
Design and Implementation of Service Discovery Architecture

 Based on Multi-Agent Systems in an Ad-Hoc Environment

- For the Observing and Recording System

Feng-Chao Yang*, Chia-Hao Chang, and Cheng-Li Chang

Department of Information Management, Da-Yeh University

Changhua 515, Taiwan, ROC

yfc@mail.dyu.edu.tw

Received 29 November 2006; Revised 16 March 2007; Accepted 24 March 2007

Abstract. Since the mobile device characters features in motion while traditional information services are

unable to meet demands of the mobile environment, this study therefore proposes a “multi-agent

architecture – a DASS (Distributed Agent-based Service Sharing) –with the purpose to design and

implement a service sharing architecture using the autonomy and communication abilities of agents, to

actively discover services to mediate among shared services, so as to allocate and manage the distributed

service. The system development process follows PASSI (a Process for Agent Societies Specification and

Implementation) methodology to form “multi-agent society” models. System development of this study is

carried out on the agent middleware platform, JADE (Java Agent DEvelopment Framework); substantial

contributions are: (1) Establishment of service-sharing System by using the agent technology that uses a

single window for communicating with other agents; (2) the system framework and the service discovery

template accomplished in this study enable the developers to promptly configure service-sharing applications;

(3) inheriting the abstractive service search mechanism of FIPA (The Foundation for Intelligent Physical

Agents), this System has increased compatibilities with other systems; and using the existing JXTA based

service discovery architecture to implement service distribution and search on the agent platform resolves

difficulties in accessing peer to peer services in the Ad-Hoc network; (4) the System sets up mediation

models for service-sharing according to agent communication language set up with (defined by) FIPA

standards, and sets up communication ontology for service-sharing, therefore in the communication process,

it is easy to understand intentions of each other without the need of particular understanding of the

vocabulary and syntax used by each other; this substantially simplifies communication problems between

heterogeneous agents.

Keywords: multi-agent system, Agent Society, FIPA Specifications, PASSI Methodology, JXTA

1 Introduction

Following the gradually matured development and popularization of mobile devices, their calculation functions

are mostly capable of meeting with majority of personal requirements; however, comparing with the popularity

and functionality provided to users by the calculating and storing facilities of PCs, there still exists rooms for

further development in mobile devices. Architecture of application programs can be divided into individual and

collaborative ones. For supplementing functional insufficiencies, many have proposed agent technology, together

with decentralized architecture, to distribute resources and functions onto various devices, so as to strengthen the

insufficient capabilities of personal mobile devices [1][2]. The agent issue, however, exists problems in

communication and discovery aspects; this study aims to incorporate collaborative concepts to implement service

sharing on mobile devices; incorporating agent technology enables to increase system flexibility, such as in

system configuration, service deployment, service discovery, and so on; agents are capable of solving the

unstable service accesses problems in mobile devices owing to the highly mobile nature.

This study aims to build up a multi-agent system [3] in the mobile environment and to extent the exiting

service discovery mechanism [4] so as to solve the problem of mutual exchange of services under different

protocols, and to manage resources and information services [5] of the physical mobile devices by using the

autonomy and decision making capability of agents, as well as to propose flexible transfer of different service

discovery protocols based on FIPA (The Foundation for Intelligent Physical Agents) organization [6] agent

discovery mechanism, thus to improve flexibility and stability of the service sharing system.

* Correspondence author

Journal of Computers Vol.18, No.1, April 2007

72

Mobile devices can classify as many groups of small LAN in the Ad-Hoc environment. However, services

can’t communicate each other, because mobile devices use different communication protocols. Therefore, this

research extends agent discovery mechanism to implement a service sharing platform. To accomplish the purpose,

we must solve some problems are as follows:

1. Communication among the heterogeneous agents: These agents must use the same agent communication

language to reduce the gap among them when they want to do some behaviors like communication,

negotiation or collaboration. However, many system developers build their agent systems by using the

traditional object-oriented method, they must rewrite or modify some source codes for sharing their

resources or running tasks when these agents follow different communication standard. When the system

developers build the agent systems which follow the same standard, therefore it makes the heterogeneous

agents can communication among them.

2. Translation of service descriptions among service-discovery mechanisms: The traditional agent platforms

have no the standard service descriptions format, but nowadays the agent middleware follows the FIPA

standard which uses XML. FIPA standard also proposes the bit-efficient format in the low bandwidth

network environment. To think about the existing Service Discovery Protocol (such as JXTA, Bluetooth)

and the characteristic of low bandwidth network in Ad-Hoc environment, the agents’ service descriptions

incur the format and version control problems. This study introduces the Template Translating Agent for

the middleware translation mechanism, and this agent searches the suitable agent platform and registers the

physical location temporarily for other platform’s agents by integrating these different service descriptions.

3. Self-Configuration and Detection of Agent for their Environment: The end users don’t know more about

the related knowledge of protocol architecture. The agents need the self-configuration ability for

deployment, and have the ability of evaluating the performance and ability of mobile devices. Because of

the limited resources of mobile devices, the agents must manage and allocate them in a well-defined

manner.

4. Friendly User Interface and Configuration: From the users’ viewpoint, they need not understand how to use

which kind of the connection protocol and architecture of the service of the Discovery Agent. The

Discovery Agent detects the existing devices and the supplied services of agent platform under some pre-

defined conditions (such as the user preferences, the connection method and cost, the service function and

quality) constantly. Besides, thinking about the relationship within the agent society, the pre-defined

cooperation or the frequent access point can be registered in the static cache for more fast access in the

future.

5. Frequent Connection in Ad-Hoc [7][8]: The dynamic and the static peer to peer connection methods are

different; the mobile device lacks of resources (such as CPU and storage), the agent on the mobile device

cannot provide the same strength and continuous services just like directory servers in the agent platform

on the PC. It is possible to incur the service link error, because the mobile devices are not within the

connection scope, or the poor quality, or the bad routing protocol. This study applies the concept of peer to

peer storage, accesses data among the different agent platforms, and update service information on the

regular time schedule in the distributed manner.

2 Survey of Related Researches

PASSI, a Process for Agent Societies Specification and Implementation, is the methodology of the multi-agent

system [9][10] where detailed definition and specifications are provided for from requirement analysis to

program compilation and deployment. PASSI integrates design models and design concepts in both object

oriented software engineering and multi-agent, and completes analysis of multi-agent system by way of 5 models

and 12 steps using the expression of Unified Modeling Language, UML [11] to describe the system architecture.

The main reason that this study uses PASSI methodology lies on the more flexibility of looping development

in analysis and design phases; this is because the PAASI methodology allows arbitrary addition of new

requirements to remodel system requirements during the design phase. PASSI methodology systematically and

clearly depicts the interactive relationship, communication models and the agent relationship. General UML

descriptions used in system model analysis and design allow other analyzers to quickly understand the system

architecture by way of graphics; PASSI provides convenient analysis steps that allow system analysts easily and

quickly enter into system implementation phase, to shorten the developing time of the Multi Agent System

[10][12].

Yang et al: Design and Implementation of Service Discovery Architecture Based on Multi-Agent Systems in

an Ad-Hoc Environment

73

Fig. 1. PASSI Methodology Flowchart.

Fig. 1 depicts agent modeling process of the PASSI methodology, from the initial system requirement to the

System Requirements Model of the methodology, Agent Society Model, Agent Implementation Model, Code

Model, Deployment Model, etc. New requirements are allowed to add in to the Agent Implementation Model at

any time; the serial repetition makes the architectural analysis and design of the multi-agent system more precise,

facilitating system developers to perform system slicing and implementation [13].

3 System Requirement Analysis

3.1 User Requirement Analysis

Traditional service-sharing architecture has various disadvantageous and inconveniences, the study induced

several reasons for them from the view points of both the users and the system developers. From that of the users’,

although the user owns mobile devices that possess on-line capabilities, not every user knows the networking

architecture nor is he/she capable of configuring the network; further, services of different protocols are not

capable of discovering each other, rendering the users have to use devices that support the same protocol so as to

be able to share the services.

For the system developers, new subsystems must be developed from scratch to cope with “user requirements”

for services that follow different protocols; moreover, when supporting different discovery service protocols,

system developers generally do not consider the flexibility of the system discovery mechanism because revision

of the system is required to accommodate the new protocol. [14]

Fig. 2 illustrates independent operation of each agent within the platform. When a user files a service

requirement, the agents accomplish the task in the form of collaborative cooperation. [15] The agent platform

proposed in this study proposed following roles base on requirement analysis of user functions; they are

respectively named Discovery Agent, Template Translating Agent, Config Agent, Recording Agent, Resource

Management Agent, and Invoking Agent.

Journal of Computers Vol.18, No.1, April 2007

74

Fig. 2. The DASS (Distributed Agent-based Service Sharing) Structure of the Study.

3.2 Model of System Requirement

Use Case Diagrams are used to depict system functions in the Domain Description phase, with detailed scenario

given for use at the role identification phase. The domain description diagram is for assisting the system analyst

to carry out preliminary analysis of the entire system, and to split system functional requirements. Fig. 3 is the

domain description of DASS (Distributed Agent-based Service Sharing). The scenario of the system triggering

the discovery of matters is described as follows:

1. A system is triggered by the requisition function of the service request, which enables the service searcher

mechanism to autonomously search for appropriate services and transfer the service into a service file format.

2. Search Program, a process that is responsible for searching the services, will firstly attain current device

resources; connection and user configure information from Basic Configuration. Search Program then

transfers defined service requirements to Template Translating according to protocols used by different

configurations for broadcasting or routing to device locations. After this action, a record of devices and

services will be received, Search Program then requests Recording Service Description of the local platform

for updating the service log. The Recording Service Description will periodically submit search requisition to

Discovery Service to ensure effectiveness of the recorded data.

3. After attaining service log, Invoking Service directly calls the remote agent platform or indirectly access the

remote service via a third party agent gateway. Prior to building up the link, it is required to attain the

authorization. The service request will search for service providers that have already authorized the service

request, among groups, to proceed with the service connection. Besides that, when calling for service, it

requires to consider the calling mode so that Invoking Service is capable to coordinate with different

transferring modes.

4. Resource Service Management comprises deploy resource, control security, monitor resource of system, and

maintain lease activities which can provide for resource configuration of the local agent platform [16].

Yang et al: Design and Implementation of Service Discovery Architecture Based on Multi-Agent Systems in

an Ad-Hoc Environment

75

Fig. 3. System Domain Description Diagram.

Agent Identification Phase. The agent identification diagram depicting all the agents of the service sharing

mechanism helps in understanding the role played by the agent in the system and the interacting relationship with

other roles.

After proceeding multi-agent domain description, we proceed with the agent identification phase as shown in

Fig. 4; each package represents an agent role; the package includes the action capability of the agent. By

categorizing the domain descriptions of Fig. 3 in term of the tightly coupled functionalities, they are respectively:

1. Resource Management Agent: system operation is initiated on receipt of user requisition; Resource

Management Agent deploys for the service of devices, the system also automatically detects device resources

and select if service is released according to user preferences and presented in a unique style.

2. Discovery Agent: a Discovery Agent autonomously queries for services opened on a remote agent platform

via third party protocols (such as JXTA, Bluetooth) deployed on the device. Searcher controller firstly attains

resource information of the current device from Config Agent and then transferred service requirements

defined by the user to Template Translating Agent, and then broadcasts with protocol used by different

architecture or searches for each device node according to third party protocols. After that, response from

agent platform of each device will be received, with the reply of services that are deployed on the remote

platform. The local end searcher controller will then request Recording Agent to update the current service

log.

3. Invoking Agent: when the local end Invoking Agent carries out the service call to a remote agent platform,

two different situations may be seen: (1) direct access to the remote service; (2) accomplish service sharing

via a third party gateway as a relay. Whether or not of one of the above situations, the service request must

attain authorization from the service provider prior to building up the connection.

4. Config Agent: the Config Agent, being the window for the user to access the system, communicates with the

user to attain user preferences for configuring the system. It requires action abilities to detect linking

capability, operation ability, and storing capacity of the mobile device; it also needs to remind other agents of

the current status of the mobile device and that of the user.

5. Recording Agent: the Recording Agent attains a descriptive file on the services deployed for the machine; it

also stores service descriptions searched from other platforms. The Recording Agent periodically issues re-

search requisitions to Discovery Agent to update service descriptions of its own platform. When the remote

agent platform performs a search against the local machine, the Recording Agent will compare the query

issued by the remote Discovery Agent and reply appropriate linking references to the remote platform via the

Discovery Agent.

6. Template Translation Agent: the Template Translation Agent is capable of package parsing for Bluetooth and

JXTA service discovery mechanisms. Combining with the agent communication language FIPA ACL, it

packages the service descriptions on the system. Currently package format of the DASS agent communication

language includes mainly XML, string, and byte.

Journal of Computers Vol.18, No.1, April 2007

76

Fig. 4. System Agent Identification Phase.

Role Identification Phase. In the role identification phase, the scenario generated in the agent identification

phase is described using a sequence diagram for the sequential order, with detailed interactive relationships

between the agents thoroughly depicted; the study will illustrate this for the Discovery Agent as an example.

Other agents are of the same manner and therefore not repeated.

Role identification of Discovery Agent is illustrated in Fig. 5. After service requester issues the request against

Discovery Agent, the Discovery Agent needs to attain from Config Agent of the current platform environment

and user preferences, and to transfer the attained user service requirements and discovery mechanism to be used

to Template Translating Agent for converting the packet, with the result so attained replied to Discovery Agent,

for Discovery Agent to proceed with platform search via a third party service discovery protocol. Discovery

Agent s of remote platforms will then, according to the attained service request, submit the request to Recording

Agent for proceeding with data filtering. Lastly, the result will be sent back to the Discovery Agent on the

platform that the request was issued from and recorded.

Task Specification Phase. The task specification phase is depicted with UML [17] activity diagram for the

interactive capability between a specific agent and other agents, it is divided into 2 parts: the right half of the

figure is the internal task flow of the agent; the left half is the reactive relationship between the specific agent and

other agents. This paper discusses the Discovery Agent as an example. Other agents are of the same manner and

therefore not repeated.

Fig. 6 depicts task scope of the Discovery Agent and the mode of communication with other agents. At the

beginning the service user submits a service request to Discovery Agent; packet conversion is made by Template

Translating Agent addressing the protocol; and then, via a third party protocol, search of service is carried out

against the remote agent; lastly the information sent back is passed on to Recording Agent to proceed with

compilation of service description files.

Yang et al: Design and Implementation of Service Discovery Architecture Based on Multi-Agent Systems in

an Ad-Hoc Environment

77

Fig. 5. Discovery Agent Role Identification.

Fig. 6. Job Specification of the Discovery Agent.

4 Analysis and Design of System Architecture

4.1 Agent Society Model

There are 4 phases of the Agent Society Model, namely role identification phase, ontology description phase,

role description phase and protocol description phase. We will only discuss ontology description phase and role

identification phase which are of essential importance.

Following the PASSI methodology, the Agent Society Model has four phases, including Role Identification

Phase, Ontology Description Phase, Role Description Phase and Protocol Description Phase. Role Identification

Phase describes the relationship among the agents and the actors, and Agent Society Model extends on Role

Description Phase. To reduce the duplicate content, we don’t discuss these issues again. However, the agents

could know other agents’ attention by sharing the same knowledge; this is the reason why Ontology Description

Phase is existed. Besides, each agent play the different role in the different time, and each role provides the

different services, so we have to descript agents’ role in detail during the communication. This is the purpose of

Role Description Phase. To avoid they don’t know how to response the message among the agents, they must

know the message performative each other, and how to handle the messages from other agents etc, they can

communicate efficiently, so this is the reason why Protocol Description Phase has to be proposed.

Journal of Computers Vol.18, No.1, April 2007

78

Ontology Description Phase. In this phase PASSI methodology defines two ontology descriptions namely

Domain Ontology Description (DOD) and Communication Ontology Description (COD). DOD uses three

“relationship elements” of the class diagram – generalization, association and aggregation – to configure the

ontology.

Fig. 7 is the Ontology Description of the Discovery Agent Domain describing the agent domain ontology used

by the Discovery Agent. Discovery service of JXTA is based on the Advertisement file, while each of other

service discovery architectures [18] owns an individual Advertisement description. The header of the internal

data of these service discovery description files includes simplified text attributes such as station name, physical

location, web address, name of agent platform, service description on the agent platform, etc.

Fig. 7. Ontology Description of the Discovery Agent Domain.

Fig. 8 describes that Communication Ontology Description diagram describes the common specifications used

for the communication between the two agents for ensuring an identical object is described by the both agents

during a communication. The modeling diagram includes two elements: one is agent stereotype, which is marked

with yellow notes and describes its own knowledge facilities of the agent; the other is Communication Stereotype,

which is marked with white notes.

The agents communicate by using the FIPA-ACL (FIPA-Agent Communication Language), the parameter

“ontology” in the FIPA-ACL statement can assign the “specific domain Ontology” during their communication.

In Fig. 8, when Discovery Agent communicates with Template Translation Agent, they use Ontology “Template”

during their communication, and the content of FIPA-ACL statement uses the vocabulary defined in Template

Ontology. By using the same knowledge, therefore they can communicate efficiently each other.

Respect to the reasoning rules, and let’s take communication between Discovery Agent and Template

Translation Agent for example, the reason rule is as following:

(?agent yfc:request ?format) (?template yfc:hasFormat ?format) -> (?agent yfc:hasTemplate ?template)

This reasoning rules mean that if one agent requests a special template format, and this template just has the

format they want, therefore, the other agents can own the same template. By following the reasoning rule,

Template Translation Agent can transform the message he receives to the XML format, and sends the result to

the Discovery Agent.

Yang et al: Design and Implementation of Service Discovery Architecture Based on Multi-Agent Systems in

an Ad-Hoc Environment

79

Fig. 8. Ontology Description Diagram of System Communication.

Role Description Phase. In the role description phase describes the role each agent plays in its life cycle and the

communication status in the collaborative cooperation. The role description diagram uses a package to represent

an agent; a category stands for the role that the agent plays; every role comprises several tasks. Therefore a role

description diagram can precisely describe all roles and rules in the agent society as well as interactions between

agents.

Protocol Description Phase. As we have seen in the Ontology Description phase and as specified by the FIPA

architecture, a protocol has been used for each communication. By following FIPA’s standard, hence we don’t

need to specify protocols by our own. We will discuss the protocols using in our study as follows:

Fig. 9 describes that the FIPA Request Interaction Protocol (IP) allows one agent to request another to

perform some actions. The Participant processes the request and makes a decision whether to accept or refuse the

request. If a refuse decision is made, then “refused” becomes true and the Participant communicates a refuse.

Otherwise, “agreed” becomes true.

If the conditions indicate that an explicit agreement is required (that is, “notification necessary” is true), then

the Participant communicates an “agree”. The agree may be optional depending on circumstances, for example, if

the requested action is very quick and can happen before a time specified in the reply-by parameter. Once the

request has been agreed upon, then the Participant must communicate either:

� A failure if it fails in its attempt to fill the request,

� An inform-done if it successfully completes the request and only wishes to indicate that it is done, or,

� An inform-result if it wishes to indicate both that it is done and notify the initiator of the results.

Any interaction using this interaction protocol is identified by a globally unique, non-null conversation-id

parameter, assigned by the Initiator. The agents involved in the interaction must tag all of its ACL messages with

this conversation identifier. This enables each agent to manage its communication strategies and activities, for

example, it allows an agent to identify individual conversations and to reason across historical records of

conversations.

Journal of Computers Vol.18, No.1, April 2007

80

Fig. 9. FIPA Request Interaction Protocol.

4.2 Agent Implementation Model

There are two phases of the Agent Implementation Model namely Agent Structure Definition and Agent Behavior

Description phase as defined as follows:

Fig. 10. Diagram of Single Agent Structure Definition.

Yang et al: Design and Implementation of Service Discovery Architecture Based on Multi-Agent Systems in

an Ad-Hoc Environment

81

Agent Structure Definition Phase. A single-agent view refers to descriptions of details of the internal structure,

addressing each agent, including the arbitration and method. Fig. 10 is the structure definition diagram of the

Discovery Agent. On the left of Fig. 10 shows the internal structure of the Discovery Agent, one class stands for

one agent: the Discovery Agent comprises function formulas including setup, shutdown, registerInAMS,

registerInDF, searchAP, getSystemStatus, etc. When the Discovery Agent is created, the system will register

Agent Management System (AMS) by calling the registerInAMS() function, then the Discovery Agent initiates

by calling setup() function. If the Discovery Agent needs to call other agent’s service, he will call the

registerInDF() function to register the Directory Facilitator (DF). Finally, if the Discovery Agent finish his job,

the other agents will stop it by calling the shutdown() function. On the right part of Fig. 10 are facilities that the

agent is capable of during the communication, they are respectively ACLListener and SystemListener &

PeerDiscovery, being the inheritances of SimpleBehaviour and CompositionBehavious respectively.

Fig. 11 is the Definition of Multi-Agent Structure. After system initiation, Config Agent then query for service

provider and proceed with system configure; then Resource Management Agent will access the current path of

files and directory, with automatic release carried out for the file type specified by the user. Resource

Management Agent will carry out tasks such as collecting names of file extensions. Every now and then, the

Discovery Agent in the system will carry out search of remote agent platform. Discovery Agent will collect

system information from Config Agent and Resource Management Agent before carrying out search actions; in

case it is required to perform the another service discovery architecture, Config Agent will request Template

Translating Agent to transform the format of the search request or translate the replied data into the format save

in its own platform. Except the recording service descriptions of its own and of other agent platforms, the

Recording Agent also keeps record of preferred services for quick access by the user. Invoking Agent is

responsible for contracting and certifying maintain leases; it is also responsible for meeting with service access

needs of the Config Agent and Recording Agent.

Fig. 11. Definition of Multi-Agent Structure.

Journal of Computers Vol.18, No.1, April 2007

82

Agent Behavior Description Phase. In the Agent Behavior Description phase, further describes role

identification diagram, COD diagram and DOD diagram with sequence diagram as well as comprehends the

internal calling method of the agents and the massage interchanges between agents. Fig. 12 is the agent behavior

diagram with preference information provided by service request where the different water lines differentiate the

different agents, and each channel’s title uses the format of “Agent.Task”. “Agent” is the name of the agent, and

“Task” is the task of the agent. First of all, interface agent calls for internal method: newTask() passes service

information to the consultant via agent communication language. After informing Discovery Agent about user

preferences, of which critical information is passed on to the requester and Discovery Agent for performing

respective actions. On completion of the task, method: done() is called to end the task.

Fig. 12. Multi-agent Behavior Descriptions.

5 System Implementation

In the versatile modern teaching, teachers and students have more opportunities to perform field teachings

outside the school; however, while doing so, traditionally students make notes with pen and paper which is

inadequate to record the audio and colorful world in full. Therefore we designed an Ad-Hoc observing and

recording system for the students to record and compile the learning in real-time in the Ad-Hoc environment. The

teacher, via cooperation between the agents, is able to monitor and control the learning status of the students,

with the capability to perform individual discussions with the student as well. The interaction between the

students and the teachers is in real time, and the multiplicity between the students and the teachers is multiple to

multiple.

The study takes example of observation of bread worms performed by the primary school students in the

course of Nature and Life. The teacher, priors to field teaching, may compile in advance the pre-designed

observation process and questions in Excel, and then convert and export the file, as shown in Fig. 13. In view that

the screen of the mobile device is rather small and inconvenient for text input, the questions are mostly in the

form of selective and graphic ones; the exporting format is XML, as shown in Fig. 14.

Yang et al: Design and Implementation of Service Discovery Architecture Based on Multi-Agent Systems in

an Ad-Hoc Environment

83

Fig. 13. The Exporting Interface.

Fig. 14. The Exported Question.

Before proceeding with observation activities of the course, the teacher may first explain precautions during

the lesson activities, and then deploy the internal Bluetooth function of the system for file transfer service, so that

the students use the observing and recording system of the PDA to search for the service deployed by the teacher,

as shown in Fig. 15.

Journal of Computers Vol.18, No.1, April 2007

84

Fig. 15. Bluetooth Discovery Service.

Now we discuss how the students know teacher’s service. Teacher’s devices will broadcast service

advertisements, and student’s devices will receive them. If students’ devices receive the advertisement of a

service it is providing, it will silently discard the message. If the received service is not local but it is stored in

service cache, the devices will compare lifetimes of both services (stored and received). It will, definitely, store

the one with higher lifetime. Finally, when students’ devices receive an advertisement of a service which is not

stored, it will directly extract the necessary information and store it. Fig. 16 shows the algorithm of Service

Advertisements. [19]

if (received service is stored)

if (stored service is local)

Discard received message

else

if (stored service bigger lifetime)

Discard received message

else

Store received service

else

received service

Fig. 16. The Algorithm of Service Advertisements.

File transfer can be performed when the service has been found; the default setting will send the question to

My Documents under the root directory; observation can be carried out when the questions are received. Students

can record observation result by answering two type questions. A select question is as shown in Fig. 17; students

may answer the question by selecting the items observed.

The PDA is equipped with touch panel that allows the student to record the observed results with the touch

pen, with different colors as desired, as that shown in Fig. 18.

Yang et al: Design and Implementation of Service Discovery Architecture Based on Multi-Agent Systems in

an Ad-Hoc Environment

85

Fig. 17. A Multi-Choice Question.

Fig. 18. A Graphic Question.

When the students complete the observation activities, file transfer service may be performed; the teacher may

use Bluetooth to perform service discovery and service use. As indicated in Fig. 19. When the teacher receives

the file transfer service, correction and rating can be carried out addressing selection and graphic questions; since

each selection question has a fixed answer, and it only requires importing the answers made by the students. As

for the Graphic questions, the teacher can also make corrections by using this system while received the graphs,

as shown in the figure, and to give rating or comment while browsing them; it also allows to check-select the

speech recognition function to convert oral (voice) ratings or comments into texts for recording the comment.

Fig. 19. Interface for Correcting Graphic Questions.

Journal of Computers Vol.18, No.1, April 2007

86

Fig. 20. Browse Screen on PDA of a Multi-choice Question after File Conversion.

Besides that, after the teacher completes correcting the answers, file conversion function may be used to

transform XML files into HTML format and return them to the student, facilitating the student to directly browse

the observed records using the PDA, or place the observed records into a Blog site, as shown in Fig. 20.

The service of the system is divided in the observing and recording system and the correcting system. When

these students execute the observation activities, the observing and recording system will record the records in

the temporary file. If the service is terminated, the students just need restart their PDA, the system will read the

temporary file, and the students could continue to execute the observation activities. When the students complete

the observation activities, the file transfer service may be requested and using transaction as the transaction of

database system to handle this error situation. If the file transfer service is terminated during the upload, the

system will restore the record to the previous state. On the other words, the transaction must be either entirely

completed or aborted; no intermediate states are accepted. The observing and recording system is based on the

multi-agent system, so the life cycle of the service and agent is the same. In this study, the six agents don’t in the

active state. They will be in the pause state to release these system resources if and only if the system doesn’t

need them to work in the near future.

6 Conclusions and Future Prospects

The “Multi-agent System－Distributed Agent-based Service Sharing” proposed by our research deploys

various resources by using agent technology as the single window, to simplify service sharing on mobile devices

and to strengthen management of resource sharing. In the service query aspect, implementation of abstract

discovery specifications established by FIPA [20] strengthens their compatibility with other systems; and through

agent communication language and the ontology that specifies service sharing, communications between agents

on heterogeneous platforms are performed to achieve service finding and request; lastly, example is made on

using Ad-Hoc observing and recording system to develop the system.

The DASS structure proposed by the research is capable of resolving service sharing problems under the

decentralized environment and proposing substantial contributions as depicted as follows:

Yang et al: Design and Implementation of Service Discovery Architecture Based on Multi-Agent Systems in

an Ad-Hoc Environment

87

� Communication among the heterogeneous agents: according to FIPA standard, the definition of agent

communication language (of the standard) is capable of simplifying communication among the heterogeneous

agents; no matter what program language or structure is used for implementation, agents will be able to

understand each other as long as FIPA standard is observed by both parties.

� Setting up agent system on mobile devices: use JADE (Java Agent DEvelopment Framework)-LEAP to build

light-weight multi-agent on the mobile device; operation platforms include PDAs and Smart Phones. By

adding service sharing negotiation mechanism into the communication among the agents, whether the

supply/demand relationship between devices is met can be deduced via this functionality, so as to ensure

correctness and quality of the service requested by the user.

� To succeed to the abstract FIPA service registration and query specification. Doing so can increase system

compatibility. And for expanding system discovery, Template Translating Agent model is proposed to

perform Template Translation between service discovery architectures. Lastly, use the existing service

sharing architecture – JXTA implementation to enable inter-agent services to communicate across different

agent platforms and devices.

Mobile device and agent program design are the most popular research subjects. Our study combines these

subjects to propose the DASS architecture to solve the problems encountered when performing service sharing

under Ad-Hoc environments; the study also implements information sharing systems with the same architecture.

Directions for succeeding researches based on this study are as follows:

� Currently discovery of the agent platform is mainly JXTA-based, more distributed service architectures that

support mobile devices such as UPnP and Bluetooth can be included to expand discovery effectiveness of the

system.

� This study focuses on agent-oriented programming. Only fundamental functions are provided for service

sharing under the distributed environments. Further extension and development can be addressed on different

requirements in the future.

� Further reinforcement can be made on the deduction and decision making capabilities of the agent itself so

that agents are more intelligent. With reinforced autonomy in the agents, user operation steps can be reduced.

� Architecture used in this study may be combined with other component-based service architectures like web-

services, enabling service providers to be more diversified.

7 Acknowledgement

This work described in this paper has been partially supported by the Da-Yeh University under the grant ORD-

9416.

References

[1] S. Berger, S. McFaddin, and C. Binding, "Towards Pluggable Discovery Frameworks for Mobile and Pervasive

Applications," in Proceedings of 2004 IEEE International Conference, pp.308-319, 2004.

[2] M. Panti, L. Penserini, L. Spalazzi and S. Valenti, "A FIPA Compliant Agent Platform for Federated Information

Systems," International Journal of Computer & Information Science, May 2000.

[3] B.K. Langley, M. Paolucci, and K. Sycara, "Discovery of Infrastructure in Multi-Agent Systems," in Proceedings of the

second international joint conference on Autonomous agents and multiagent systems, Australia, pp.1046-1047, July

2003.

[4] C.R. Dunne, "Using Mobile Agents for Network Resource Discovery in Peer-to-Peer Networks," ACM SIGecom

Exchanges, Vol. 2, No. 3, pp.1-9, 2001.

[5] M. Storey, G. Blair, and A. Friday, "MARE: Resource Discovery and Configuration in Ad Hoc Networks," Mobile

Networks and Applications, Vol. 7, No. 5, pp. 377-387, Oct 2002.

Journal of Computers Vol.18, No.1, April 2007

88

[6] L. Chunlin, and L. Layuan, "Combine Concept of Agent and Service to Build Distributed Object-Oriented System,"

Future Generation Computer Systems, Vol. 19, No. 2, pp. 161-171, Feb. 2003.

[7] C.-F. Chiasserini and V. Srinivasan, "Quality of Service in Ad Hoc and Sensor Networks," Performance Evaluation,

Vol.64, No.5, pp. 377-378, June 2007.

[8] C.-S. Hsu, Y.-C. Tseng and J.-P. Sheu, "An Efficient Reliable Broadcasting Protocol for Wireless Mobile Ad Hoc

Networks," Ad Hoc Networks, Vol.5, No.3, pp. 299-312, April 2007.

[9] M. Wooldridge, N.R. Jennings, and D. Kinny, "The Gaia Methodology for Agent-Oriented Analysis and Design,"

Autonomous Agents and Multi-Agent Systems, Vol. 3, No. 3, pp. 285-312, 2000.

[10] P. Charlton, E. Mamdani, and R. Cattoni, "Evaluating the FIPA Standards and Its Role in Achieving Cooperation in

Multi-Agent Systems," in Proceedings of the 33rd Hawaii International Conference on System Sciences, pp.8034-8041,

2000.

[11] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Language User Guide, Addison Wesley, 1999.

[12] P. Vrba, and V. Hrdonka, "Material Handling Problem: FIPA Compliant Agent Implementation," in Proceedings of the

12th International Workshop on Database and Expert Systems Applications, pp.635-639, 2001.

[13] K. Jun, L. Boloni, K. Palacz, and D.C. Marinescu, "Agent-Based Resource Discovery," in Proceedings of the 9th

Heterogeneous Computing Workshop, pp.43-49, 2000.

[14] O. Ratsimor, D. Chakraborty, and A. Joshi, "Service Discovery in Agent-Based Pervasive Computing Environments,"

Mobile Networks and Applications, Vol. 9, No.6, pp.679-692, 2004.

[15] M. Berger, M. Bouzid, and M. Buckland, "An Approach to Agent-Based Service Composition and Its Application to

Mobile Business Processes," IEEE Transactions on Mobile Computing, Vol 2, No 3, pp. 197-206, July 2003.

[16] H. Tian, and H. Shen, "Mobile Agents Based Topology Discovery Algorithms and Modeling," in Proceedings of 7th

International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN'04), pp.502-507, May 2004.

[17] AUML, The FIPA Agent UML, http://www.auml.org, 2004.

[18] M. Barbeau, "Service Discovery in a Mobile Agent API Using SLP," in Proceedings of the Global Telecommunications

Conference, pp.391-395, 1999.

[19] Y. Yang, H. Hassanein, A. Mawji, "Efficient Service Discovery for Wireless Mobile Ad Hoc Networks," IEEE

International Conference on Computer Systems and Applications, pp. 571-578, March 2006.

[20] FIPA, Services Work Plan, Foundation for Intelligent Physical Agents, http://www.fipa.org/docs/wps/f-wp-00019/f-wp-

00019A.html, 2003.

[21] G. Hattori, S. Nishiyama, and C. Ono, "Making Java-Enabled Mobile Phone as Ubiquitous Terminal by Lightweight

FIPA Compliant Agent Platform," in Proceedings of the First IEEE International Conference on Pervasive Computing

and Communications, pp.553-561, 2003.

