 

mining all sequential patterns in each domain may not be necessary in forming multi-domain sequential patterns 

due to that the occurrence time slots of sequential patterns are not always the same. In addition, the ex-

tra-overhead is needed to integrate these sequential patterns across multiple domains into multi-domain sequen-

tial patterns. 

In order to efficiently mine multi-domain sequential patterns, we propose algorithms IndividualMine and 

PropagatedMine. Specifically, algorithm IndividualMine consists of two phases: the mining phase and the 

checking phase. Specifically, in the mining phase, one could utilize one of existing sequential pattern mining 

algorithms to mine sequential patterns and derive the corresponding time instance set of each sequential pattern 

in each domain. In the checking phase, for each sequential pattern mined, we will enumerate all possible combi-

nations to generate candidate multi-domain sequential patterns and then determine the support value of each 

candidate multi-domain sequential pattern. Note that mining sequential patterns in each domain is costly. Thus, 

algorithm PropagatedMine is proposed by only performing one sequential pattern mining in one domain se-

quence database. Then, those sequential patterns mined are organized as a lattice-like structure. Through the 

lattice-like structure, algorithm PropagatedMine is able to propagate time instance sets to other domain sequence 

databases and generate the corresponding sequential patterns. Our performance study shows that algorithm 

PropagatedMine outperforms algorithm IndividualMine. By propagating, algorithm PropagatedMine is able to 
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significantly reduce the execution time when it comes to mine multi-domain sequential patterns. Furthermore, 

through lattice-like structures in each domain sequence database, algorithm PropagatedMine is able to effec-

tively mine sequential patterns across multiple sequence databases. 

A significant amount of research efforts has been elaborated upon issues of mining sequential patterns 

[7][8]9][10][11][12]. We mentioned in passing that the authors in [1] formulated the problem of sequential pat-

tern mining and proposed mining algorithms based on Apriori algorithm. By exploring a breadth first search and 

button-up algorithm, the authors in [13] developed algorithm GSP [13] for mining sequential patterns, whereas 

the authors in [14] devised algorithm SPADE, which is a depth first search and button-up algorithm with ID-list. 

The authors in [6][15] exploited the concept of projection in algorithms PrefixSpan and FreeSpan to reduce the 

volume of data for sequential pattern mining. To prevent the candidate generation, the authors in DISC-all [16] 

used a novel sequence comparison strategy. In addition, the authors in [4] developed several algorithms to mine 

multi-dimensional sequential patterns in which sequential patterns with some category attributes are discovered. 

To the best of our knowledge, prior works do not fully explore the mining capability for multi-domain sequential 

patterns, let alone proposing efficient algorithms tomine such sequential patterns. These features distinguish this 

paper from others. The contributions of this paper are twofold: (1) exploiting a novel and useful sequential pat-

terns (i.e., multi-domain sequential patterns), and (2) devising algorithm PropagatedMine to efficiently mine 

multi-domain sequential patterns. 

The remaining of the paper is organized as follows. In Section 2, some preliminaries are presented. Algo-

rithms for mining multi-domain sequential patterns are developed in Section 3. Performance studies are con-

ducted in Section 4. This paper concludes with Section 5. 

2 Preliminary 

In this section, we first describe some notations to facilitate the presentation of this paper. Then, the problem of 

mining sequential patterns across multiple domain sequence databases is defined. 

Assume that each domain has its own set of items and a sequence in domain i  is represented as 

>=< iliii XXXs ,...,, 21 , where ijX  is an itemset in the j th position of sequence is . Note that the length 

of time slots is depended on the log data collected. Therefore, a multi-domain sequence across k  domain se-

quence databases is represented as 
T

ksssM ],...,,[ 21= . A multi-domain sequence across k  domains is 

further denoted as



















kbkk

b

b

XXX

XXX

XXX

L

MMMM

L

L

21

22221

11211

, where each row ],...,,[ 21 ibii XXX  is a sequence in domain 

i  and each column T

ajjj XXX ],...,,[ 21  for j  = 1, 2, ..., b , is a vector of itemsets occurring in time slot 

j . Similar to the works in [1][6], the number of items in a sequence is called the length of the sequence. Since a 

multi-domain sequence consists of multiple sequences from various domains, we have the following definition 

for the length of a multi-domain sequence across k  domains. 

 

Definition 1: Length and Number of Elements: Let 
T

ksssM ],...,,[ 21=  be a multi-domain sequence 

across k  domains (abbreviated as k -domain sequence). The length of M , denoted as |M |, is formulated as 

max ( )ksss ,...,, 21 , meaning that the length of the longest sequence is viewed as the length of this 

multi-domain sequence. Furthermore, the number of elements of a multi-domain sequence, expressed by ( )Me , 

is the number of itemsets appearing in each sequence of the multi-domain sequence. 

For example, assume that 







=

)3,2,1()2()1(

)(),()( bcba
M . It can be verified that the length of M  is |M | = 

max =|))3,2,1)(2)(1(||,))(,)(((| bcba max 5)5,4( = , and the number of element is 3 (i.e., ( )Me = 3). 
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Table 1. An example of a multi-domain sequence database. 

ID Time instance sequences Multi-domain sequences 

1S  >< ))()()(( 4321 TTTT  








)5,4()6()3,2()2,1(

)(),,(),()( edcbcba
 

2S  >< ))()(( 875 TTT  








)8()4,2()3,1(

),(),(),( eccbba
 

3S  >< ))()(( 131210 TTT  








)10,9()5()6,1(

),()(),( jghea
 

4S  >< ))()()(( 24232221 TTTT  








)6,5,4()3,2()7()5,2,1(

),(),()(),,( fecbdfba
 

 

 

Definition 2: Containing Relation: Let



















=

abaa

b

b

XXX

XXX

XXX

M

L

MMMM

L

L

21

22221

11211

and 



















=

′

′

′

baaa

b

b

YYY

YYY

YYY

N

L

MMMM

L

L

21

22221

11211

 

be two multi-domain sequences and ( )Me ≤ ( )Ne .M  is contained byN , denoted as NM ⊆ , if and only if 

there exists an integer list blll b
′≤<<<≤ K211 , such that iljij YX ⊆ , where ai ,...,2,1=  and 

bj ,...,2,1= . 

Consider twomulti-domain sequences 







=

)6()2(

),()( cba
M  and 








=

)5,4()6()3,2()2,1(

)(),,(),()( edcbcba
N . 

It can be seen that N containsM since there exists an integer list 1 < 3, such that )()( aa ⊆ , )2,1()2( ⊆ , 

),,(),( dcbcb ⊆ , and )6()6( ⊆ . 

Based on the above descriptions of multi-domain sequences, a multi-domain sequence database is a set of 

multi-domain sequences. Consider an example of a multi-domain sequence database in Table 1, where there are 

four multi-domain sequences across two domains. Note that each multidomain sequence will have its own time 

instance sequence, an ordered list of time slots recording the occurrence time of the corresponding itemsets. For 

example, itemset 








)2,1(

)(a
in multi-domain sequence 1S occurs at time slot 1T . 

Given a multi-domain sequence databaseMDB and a multi-domain sequenceM , the support value of the 

multi-domain sequenceM is the number of multi-domain sequences inMDB containingM . 

Hence, we have MDBNNMSupport ∈= |{|)( and |}NM ⊆ . Furthermore, we could extract the 

time-related information when counting the support of a multi-domain sequence (e.g.,M ). Therefore, we have 

the following definition: 

 

Definition 3: Time Instance Set: The time instance set of M is defined as <= {)(MTIS time instance se-

quences of sequence >N : the corresponding ordered integer list of sequence MDBNN ∈>| and |}NM ⊆ . 

In addition, the size of time instance set of M is denoted as MDBNNMTIS ∈= |{||)(| and |}NM ⊆ . 

Clearly, the value of |)(| MTIS is equal to Support(M). 

For example, assume that 







=

)2(

)(b
M is a multi-domain sequence. The support of M in multi-domain se-

quence database MDB shown in Table 1 is 3 since three multi-domain sequences (i.e., ,, 21 SS and 4S ) in MDB 

contain M. Also, we could have TIS(M) = {< ( 1T )( 2T )( 3T )( 4T ) : 2 >, < ( 5T )( 7T )( 8T ) : 2 >, < 

( 21T )( 22T )( 23T ) ( 24T ) : 1 >, < ( 21T )( 22T )( 23T )( 24T ) : 3 >}and 3|},,{||)(| 421 == SSSMTIS . 
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Table 2. An example of multiple domain sequence databases 

Domain database 1D  

Id Time instance sequences Sequences 

1s  >< ))()()(( 4321 TTTT  >< ))(,,)(,)(( edcbcba  

2s  >< ))()(( 875 TTT  >< ),)(,)(,( eccbba  

3s  >< ))()(( 131210 TTT  >< ),)()(,( jghea  

4s  >< ))()()(( 24232221 TTTT  >< ),)(,)()(,,( fecbdfba  

 

Domain database 2D  

Id Time instance sequences Sequences 

1l  >< ))()()(( 24232221 TTTT  >< )6,5,4)(3,2)(7)(5,2,1(  

2l  >< ))()(( 131210 TTT  >< )10,9)(5)(6,1(  

3l  >< ))()(( 875 TTT  >< )8)(4,2)(3,1(  

4l  >< ))()()(( 4321 TTTT  >< )5,4)(6)(3,2)(2,1(  

 

 

Given a minimum support threshold δ, a multi-domain sequence databaseMDB , and a multi-domain se-
quence M , M is a frequent multi-domain sequence inMDB , if and only if δ≥)(MSupport . For exam-

ple, given a multi-domain sequence databaseMDB depicted in Table 1, and the minimum support δ = 3, the 

multi-domain sequential patterns are 








)1(

)(a
, 









)2(

)(b
, 









)3(

)(b
, 









)2(

)(c
, 









)2(

),( cb
, 









)2()1(

)()( ba
, 









)2()1(

)()( ca
, 

and 








)2()1(

),()( cba
. 

 
Problem of mining multi-domain sequential patterns: To facilitate the presentation of multi-domain sequen-

tial patterns, Table 1 is used to illustrate an example of a multi-domain sequence data-base and then we should 

determine multi-domain sequential patterns from a multi-domain sequence database given. In reality, however, 

each domain has its own sequence database in which each sequence is generated by sorting the occurrence time 

instances. Consider Table 1 as an example, where a multi-domain sequence database is shown in Table 2. To 

derive a multi-domain sequence database, one should join these sequences by time instances as joining keys. 

Since performing join operations across multiple sequence databases is costly, deriving a multi-domain sequence 

database is hard to achieve. As such, the problem of mining multi-domain sequential patterns is that give a set of 

sequence databases across multiple domains, we should mine multi-domain sequential patterns. 

3 Multi-domain Sequential Pattern Mining 

In this section, we develop two algorithms to mine sequential patterns across multiple domain sequence data-

bases. Specifically, in Section 3.1, algorithm IndividualMine is devised. Then, by propagating, algorithm Propa-

gatedMine is developed to efficiently mine sequential patterns across other sequence databases. 

3.1  Algorithm IndividualMine 

Algorithm IndividualMine consists of two phases: the mining phase and the checking phase. Specifically, in the 

mining phase, one could utilize one of existing sequential pattern mining algorithms to mine sequential patterns 

and derive the corresponding time instance set of each sequential pattern in each domain. In the checking phase, 

for each sequential pattern in each domain, we will enumerate all possible combinations to generate candidate 

multi-domain sequential patterns and then determine support values for each candidate multi-domain sequential 

pattern. If a candidate multi-domain sequential pattern has its support value larger than or equal to the threshold 

value defined (i.e., minimum support), this candidate multi-domain sequential pattern will become a 

multi-domain sequential pattern. The overview of algorithm IndividualMine is shown in Fig. 2. 
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Fig. 2. Overview of algorithm IndividualMine. 

As described before, in the mining phase of algorithm IndividualMine, existing sequential pattern mining al-

gorithms are performed in each domain sequence database. By combining sequential patterns mined from do-

main sequence databases, we could generate candidate multi-domain sequential patterns. Then, in the checking 

phase, we will iteratively determine whether sequential patterns mined from domain sequence databases are able 

to be formed candidate multi-domain sequential patterns or not. Through counting the support values of these 

candidate multi-domain sequential patterns, one could derive multi-domain sequential patterns if their support 

values are larger than minimum support. Explicitly, assume that we have a multi-domain sequence database as 

},...,{ 21 kDDD  and iSP  denotes the set of multi-domain sequential patterns across i domain sequence 

databases (i.e., },...,{ 21 iDDD ). In the beginning, we will obtain sequential patterns in a starting domain (i.e., 

domain 1D ). Those sequential patterns in the starting domain are viewed as multi-domain sequential patterns 

across domain 1D (referred to as 1SP ). Then, for each patterns in 1SP , we will generate candidate multi-domain 

sequential patterns across two domains (i.e., 1D  and 2D ) by combining sequential patterns mined in domain 

sequence database 2D . For example, we could have 








q

p
, where 1SPp∈ , q is a sequential pattern of 2D and 

both patterns have the same number of elements(i.e., )()( qepe = ). After generating candidate multi-domain 

sequential patterns across two sequence databases, support values of these multi-domain sequential patterns are 

evaluated by the number of intersections in their time instance sets. For example, suppose that we have a candi-

date multi-domain sequential pattern as 








)2()1(

)()( ba
and the time instance sets of >< ))(( ba  and >< )2)(1(  

are {< ( 1T )( 2T )( 3T )( 4T ) : 1, 2 >, < ( 1T )( 2T )( 3T )( 4T ) : 1, 3 >, < ( 5T )( 7T )( 8T ) : 1, 2 >, < ( 21T )( 22T )( 23T ) 

( 24T ) : 1, 3 >} and {< ( 1T )( 2T )( 3T )( 4T ) : 1, 2 >, < ( 5T )( 7T )( 8T ) : 1, 2 >, < ( 21T )( 22T )( 23T )( 24T ) : 1, 3 >}, 

respectively. It can be verified that =







)

)2()1(

)()(
(

ba
TIS  {< ( 1T )( 2T )( 3T )( 4T ) : 1, 2 >, < ( 5T )( 7T )( 8T ) : 1, 

2 >, < ( 21T )( 22T )( 23T ) ( 24T ) : 1, 3 >}. Therefore, Support( 








)2()1(

)()( ba
) = TIS( 









)2()1(

)()( ba
) | = 3. Given a 

minimum support 2, we could have 








)2()1(

)()( ba
 as a multi-domain sequential pattern across two domain se-

quence databases since the support of this sequential pattern is larger than the minimum support. By combining 

patterns in kSP  and patterns in domain sequence database 1+kD , we could derive candidate multi-domain 

sequential patterns across 1+k domain sequence databases. 
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Algorithm IndividualMine: 

Input: Multi-domain sequence database with n domains, nDDD ,..., 21 and the minimum support δ. 

Output: Multi-domain sequential patterns across n domains. 
Begin 

Apply sequential pattern mining on each domain niDi ,...,2,1, = . 

Let 1SP be the set of sequential patterns mined in 1D . 

For each domain niDi ,...,3,2, =  

For each 1−∈ iSPP  

For each sequential pattern n  of iD , and )()( Peqe =  

If δ≥∩ |)()(| qTISPTIS Then append 








q

P
to iSP  

Output= nSP . 

End 

 
Algorithm IndividualMine performs sequential pattern mining algorithms in each domain sequence database. 

Then, these sequential patterns are merged together to form candidate multi-domain sequential patterns. How-

ever, those sequential patterns are not always able to generate multi-domain sequences due to that the occurrence 

times for each itemset in individual sequential patterns are not the same. Thus, the effort of generating candidate 

multi-domain sequential patterns could be reduced. Therefore, we develop algorithm PropagatedMine in which 

only one domain sequence database needs to perform sequential pattern mining. Furthermore, by propagating 

time instance sets to other domain sequence databases, algorithm PropagatedMine is able to efficiently mine 

sequential patterns that are likely to form multi-domain sequential patterns. 

3.2  Algorithm PropagatedMine 

Algorithm PropagatedMine is designed to reduce the cost of both mining sequential patterns in each domain and 

reducing the number of candidate multi-domain sequential patterns. Moreover, sequential patterns mined in each 

domain are not necessary to form multi-domain sequential patterns. Hence, algorithm PropagatedMine only 

performs sequential pattern mining in one domain (referred to as a starting domain) and then propagates time 

instance sets of sequential patterns mined to other domains. By propagating time instance sets to other domain 

sequence databases, we could only extract those sequences having the same time instances to generate candidate 

multi-domain sequential patterns. Algorithm PropagatedMine will iteratively propagate time instance sets of 

sequential patterns mined to next domain sequence databases until all domains have been mined. Specifically, 

algorithm PropagatedMine consists of two phases: the mining phase and the deriving phase. Fig. 3 shows the 

overview of algorithm PropagatedMine.  

D1 D2 D3 Dn

sequential pattern

mining

Propagated 

Table

Propagated 

Table
Propagated 

Table

sequential 

patterns
multi-domain 

sequential 

patterns

multi-domain 
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sequential 
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Fig. 3. Overview of algorithm PropagatedMine. 
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Fig. 4. A lattice-like structure for sequential patterns in a starting domain (i.e., 1D  in Table 2). 

Same as in Algorithm IndividualMine, in the mining phase, algorithm PropagatedMine utilizes existing se-

quential pattern mining algorithms to discover sequential patterns in a starting domain (e.g., 1D ) and then 

propagates time instance sets of sequential patterns mined to other domains. Note that once sequential patterns 

are mined in the starting domain sequence database, these sequential patterns in the starting domain provide 

guidelines for mining multi-domain sequential patterns across multiple domain sequence databases in that the 

number of elements and the length of multi-domain sequence databases are constrained by sequential patterns 

mined in the starting domain. Therefore, sequential patterns mined in the starting domain are represented as the 

lattice-like graph structure to facilitate the generation of candidate multi-domain sequential patterns. For exam-

ple, assume that the starting domain sequence database is set to 1D  in Table 2 and then sequential patterns are 

found by existing sequential pattern algorithms. Those sequential patterns mined are represented as a lattice-like 

structure shown in Fig. 4, where each node represents a sequential pattern, the linkages of nodes (standing for 

intra-domain links) represent containing relationships and nodes are ordered by the number of their elements. In 

Fig. 4, those nodes having thesame number of elements are further arranged level-by-level according to their 

sequence length. Explicitly, it can be seen in Fig. 4 for the nodes with their number of elements is 1, these nodes 

are put level-by-level in increasing order of length of sequences. For example, >< ),( cb is below the nodes 

whose length of sequence is 1 (e.g., >< )(b ). As mentioned above, the lattice-like structure is used as a guide-

line for propagating time instance sets of sequential patterns to other domains. By propagating time instance sets, 

algorithm PropagatedMine in the deriving phase extract those sequences with their occurrence times the same as 

time instance sets propagated. Thus, for each time instance set propagated, we could build the corresponding 

propagated table defined as follows: 

 
Definition 4 (Propagated table): Let M be a multi-domain sequential pattern across k domain sequence data-

bases with }:,...,:,:{)( 2211 ><><><= ff lTSlTSlTSMTIS , where iTS  is a time instance se-

quence and il  is the corresponding integer list. Assume that domain },...,,{ 21 mt sssD = , where 

>=< i

te

ii

i i
XXXs )(21 ,...,, and each sequence is  has the corresponding time instance sequence, denoted as 

is
TS . When propagating time instance sets of M to domain tD , we could have a propagated table defined as 

ij s

i

lMt TSXD ∃= |{|| and )}( jsj TSTSTS
i
=∋ . 

For example, in Table 2, by propagating TIS(< (b) >) to sequence database 2D , we could have the 
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Table 3. An example of propagated table >< )(2 || bD . 

Time instance sequences Items Items 

<(T1)(T2)(T3)(T4)> (2,3) 

<(T1)(T2)(T3)(T4)> (6) 

<(T5)(T6)(T7)> (1,3) 

<(T5)(T6)(T7)> (2,4) 

<(T21)(T22)(T23)(T24)> (1,2,5) 

<(T21)(T22)(T23)(T24)> (2,3) 
 

 

propagated table >< )(2 || bD shown in Table 3. After obtaining propagated tables, we could mine frequent itemsets 

by association rule mining algorithms [17]. Then, those frequent itemsets could be combined by the correspond-

ing patterns propagated to generate multi-domain sequential patterns. From the above example, given a mini-

mum support 3, we can easily obtain 








)2(

)(b
 and 









)3(

)(b
 as multi-domain sequential patterns across 2 domain 

sequence databases, where (2) and (3) are the frequent items of >< )(2 || bD . 

 

Property of propagated table: Suppose that kSPP∈ and β is a itemset in domain sequence database 1+kD . A 

multi-domain sequential pattern 








β
P

is a sequential pattern across (k + 1) domain sequence databases (i.e., 

{ 121 ,...,, +kDDD }) with the minimum support δ if and only if β is a frequent itemset in propagated table 

PkD ||1+  with the same minimum support δ. Clearly, we could have )()()( β
β

TISPTIS
P

TIS ∩=







. 

 

Property of anti-monotone: Given multi-domain sequence databases MDB = },...,{ 21 kDDD and a 

multi-domain sequence M = [ ]Tksss ...21 , multi-domain sequences contained by M are frequent, if and only if M 

is a multi-domain sequential pattern of MDB. This property is also valid when it comes to mining multi-domain 

sequential patterns. Based on the property of anti-monotone, algorithm PropagatedMine generates candidate 

multi-domain sequential patterns in a level-by-level manner. 

Note that through the lattice-like structure in the starting domain, algorithm PropagatedMine only needs to 

propagate time instance sets of sequential patterns with their length to be 1 to other domains. In other words, 

only time instance sets of the top level nodes (referred to as atomic patterns) are propagated. This is due to that 

sequential patterns in the propagated domain could use time instance sets of the upper level nodes to determine 

their support values. Therefore, in the propagated domain, sequential patterns are also generated level-by-level 

according to the number of elements of sequences. The detailed steps for deriving multi-domain sequential pat-

terns are described as follows: 

 

Step 1: Derive atomic patterns across (k + 1) domains: 

Let kSP  be the set of multi-domain sequential patterns across k domain sequence databases. By propagating 

each atomic patterns in kSP , we could derive the corresponding frequent itemsets from propagated tables. Then, 

those frequent itemsets mined from propagated tables are merged with atomic patterns in kSP  to derive atomic 

patterns across (k + 1) domains. Consider two domain sequence databases in Table 2 as an example. Since se-

quential patterns of domain 1D are represented as a lattice-like structure, we should first derive atomic patterns 

in sequence database 2D . Specifically, in Fig. 5, time instance sets of atomic patterns in sequence database 

1D  (i.e., the top-level nodes) are propagated to sequence database 2D  2. From the propagated tables of each 

atomic pattern, atomic patterns are easily obtained. For each atomic pattern in 1D , there is a inter-domain link 

representing that these two patterns are able to form multi-domain sequential patterns. Consequently, we 

have 








)1(

)(a
, 









)2(

)(b
, 









)3(

)(b
, and 









)2(

)(c
 in the above example. 
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<(a)> <(c)><(b)> <(e)>

<(b,c)>

number of 

elements=1

<(1)> <(2)> <(3)> <(2)>

Domain D1 Domain D2

<(a)> <(c)><(b)> <(e)>

<(b,c)>

number of 

elements=1

<(1)> <(2)> <(3)> <(2)>

Domain D1 Domain D2

 

Fig. 5. An example of generating atomic patterns in domain D2. 

Step 2: Derive (k + 1)-domain sequential patterns with their number of elements being one: 

In this step, we will derive (k + 1)-domain sequential patterns with the number of elements to be one. Assume 

that k-domain sequential pattern Q across k domain sequence databases (i.e., },...,{ 21 kDDD ) and the number 

of elements in Q is 1. Through the lattice-like structure for each domain, one could follow intra-domain links to 

find those atomic patterns that are the components of k-domain sequential pattern Q. Thus, we could use the 

lattice-like structure in sequence database kD and extract atomic patterns of a sequential pattern in sequence 

database 1+kD  from k-domain sequential pattern Q. By travelling inter-domain links in the lattice-like structure 

in domain kD , those corresponding atomic patterns in domain 1+kD  are found. Hence, in light of these 

atomic patterns found in domain 1+kD , sequential patterns in sequence database 1+kD  are generated. Suppose 

that we have a k-domain sequential pattern in Q as lXXX ∪∪∪ ...21 , where jX is the jth atomic pattern in 

Q and l is the length of sequential pattern Q. It could be verified that a multi-domain sequential pattern P is the 

union of 








i

i

y

X
, where iy  is the corresponding atomic pattern in domain (k + 1) and 









i

i

y

X
 is the (k + 

1)-domain atomic pattern mined in Step 1, for i = 1, 2, ..., l. For example, let Q =< (b, c) >, a sequential pattern 

with e(Q) = 1 in domain 1D  of Table 2. Through the intradomain links, we can find atomic patterns that are 

components of Q (i.e., < (b) > and < (c) >). In Fig. 6 following inter-domain links of < (b) > and < (c) >, we 

could obtain the atomic patterns in domain 2D  (i.e., < (2) > and < (3) >). Consequently, two possible unions of 

P are generated (i.e., 







=








∪








)2(

),(

)2(

)(

)1(

)( cbca
 and )

)3,2(

),(

)2(

)(

)3(

)(








=








∪






 cbcb
. Once we have the possible 

candidate multi-domain sequential patterns, support values of these patterns are examined by checking their time 

instance sets (i.e., |)(||)(|)(
1

I
l

i i

i

y

X
TISPTISPSupport

=








== ). Given a minimum support 3, since the 

 

<(a)> <(c)><(b)> <(e)>
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elements=1
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Fig. 6. An example of generating sequential patterns whose number of elements is 1 in domain 2D . 
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support values of 








)2(

),( cb
 and 









)3,2(

),( cb
 are 3 and 2, respectively, 









)2(

),( cb
 is a frequent multi-domain 

sequence. Thus, the lattice-like structure in domain 2D  contains < (2) > and inter-links are built between lat-

tice-like structures in domain 1D  and that in domain 2D . 

 

Step 3: Derive (k + 1)-domain sequential patterns with their number of elements larger than one: 

After generating those (k + 1)-domain sequential patterns with their number of elements being one, algorithm 

PropagatedMine could further generate candidate (k+1)-domain sequential patterns with their number of ele-

ments larger than one in a level-by-level manner. In order to generate (k+1)-domain sequential patterns, algo-

rithm PropagatedMine will refer the lattice-like structure in the last domain propagated (i.e., domain kD  in our 

example). In the lattice-like structure of domain kD , algorithm PropagatedMine first identify those patterns 

with their numbers of elements to be 2. Through the intra-domain links in the lattice-like structure of kD , those 

frequent patterns in the upper levels are found. Following inter-domain links of these upper level patterns, the 

corresponding upper level patterns in the lattice-like structure of domain 1+kD  are identified. Before deriving 

(k + 1)-domain sequential patterns, those sequential patterns identified in the lattice-like structure should further 

be verified whether these patterns should be merge or not. The verification should be made by comparing their 

time instance sets. Thus, we have the following definition: 
 

Definition 5 ( <∩ operation of TIS): Let M and N be two multi-domain sequences, where e(M) = e(n) = 1, 

TIS(M) = {< iS : il  >} and TIS(N) = {< iT : im >}. TIS(M) <∩ TIS(N) is defined as {< iS : ii lm , >} such that 

iS  = iT and il < im , meaning that these two multi-domain sequences (i.e., M and N) could be merged together 

as a multi-domain sequence since their time instance sets obey a time sequential order. 

For example, given M = 








)1(

)(a
, N = 









)2(

),( cb
 and the multi-domain sequence database in Table 2 with a mini-

mum support as 3, it can be verified that TIS(M) = {< ( 1T )( 2T )( 3T )( 4T ) : 1 >, < ( 5T )( 7T )( 8T ) : 1 >, < ( 10T ) 

( 12T )( 13T ) : 1 >}, ( 21T )( 22T )( 23T )( 24T ) : 1 >}, TIS(N) = {< ( 1T )( 2T )( 3T )( 4T ) : 2 >, < ( 5T )( 7T )( 8T ) : 2, 

( 21T )( 22T )( 23T )( 24T ) : 3 >}, and TIS(M) <∩ TIS(N)= {< ( 1T )( 2T )( 3T )( 4T ) : 1, 2 >, < ( 5T )( 7T )( 8T ) : 1, 2 >, 

< ( 21T )( 22T )( 23T )( 24T ) : 1, 3 >}. Since TIS(M) <∩ TIS(N), we could further merge these sequential patterns 

into 








)2(

),(

)1(

)( cba
. In light of Definition 5, we could determine whether two patterns should be merged or not. 

Assume that pattern 1)(, >∈ PeSPP k  and >=< )(21 ,...,, peSSSP , where ki SPS ∈  and 1)( =iSe . 

By traveling intra-domain links and inter-domain links among lattice-like structures across k domains, we could 

obtain subsets of 1+kSP  as { 







)(

)(

1

1

T

S
, 








)(

)(

2

2

T

S
 ,…, 









)(

)(

)(

)(

pe

pe

T

S
}, where iT  is an itemset, for i = 1, 2, ..., e(p). 

If those subsets have a relationship as TIS( 







)(

)(

1

1

T

S
) <∩ TIS( 








)(

)(

2

2

T

S
) <∩ … <∩  TIS( 









)(

)(

)(

)(

pe

pe

T

S
, 









=′

)(21

)(21

pe

pe

TTT

SSS
P

K

K
 is generated. The corresponding time instance set is derived by TIS( P′ ) = 

TIS( 







)(

)(

1

1

T

S
) ∩ TIS( 








)(

)(

2

2

T

S
)∩…∩ TIS( 









)(

)(

)(

)(

pe

pe

T

S
.  As such, we could verify whether P′  is frequent or 

not by its support value (i.e., |TIS( P′ )|). Consider an example pattern P =< (a)(b, c) > in Fig. 7. By intra-domain 

links and inter-domain links, we have 








)1(

)(a
<∩ 









)2(

),( cb
. Therefore, P′ = 









)2)(1(

),)(( cba
 is generated. 
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Fig. 7. An example of generating sequential patterns with their number of elements larger than 1 in domain 2D . 

 

Through the above steps, we could derive multi-domain sequential patterns across k + 1 domain sequence da-

tabases from k-domain sequential patterns. Algorithm PropagatedMine iteratively repeats the above three steps 

until all domain sequence databases are propagated. 

 

 

Algorithm PropagatedMine: 

Input: Multi-domain sequence database with n domains, 1D , 2D , ..., nD , and the minimum support δ. 

Output: Multi-domain sequential patterns with n domains. 

Begin 

Apply sequential pattern mining on 1D . 

Let 1SP  be the set of sequential patterns mined in 1D . 

For each domain iD , i = 2, 3, ..., n 

For each P � 1−iSP  

If |P| = 1 Then Begin 

Construct Propagation Table PiD || . 

Find frequent items in PiD ||  with minimum support δ. 

Let FI be the set of frequent items in PiD || . 

For each q � FI 

Append 








q

P
to iSP . 

Let TIS( 








q

P
) = TIS(P) ∩ TIS(q). 

End 

If e(P) = 1 Then Begin 

Compose 








q

P
 with e( 









q

P
) = 1. 

If δ≥







)(

q

P
Support ) Then append 









q

P
 to iSP  

End 
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If e(P) > 1 Then Begin 

Compose 








q

P
 with e( 









q

P
) > 1. 

If δ≥







)(

q

P
Support  Then append 









q

P
 to iSP  

End 

Output= nSP . 

End 

4 Performance Study 

Our experiments run on a 1.8GHz Athlon PC with 1G main memory, and both algorithms IndividualMine and 

PropagatedMine are implemented in Java. For mining sequential patterns in one domain sequence database, we 

implement algorithm PrefixSpan [6]. The performance of algorithms IndividualMine and PropagatedMine is 

measured in terms of the execution time. The datasets were generated by data generator in [1] with slightly 

modifications that includes multiple domain sequence databases. Table 4 depicts the parameters used to repre-

sent the characteristic of dataset generated. For example, a dataset M5D10kC10T5S4 means that there are 5 

domains, each domain sequence database consists of 10,000 sequences, where the average number of elements 

in a sequence is 10, the average number of items in an element is 5 and the average length of maximal sequential 

patterns is 4. 

We first investigate the performance of algorithms IndividualMine and PropagatedMine with the value of the 

minimum support varied. The dataset is M5D10kC8T8S8 and the values of minimum support is ranged from 

2.5% to 10%. The execution time of these two algorithms is shown in Fig. 8. With the smaller minimum support, 

the number of sequential patterns will be larger, thereby increasing the execution time of both algorithms. Since 

algorithm IndividualMine needs to perform sequential pattern mining in each domain sequence database, the 

execution time of algorithm IndividualMine is larger than that of algorithm PropagatedMine. Next, we conduct 

experiments with the number of domain varied. The number of domain is varied from 2 to 5. For each domain 

sequence database, the setting of datasets is D10kC8T8S8. The minimum support is set to 2.5%. The perform-

ance is shown in Fig. 9. Clearly, when the number of domains increases, the execution time of both algorithms 

IndividualMine and PropagatedMine increases. It is expected that with a larger number of domains, algorithm 

IndividualMine performs worse than algorithm PropagatedMine since sequential pattern mining algorithms are 

performed at each domain sequence database. 

The experiments of varying the number of sequences is now evaluated. The numbers of sequences are set to 

1000, 4000, 7000 and 10000, respectively. The setting of the other parameters is fixed to M5C8T8S8 and the 

minimum support is 2.5%. As can be seen in Fig. 10, the execution time of both algorithms increases with the 

number of sequences. Furthermore, algorithm PropagatedMine outperforms algorithm IndividualMine due to the 

same reason that algorithm IndividualMine individually executes sequential pattern mining algorithms in each 

domain sequence database. As the number of sequences increases, the performance of mining sequential patterns 

is worst. 

Table 4. Parameters used for the data generator 

Parameter Descriptions 

M number of domains 

D number of sequences 

C average number of elements within a sequence 

T average number of items within an element 

S average length of maximal potentially sequential patterns 
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Fig. 8. The execution time of algorithms IndividualMine and PropagatedMine with various minimum support values. 
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Fig. 9. The performance of algorithms IndividualMine and PropagatedMine with the number of domain varied. 
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Fig. 10. The performance of algorithms IndividualMine and PropagatedMine with the number of sequences varied. 
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5 Conclusions 

In this paper, we explored multi-domain sequential patterns across multiple domain sequence databases. Algo-

rithms IndividualMine and PropagatedMine for mining multi-domain sequential patterns are developed. Specifi-

cally, in algorithm IndividualMine, each domain individually performs sequential pattern mining and then by 

checking the time instances, sequential patterns in each domain are merged as multi-domain sequential patterns. 

In order to reduce the mining cost in each domain sequence database, algorithm PropagatedMine first mines 

sequential patterns in a starting domain sequence database. Furthermore, algorithm PropagatedMine uses lat-

tice-like structures to store these sequential patterns. In light of lattice-like structures, algorithm PropagatedMine 

is able to propagate time instance sets of sequential patterns mined to other domains and discovers multidomain 

sequential patterns in a level-by-level manner. A comprehensive performance study was conducted. Experimen-

tal results show that by propagating time instance sets of sequential patterns mined to other domains, algorithm 

PropagatedMine is able to more efficiently mine multi-domain sequential patterns than algorithm Individu-

alMine. In the future, we will devise an optimal propagation order to further improve the performance of algo-

rithm PropagatedMine. 
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