

An Architecture for Multi-Agent COTS Software Integration Systems

Guo-Ming Fang, Jim-Min Lin*, Zeng-Wei Hong, and Kai-Yi Chin

Department of Information Engineering and Computer Science, Feng Chia University

Taichung City 40724, Taiwan

*jimmy@fcu.edu.tw

Received 3January 2007; Revised 25 March 2007; Accepted 31March 2007

Abstract. Commercial Off-The-Shelf (COTS) software products are increasingly used as software

components in large-scale systems. We had proposed an approach for distributed COTS software integration

by using the concepts of multi-agent system and distributed scripting mechanism. To describe the experience

in the COTS software integration and facilitate the reuse of the software integration procedure, this paper

presents a multi-agent architecture for the COTS software integration systems. This architecture is of a three-

layered structure and is described with the Agent UML (AUML). Since the interaction and internal

processing of agents is clearly described in the proposed architecture, programmers may have a guide to build

a software system and implement the protocols and behaviors of agents according to the three-layered

description. To illustrate the use of the proposed architecture, an example system is also experimented in our

study.

Keywords: COTS Software Reuse/Integration, Agent UML (AUML), Multi-Agent Distributed Scripting

System (MADSS), Software Architecture

1 Introduction

Software applications are increasingly built with distributed object-oriented technique, such as OMG CORBA [1],

Microsoft DCOM [2], and J2EE [3]. These middleware systems [4] provide well-designed component/object

models, and well integration mechanisms supporting interfaces to link components/objects together. In addition

to the features of an object-oriented system, a multi-agent system could have several advantages, like:

1. A software agent has well social ability [5]. An agent could communicate with human users and accept the

delegated tasks. Furthermore, it is also a communicative program that interacts with other programs/agents

in speech-acts [6], which means the communication likes human’s talk. A complex task could be completed

through the cooperation of software agents.

2. A software agent could have mobility. This feature enables a task to be completed remotely. Moreover,

some studies [7] have shown that mobile agents could reduce the network traffic in some applications.

3. A software agent with intelligent abilities is potentially suitable for handling sophisticated distributed

computations. Some studies [8] indicated that large-scale systems are becoming more and more complex.

The systems might consist of lots of software components that interact with others. Object-oriented

software development is not the only efficient paradigm for constructing a large-scale software system.

Software agents are actually software objects having autonomy and intelligence. Software agents could

have better interaction ability than traditional objects and thus suit for building distributed software systems.

Our previous study proposed a multi-agent system, named as Multi-Agent Distributed Scripting System

(MADSS) [9], to integrating software applications into a distributed software system. MADSS is aimed to

achieve the goal of integrating COTS [10-13] software products or legacy software systems under the distributed

heterogeneous environment through the cooperation and interaction of multiple agents. The social ability of

agents provides the communication among agents. The mobile agent technology is used to support the remote

access. A scripting language was also proposed to help the users to control the behaviors of agents.

This paper is a continued work of MADSS project. MADSS did achieve the goal of COTS software

integration with multi-agent paradigm, but have only less discussion on how software integration could be

achieved by agents’ cooperation. Therefore, the purpose of this paper is to further identify and describe the multi-

agent architecture of MADSS. This multi-agent architecture is in a form of 3-layers approach and is represented

using AUML (Agent Unified Modeling Language) [14].

* Correspondence author

Journal of Computers Vol.18, No.1, April 2007

16

The rest of this paper is organized as follows. We will briefly describe MADSS project in Section 2. Section 3

will describe the multi-agent architecture of MADSS, which is based on design considerations from the

responsibilities of agents and the interactions between agents. Section 4 gives a case study as our demonstration

and a guide of using the architecture. Finally, we conclude this research and describe our future works in Section

5.

2 MADSS project

MADSS is basically a distributed software integration system in which software were integrated through agents’

cooperation. An MADSS script language was developed as an interface through which a software engineer could

drive an agent’s behavior. By using this scripting language, a software integrator could perform an application

project rapidly through the typeless and command-level attributes [15, 16].

Agent

Agent

Agent

Agent

Client Side
Server SideMulti-agent

environment

User interface

(scripting language

support)

COTS 1

w
ra
p
p
e
r

COTS 2

w
ra
p
p
e
r

...

COTS n

w
ra
p
p
e
r

...

Fig. 1. Conceptual Model of MADSS

MADSS is a typical 3-tier distributed system (see Fig. 1). At the server-side, there exists several distributed

wrapped COTS software applications. Through the software wrapper, each COTS software application could

expose its services for agent’s call. A service agent is designated to maintain the interfaces of the wrapped COTS

software applications, which reside on the same host. Whenever a new wrapped software application is integrated

into the host, the service agent will be responsible for advertising the new services on the facilitator. A facilitator

is actually a software agent responsible for interoperating MADSS agents.

At the client side, MADSS uses a client software agent to support a user interface to interact with the user and

to receive jobs written in MADSS scripting language. The client agent generates one or more mobile slave agents

to perform the integration job. During the execution phase, a slave agent will communicate with a service agent

via KQML (Knowledge Query and Manipulation Language) [17] messages. A KQML message encapsulates

input parameters to a service agent and then translates them into proper data types of the service agent. Finally,

service agent requests the corresponding software applications to execute this job. If a host is overloaded, the

service agent would be responsible for suggesting the slave agent to move to other route.

MADSS project overcame two critical issues in agent-based COTS software integration:

1. The black-box-like COTS software applications under MS-Windows and UNIX-like systems were

successfully wrapped as programmable and reusable software components [18-20].

2. MADSS successfully demonstrates the feasibility of integrating software by mobile agents.

Fig. 2. Wrapper for Reengineering COTS Software Applications

Fang et al: An Architecture for Multi-Agent COTS Software Integration Systems

17

Reengineering COTS software such as MS-Windows applications may suffer from the seldom-available source

code. Software wrapper (in Fig. 2) in MADSS uses I/O interception and redirection to simulate a COTS

application’s a sequence of operations, such as command or key events. Therefore, software wrapper could

operate a MS-Windows application by sending keyboard events to it or passing input data to the Windows

clipboard space. The result could also be captured by clipboard space or other output channels. In Fig. 3, the

example program code (a), (b) and (c) represents respectively Win APIs for simulating key events, getting and

setting the data in clipboard space. To input key events, the wrapper program must let MS-Windows application

get the focus first by using FindWindow() and SetFocus(). After setting the focus to the application, Wrapper

program adapted keybd_event() to send keyboard events by assigning the virtual code and scan code of keys.

Besides, Wrapper program uses OpenClipboard() and CloseClipboard() to handle the clipboard space in MS-

Windows. With the use of GetClipboardData() and SetClipboardData(), Wrapper program can read and write the

clipboard space. Moreover, to migrate a MS-Windows application to an agent framework, this MS-Windows

application was encapsulated a specific interface the agent could access.

Fig. 3. Example Code in Wrapper of MS-Windows Applications

MADSS has been successfully implemented by referring to the concept of software integration through mobile

agents. However, more detail description to this experimental multi-agent system is needed to formally represent

the design experience. This study will describe the interaction between agents and each agent’s internal state uses

AUML in next section.

3 Multi-Agent Architecture for MADSS

In order to define the agents and interactions between agents in detail, a three-layer approach of AUML proposed

by Odell is adopted as the description language in the proposed multi-agent architecture. At the first layer, the

overall interaction protocols of the multi-agent architecture in MADSS are defined as reusable packages. The

interactions among agents in protocols are described at the second layer. Finally, the internal agent processing are

represented at the third layer.

According to the conceptual model of MADSS, three interaction protocols between agents could be defined.

These interaction protocols are also indicated in the first layer description (see Fig. 4).

1. Delegating package. The Delegating package expresses a protocol between a client agent, Facilitator and

slave agent. This protocol describes how a client agent delegates tasks to a slave agent and handle the

results from the slave agent.

(a)

HWND appHWND = FindWindow (“Title of App”, NULL);

SetFocus (appHWND);

keybd_event ((BYTE) v_code, (BYTE) s_code,0,0);

keybd_event ((BYTE) v_code, (BYTE) s_code, KEYEVENTF_KEYUP, 0);

(b)

HGLOBAL memHND = GlobalAlloc(GHND, strlen(input_str)+1);

VOID* memPtr = GlobalLock(memHND);

MoveMemory(memPtr, input_str, strlen(input_str)+1);

GlobalUnlock(memHND);

OpenClipboard(NULL);

EmptyClipboard();

SetClipboardData(CF_TEXT, memHND);

CloseClipboard();

(c)

char *out_buffer=(char*) malloc(BUFFER_SIZE);

OpenClipboard(NULL);

HANDLE clipHND = GetClipboardData(CF_TEXT);

VOID* clipPtr = GlobalLock(clipHND);

strcpy(out_buffer, (char*)clipPtr);

GlobalUnlock(clipHND);

CloseClipboard();

Journal of Computers Vol.18, No.1, April 2007

18

2. Publishing package. The Publishing package expresses a protocol between a service agent and the

Facilitator. This protocol describes how a service agent publishes the information of services supported by

a wrapped COTS software to Facilitator.

3. Binding package. The Binding package expresses a protocol between a slave agent and service agents. This

protocol describes how a slave agent requests for service to a service agent.

The detail interactions among agents in the first layer description will be represented in the second layer

description. Here, the Delegating, Publishing and Binding interaction protocols are expressed with extended

sequence diagram and depicted correspondingly in Fig. 5, Fig. 6, and Fig. 7 respectively.

In the delegating protocol, a client agent may query a Facilitator about a service. If the query is available,

service results will be replied. On retrieving the location information of the service, the client agent will initialize

a slave agent and delegate tasks to it for execution. The client agent will not only delegate tasks to the slave agent

but also combine these results from the slave agent. If an error happened, the slave agent will response them to

the client agent.

Client Agent

Service
Agent

Publishing
Delegating

Binding

register

request

query

delegate

Slave Agent

Facilitator

Fig. 4. First Layer Description of the Multi-Agent Architecture in MADSS

Delegating

Client Agent Facilitator

query

not-understand

no-found

service-info

Slave Agent<<create>>

delegate

result

error

Client Agent, Facilitator,
Slave Agent

query, not-understand,
no-found, service-info,
delegate, result, error

Fig. 5. Delegating Interaction Protocol

Fang et al: An Architecture for Multi-Agent COTS Software Integration Systems

19

Slave Agent
Service
Agent

request

refuse

not-understand

request-accept

input-data

result

Binding Slave Agent,
Service Agent

request, refuse,
not-understand, request-
accept, input-data, result

Fig. 6. Binding Interaction Protocol

Facilitator
Service
Agent

register

not-understand

register-accept

register-info

confirm

register, not-understand,
register-accept, register-

info, confirm

Facilitator, Service
AgentPublishing

Fig. 7. Publishing Interaction Protocol

In the Binding protocol, a slave agent sends a service request to a service agent. If the service agent accepts the

request, the slave agent will send some data to the service agent as the input of the service. After the service is

finished, the result will then be replied to the slave agent by the service agent.

In the Publishing protocol, a service agent sends the register request of a service to a Facilitator. If the

Facilitator accepts the request, the service agent will send the registration information to the Facilitator. After the

processing of registration is finished, a confirmation from the Facilitator will be replied to the service agent.

In the third layer description, activity diagram is adopted to express the internal processing of agents according

to related interactions. Hence, the internal processing of the client agent, slave agent, Facilitator, and service

agent are depicted correspondingly in Fig. 8, Fig. 9, Fig. 10, and Fig. 11 respectively.

The client agent, which is a stationary agent, serves users at client side. In the internal processing of a client

agent, the client agent deals with the content of tasks after a user input the tasks through the user interface.

However, some of these tasks may not be handled by the ability of the client agent. Thus, the client agent may

make a query to a Facilitator about a service that could serve these tasks. If the service result is replied to the

client agent, the client will analyze the result to get the location information of the service agent that provides the

service. The location information of the service and the content of these tasks would be delegated to a slave agent.

Finally, the client agent may process the resulting message or error message from the slave agent.

Journal of Computers Vol.18, No.1, April 2007

20

prepare/
send
query

receive
Facilitator

deal with
message

is
 service-info

is no-found or
not-understand

error

deal with
service-

info

(Facilitator)

(Facilitator)

task
placed

deal with
task

create
Slave

delegate
task

receive
Slave

deal with
result

task
completed

(Slave) (Slave)

(Slave)

deal with
message

display
error

error

is result

is error

Fig. 8. Internal Processing of Client Agent

error

deal with
delegation

deliver
code/
states

prepare/
send

request

receive
Server

deal with
message

(Service)

(Service)

prepare/
send error

is refuse or
not-understand

(Client)

is
request-accept

prepare/
send data

delegated

receive
result

prepare/
send
result

(Client)

delegation
completed

(Service)

(Service)

save states

recover
states

recover
states

suspend resume

deliver
code/
states

save states suspend

resume

Fig. 9. Internal Processing of Slave Agent

The slave agent, which is a mobile agent, processes the tasks from the client agent. In the internal processing

of a slave agent, the slave agent may analyze the delegation from a client agent to get the information of a service,

such as service name, service agent name, and server location. After the slave agent migrates to the server side,

the slave agent will send a service request to the service agent. If the service agent accepts the request, the slave

agent will send input data to the service agent, else an error message will be sent back to the client agent. After

getting the result form the service agent, the slave agent migrates back and sends the result to the client agent.

The Facilitator, which is a public stationary agent, provides the directory service. It may handle the service

register from a service agent (see Fig. 10 (a)) or query from a client agent (see Fig. 10 (b)). On receiving a

request of service registration from a service agent, the Facilitator will analyze the message. If the registration

service is available, the Facilitator will send the acceptation of registration to the service agent and receive the

service information from the service agent. After the information of the service is stored in the registry, the

Facilitator will send a registration confirmation to the service agent. Additionally, on receiving a request of

service query from a client agent, the Facilitator will analyze the message also. If the service information is stored

in the registry of the Facilitator, the Facilitator will then send the service information back to the client agent.

Fang et al: An Architecture for Multi-Agent COTS Software Integration Systems

21

register
received

deal with
register

accept

not-
understand

prepare/
send accept

(Service)

prepare/
send not-

understand

(Service)

store
register-

info

receive
register-

info
(Service)

register
completedprepare/

send
confirm
(Service)

(a) Handle Register of Service from Service Agent

query
received

deal with
query

no-found

not-understand

find service

prepare/
send not-

understand
(Client)

prepare/
send no-

found
(Client)

prepare/
send

service-info
(Client)

query
completed

(b) Handle Query from Client Agent

Fig. 10. Internal Processing of Facilitator

start
prepare/

send
register

receive
Facilitator

deal with
message

accept

not-
understand display

error

prepare/
send

register-info

error

receive
confirm

register
completed

(Facilitator)

(Facilitator)
(Facilitator)

(Facilitator)

(a) Publish the Information of Service

request
received

deal with
request

refuse

not-understand

accept

prepare/send
not-

understand
(Slave)

prepare/send
refuse

(Slave)

prepare/send
request-
accept

(Slave)

receive
input-data

invoke
interface

(Slave)

prepare/
send result

control
COTS-
based

software

request
completed

(Slave)

(b) Handle the Request from Slave Agent

Fig. 11. Internal Processing of Service Agent

Journal of Computers Vol.18, No.1, April 2007

22

The service agent, which is a stationary agent at the remote side, manages the COTS software. The internal

processing of a service agent could be addressed as follows. The service agent may either publish the service

information of a wrapped COTS software as this agent startups (see Fig. 11 (a)) or handle the request from a

slave agent (see Fig. 11 (b)). To publish a service, a service agent will send a request of service registration to a

Facilitator and waits for the reply from the Facilitator. If the Facilitator accepts the request, the service agent will

send the service information supported by a wrapped COTS software back to the Facilitator. In addition, the

service agent also handles the service requests from a slave agent. If the request is available and acceptable, the

service agent will receive the input data from the slave agent. The input data are the parameters for accessing the

programmable interface of the wrapped COTS software by using procedure call or message passing.

4 An Example System: A Graphical Mechanical Part Management System

To demonstrate the feasibility of our proposed architecture, we report on implementing an experimental

integrated software system—Graphical Mechanical Part Management System (GMPMS) in this section. There

are numerous mechanical parts in various categories and types but they might be alike in name, shape, model,

size, and so on. Many non-expert buyers might thus make incorrect orders without assistance from a dealer for

more mechanical part information, like precise specification, picture, and layout. Therefore, the purpose of

GMPMS is to assist dealers in efficiently managing and querying the mechanical part database with graphical

displays of the part layout.

To carry out a GMPMS, two major subsystems are necessary: a database subsystem for storing the mechanical

parts data and a graphical display subsystem for displaying the part drawing. To develop these two subsystems

from scratch would be a time consuming and costly endeavor. An economic and rapid way is through the

software reuse approach. Therefore, AutoCAD 2000 and dBase III Plus are selected to be integrated in the

GMPMS. AutoCAD 2000 is a drawing software tool and commonly used to design a mechanical part. The dBase

III Plus is a simple database tool for providing the management of mechanical parts and store the command

stream of mechanical parts. According to the agents defined in our multi-agent architecture, the GMPMS consists

of following five agents.

1. Mechanical part management agent. The mechanical part management agent is a stationary agent at the

user side and plays the role of the client agent. It provides a user interface to manage mechanical parts and

shows the 2D/3D shape of mechanical parts.

2. Slave agent. Slave agent is a mobile agent and responsible for getting the query conditions of mechanical

parts from the mechanical part management agent. It could migrate to the location of the mechanical part

information agent to get the information of mechanical parts. It could also be migrated to the location of the

shape generation agent to generate the 2D/3D shape of mechanical parts.

3. Mechanical part information agent. The mechanical part information agent is a kind of service agent. It

maintains the queryPart service to query the information of mechanical parts. In order to provide the

service, it handles the operations of dBase III Plus through the simulation of keying a sequence of dBase III

commands.

4. Shape generation agent. The shape generation agent is a kind of service agent. It maintains the

generate2dShape and generate3dShape services to generate the 2D/3D shape of mechanical parts. In order

to provide these services, it handles the operations of AutoCAD 2000 by inputting the AutoCAD command

stream of mechanical parts.

5. Facilitator. The Facilitator provides directory service and maintains the information about the queryPart,

generate2dShape and generate3dShape services.

To show the application of our architecture on the system, we give some interaction and internal processing

diagrams about the use of queryPart service. For invoking queryPart service, the interactions among agents in

GMPMS are based on the protocols of Delegating, Publishing, and Binding. However, to apply these protocols to

our application, some modifications are necessary. Fig. 12, Fig. 13, and Fig. 14 represent the Delegating,

Publishing and Binding protocols about queryPart service in the GMPMS respectively. In the second layer

descriptions about queryPart service, some messages in the aforementioned protocols should be modified to fit

our application requirements. For example, the message register-info in Fig. 7 is replaced with queryPart-info in

Fig. 13. The message input-data in Fig. 6 is replaced with input-query conditions in Fig. 14.

Fang et al: An Architecture for Multi-Agent COTS Software Integration Systems

23

Delegating

Mechanical part
management agent Facilitator

query queryPart

not-understand

no-found

queryPart-info

Slave Agent<<create>>

delegate query conditions

query result

error

Fig. 12. Delegating Interaction Protocol about queryPart Service

Facilitator
Mechanical part
information agent

register queryPart

not-understand

register-accept

queryPart-info

confirm

Publishing

Fig. 13. Publishing Interaction Protocol about queryPart Service

Journal of Computers Vol.18, No.1, April 2007

24

Slave Agent
Mechanical part
information agent

request
queryPart

refuse

not-understand

request-accept

input-query conditions

query result

Binding

Fig. 14. Binding Interaction Protocol about queryPart Service

 ask-one
 :sender Slave agent
 :receiver Mechanical part information agent
 :in-reply-to S1
 :ontology queryPart
 :language String
 :content model=`WS-1201`

Fig. 15. Example of KQML message for binding queryPart service

Each message in these protocols may be equal to a KQML messages. For example, when the slave agent

arrives the remote side, it communicates with the service agent to get the queryPart service through some KQML

messages. The Fig. 15 shows the content of the messages input-query conditions between the slave agent and the

mechanical part information agent through the binding interaction protocol.

The internal processing of these agents about queryPart service is based on the third layer description in our

multi-agent architecture. The behaviors of mechanical part management agent, slave agent, Facilitator, and

mechanical part information agent are illustrated in Fig. 16, Fig. 17, Fig. 18 and Fig. 19 respectively. Some

processing blocks in the agent state diagrams should be modified to fit the functions of queryPart service also.

For instance, the invoke interface in Fig. 11 is replaced with invoke dBase III Plus Wrapper (see Fig. 19).

Fang et al: An Architecture for Multi-Agent COTS Software Integration Systems

25

receive
Facilitator

deal with
message

is
 service-info

is no-found or
not-understand

error

deal with
queryPart-info

(Facilitator)

(Facilitator)

task
placed

get query
conditions

create
Slave

receive
Slave

display
query result

task
completed

(Slave) (Slave)

(Slave)

deal with
message

display
error

error

is result

is error

prepare/send
queryPart

query

delegate query
conditions

Fig. 16. Internal Processing of Mechanical Part Management Agent about queryPart Service

error

deal with
conditions

deliver
code/
states

receive
Server

deal with
message

prepare/
send error

is refuse or
not-understand

(Mechanical Part
Management)

is
request-accept

delegated

delegation
completed

(Mechanical Part
Information)

save states

recover
states

recover
states

suspend resume

deliver
code/
states

save states suspend

resume

Prepare/send
queryPart

request

prepare/send
query conditions

receive
query result

prepare/
send query

result

(Mechanical Part
Information)

(Mechanical Part Management)

(Mechanical Part
Information)

(Mechanical Part
Information)

Fig. 17. Internal Processing of Slave Agent about queryPart Service

Journal of Computers Vol.18, No.1, April 2007

26

query
received

deal with
query

no-found

not-understand

find queryPart
service

prepare/
send not-

understand
(Mechanical Part

Management)
prepare/
send no-
found

prepare/send
queryPart-

info

query
completed

(Mechanical Part
Management)

(Mechanical Part
Management)

(a) Handle Query from Mechanical Part Management Agent

register
received

deal with
register

accept

not-
understand

prepare/
send accept

(Mechanical Part
Information)

prepare/
send not-

understand

store
queryPart-

info

receive
queryPart-

info

register
completedprepare/

send
confirm

(Mechanical Part
Information)

(Mechanical Part
Information)

(Mechanical Part
Information)

(b) Handle Register of queryPart from Mechanical Part Information Agent

Fig. 18. Internal Processing of Facilitator about queryPart Service

Fang et al: An Architecture for Multi-Agent COTS Software Integration Systems

27

start
prepare/send

register
queryPart

receive
Facilitator

deal with
message

accept

not-
understand display

error

prepare/send
queryPart-

info

error

receive
confirm

register
completed

(Facilitator)

(Facilitator)
(Facilitator)

(Facilitator)

(a) Publish the Information of queryPart Service

request
received deal with

queryPart
request

refuse

not-understand

accept

prepare/send
not-

understand
(Slave)

prepare/send
refuse

(Slave)

prepare/send
request-
accept

(Slave)

receive
query conditions

invoke
dBase III

Plus
Wrapper

(Slave)

prepare/
send query

result

control
dBase III

Plus

request
completed

(Slave)

(b) Handle the Request from Slave Agent

Fig. 19. Internal Processing of Mechanical Part Information Agent about queryPart Service

Each blocks in these internal processing may be implemented to some program codes. For instance, the

mechanical part information agent at the remote side may involve some implementation to operate the dBase III.

Fig. 20 shows the example codes of controlling dBase III Plus to handle queryPart service. It simulates the key

events to input data to dBase III by using the functions of inputString(), hotkey() and key() provided by

dBaseWrapper.

void queryPart(String conditions) {
 dBaseWrapper.inputString(“use parts”); //copy data to clipboard
 dBaseWrapper.hotkey(17, 29, 86, 47) //Ctrl +v
 dBaseWrapper.key(13, 28) //Enter
 dBaseWrapper.inputString(“copy to result.txt for”+ conditions + “type sdf”);
 dBaseWrapper.hotkey(17, 29, 86, 47) //Ctrl +v
 dBaseWrapper.key(13, 28) //Enter
}

Fig. 20. Example of queryPart in Mechanical Part Information Agent

Journal of Computers Vol.18, No.1, April 2007

28

dBase III
Plus

Mechanical
part

information
agent

callWrapper

IBM AgletIBM AgletIBM AgletIBM Aglet

ServerServerServerServer

NetworkNetworkNetworkNetwork

Facilitator

IBM AgletIBM AgletIBM AgletIBM Aglet

FacilitatorFacilitatorFacilitatorFacilitator

ClientClientClientClient

Windows 2000 Windows 2000

Mechanical
part

management
agent

Aglet platformAglet platformAglet platformAglet platform

Windows 2000

Slave Agent

Slave Agent

KQML

migration

AutoCAD
2000

Shape
generation

agentcallWrapper

IBM AgletIBM AgletIBM AgletIBM Aglet

ServerServerServerServer

Windows 2000

Slave Agent

Fig. 21. Overall structure of GMPMS

Fig. 21 illustrates the overall structure of GMPMS. In GMPMS, the mechanical part management agent

provides a user interface to interact with the user and queries the Facilitator about the information of related

services. By delegating the slave agent to interact with the mechanical part information agent and shape

generation agent, the mechanical part management agent could get the information and shape of mechanical parts.

Here, the slave agent retracts the AutoCAD command stream in the information of mechanical parts gotten from

the mechanical part information agent and uses it as the input of the shape generation agent to generate the shape

of mechanical parts.

In the implementation of the GMPMS, all the agents are written in Java language. In order to provide the

communication mechanism and the mobility of agents, the IBM Aglet [21] is adopted as the execution

environment.

In Fig. 22, the information of mechanical parts in dBase III Plus can be queried by inputting some query string.

In Fig. 23, the user interface of querying mechanical parts in GMPMS is shown. By inputting some mechanical

part attributes, dealers could get needed mechanical part information in the dBase III Plus. The 2D shape of the

indicated mechanical part is shown at the view of top. By using the AutoCAD command stream stored in dBase

III Plus as the input, the AutoCAD 2000 would be able to generate the shape of mechanical part. Therefore,

dealers would find and show the mechanical parts for customers.

Fig. 22. Wrapped dBase III Plus in GMPMS

Fang et al: An Architecture for Multi-Agent COTS Software Integration Systems

29

Fig. 23. Screenshot of GMPMS

5 Conclusions

A multi-agent architecture of MADSS is proposed in this paper to incorporate several COTS software by using

software agent technology within an integrated software system. To describe the architecture in detail, the three-

layer approach of Odell’s AUML is adopted as the description language. Therefore, the specification of

implementation, including protocol and internal processing, are described. A Graphical Mechanical Part

Management System (GMPMS) is also experimented in our study to illustrate the use of the proposed

architecture. It integrates the services provided by wrapping dBase III Plus and AutoCAD 2000. The proposed

architecture would be helpful to programmers with the knowledge of UML or AUML in having a guide to

construct distributed COTS software integration systems with the multi-agent paradigm.

Finally, we conclude several future works to improve the architecture:

1. To define the description of exported COTS service.

2. To enhance a mechanism for discovering the suitable and desired services advertised in the community.

3. To handle the problem of agent’s ontology.

References

[1] P. Felber, P. Narasimhan, "Experiences, strategies, and challenges in building fault-tolerant CORBA

systems," IEEE Transactions on Computers, Vol.53, No.5, pp.497-511, May 2004.

[2] A. Davis, D. Zhang, "A comparative study of DCOM and SOAP," Proceedings of 4th International

Symposium on Multimedia Software Engineering, pp.48-55, Dec. 2002.

[3] E. Altendorf, M. Hohman, R. Zabicki, "Using J2EE on a large, Web-based project," IEEE Software,

Vol.19, No.2, pp.81-89, March-April 2002.

[4] S. Vinoski, "Where is middleware," IEEE Internet Computing, Vol.6, No.2, pp.83-85, March-April 2002.

Journal of Computers Vol.18, No.1, April 2007

30

[5] Y. B. Peng, J. Gao, J. Hu, B. S. Liao, "Policy-Driven Agent Social," Proceedings of International

Conference on Machine Learning and Cybernetics, Vol.1, pp.345-350, Aug 2005.

[6] J. R. Koo, "Social commitments in MAS," Proceedings of the 8th Russian-Korean International

Symposium on Science and Technology (KORUS-2004), Vol.1, pp.72-74, July 2004.

[7] D. X. Xu, J. W. Yin, Y. Deng, J. H. Ding, “A Formal Architecture Model for Logical Agent Mobility,”

IEEE Transactions on Software Engineering, pp.31-45, 2003.

[8] R. Nicholas. M. W. Jennigns, “Agent-Oriented Software Engineering,” Proceeding of 9
th
 European

Workshop on Modeling Autonomous Agents in a Multi-Agent World, 2000.

[9] J. M. Lin, Z. W. Hong, and G. M. Fang, ”MADSS: a Multi-Agent Based Distributed Scripting System,

“ Proceedings of 26
th
 Annual International Computer Software and Application Conference (COMPSAC-

2002), Oxford, UK, pp.581-586, Aug 2002.

[10] T. G. Baker, “Lessons Learned Integrating COTS into Systems,” Proceedings of 1
st
 International

Conference on COTS-Based Software System (ICCBSS 2002), Orlando, FL, USA, pp.21-30, Feb. 2002.

[11] L. Davis and R. Gamble, “Identifying Evolvability for Integration,” Proceedings of 1
st
 International

Conference on COTS-Based Software System (ICCBSS 2002), Orlando, FL, USA, pp.65-75, Feb. 2002.

[12] T. Pfarr and J. E. Reis, “The Integration of COTS/GOTS within NASA’s HST Command and Control

System,” Proceedings of 1
st
 International Conference on COTS-Based Software System (ICCBSS 2002),

Orlando, FL, USA, pp.209-221, Feb. 2002.

[13] A. Egyed and R. Balzer, “Unfriendly COTS integration – instrumentation and interfaces for improved

plugability,” Proceedings of 16
th
 International Conference on Automated Software Engineering (ASE

2001), pp.223-231, Nov. 2001.

[14] J. Odell, H. V. Dyke Parunak, Bernhard Bauer, “Extending UML for Agents,” Proc. of the Agent-Oriented

Information Systems Workshop at the 17th National conference on Artificial Intelligence, pp.3-17, 2000.

[15] J. Ousterhout, “Scripting: higher lever programming for the 21st Century,“ IEEE Computer, Volume 31,

pp.23-30, March 1998.

[16] J. Ousterhout, “Additional Information for Scripting White Papter,” in URL:

http://www.sunlabs.com/people/john.ousterhout/scriptextra.html.

[17] Y. Liu, C. Xu, W. D. Chen, Y. Pan, "KQML Realization Algorithms for Agent Communication," Fifth

World Congress on Intelligent Control and Automation (WCICA-2004), Vol.3, pp.2376-2379, June 2004.

[18] J. M. Lin, Z. W. Hong, G. M. Fang, H. C. Jiau, and W. C. Chu, “Reengineering Windows software

applications into reusable CORBA objects,” Journal of Information and Software Technology, Vol. 46,

No.6, pp.403-413, May 2004.

[19] Z. W. Hong, J. M. Lin, H. C. Jiau, G. M. Fang, and C. W. Chiou, “Reengineering Windows-Based

Software Applications into Reusable Components using Pattern Language,” Journal of Information and

Software Technology, Vol.48, No.7, pp.619-629, July 2006.

[20] J. M. Lin, Z. W. Hong, G. M. Fang, and C. T. Lee, "A Style for Migrating MS-Windows Software

Applications to Client-Server Systems Using Java Technology," SOFTWARE - Practice & Experience,

Vol.37, No.4, pp.417-440, April 2007.

[21] IBM Aglet, in URL: http://www.trl.ibm.com/aglets/index_e.htm.

