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Abstract. Although clustering might not be a panacea for today’s ills, it might help the organization that is 
trying to maximize some of its existing resources. In this paper, we experimentally present a small-scale 
personal computer based cluster system for network servers as a low-cost alternative to traditional high-
performance computing systems.  The enhanced cluster system for scalable network services (CSSNS) 
consists of the parallel virtual file system (PVFS), the Linux Virtual Server (LVS), the Director, and several 
high-end Pentium PCs connected by high-speed switched Ethernet networks for I/O nodes and cluster nodes. 
The PC cluster system constructed for scalable network services is characterized by its high performance, 
high availability, high scalable file system, low cost, load balance on cluster servers, and convenient 
managing/set-up for a broad range of applications. The transmission performance experiments for the entire 
system further validates and confirms that CSSNS is truly a laboratory-made high-performance, high 
reliability and scalability personal computer based cluster system for scalable network servers. 

Keywords: cluster system, parallel virtual file system, Linux Virtual Server, scalable network service, 
scalable parallel file system, network file system, IP load-balancing technique, single-IP-image 

1    Introduction 

With the explosive growth of Internet and WWW services and the increasing availability of inexpensive yet 
powerful personal computers and servers, there has been an increasing trend toward personal computer cluster 
systems for small-scale network services.  The reasons for this trend are the good performance price ratios these 
systems offer, the availability of these systems, and the broad range of applications suitable for these systems. 
More specifically, the following features are essential for hardware and software solutions to support scalable 
and highly available network services for any web application [1, 2, 3].  

 Scalability—The ability to scale to large, rapidly growing user populations without a major overhaul.  
 24 x 7 availability--Even a short downtime may cause millions of dollars in damage to e-commerce 

companies. A web service should stay operational and responsive even in the face of partial 
hardware and software failures.  

 Consistency — The network service system should strictly maintain the consistency of user data. 
 Manageability--Management of the web service must be effective and operationally manageable 

regardless of how it was designed and/or configured.  
 Cost-effectiveness-- The total system cost for building a cluster of workstations/PCs for certain types 

of applications and different workloads must be cost-effective.  This cost is determined by various 
architectural and managerial parameters including memory hierarchy, the interconnection network 
configurations of the cluster, and the management costs [4]. 

It is challenging for a network service to achieve all of these properties, especially when it must manage large 
amounts of persistent states, as this state must remain available and consistent even if individual disks, processes, 
or processors crash.  In this paper, we build a small-scale cluster-based network server system as a low-cost 
alternative to traditional high-performance computing systems.  The design and development of our cluster 
system for scalable network services (CSSNS) is characterized by its high performance, high availability, high 
scalable file system, low cost, broad range of applications, and convenient managing/set-up.  The parallel virtual 
file system (PVFS) [5, 6, 7, 8] is deployed in the system to provide a high performance and scalable parallel file 
system for PC clusters. The Linux Virtual Server (LVS) [3, 9, 10, 11], a scalable and highly available server 
built on a cluster of loosely coupled independent servers, also provides end users a single system view so they 
may operate in a smooth environment.  Performance comparisons and analyses of the PVFS cluster and the 
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combined PVFS and LVS cluster systems using a modified weighted least-connection scheduling algorithm 
(MWLC) and Virtual Server via Direct Routing (VS/DR) load-balancing technique were conducted to report our 
discoveries and derive our conclusions. Lastly, the information from a comparative review on a few commercial 
and/or research products which uses different designs and implementations for single-IP-image are also 
presented in this paper. 

2    Related Concept and Works 

The work described in this paper is part of a larger work to build a high performance yet low cost PC-based 
cluster systems for network services. This section presents a brief overview of the network file system, cluster 
technology for network service, the Parallel Virtual File System (PVFS), and Linux Virtual Server (LVS).  

2.1 Network File System 

Cluster computing has recently emerged as a mainstream method for parallel computing in many application 
domains with Linux leading as the most popular operating system for clusters. As researchers continue to push 
the limits of the capabilities of clusters, new hardware and software have been developed to meet the cluster’s 
needs of computing. In particular, hardware and software for message passing have matured tremendously since 
the beginning of Linux cluster computing. In many cases, cluster networks rival the networks of commercial 
parallel machines. These advances have broadened the range of problems that may be effectively solved by 
clusters. As a result, the cluster and parallel computing are one of the best solutions for high performance 
network file systems. 

Network file systems can be divided roughly into three groups: commercial parallel file systems, distributed 
file systems, and research parallel file systems. The three groups are described as follows: 

The first group comprises of commercial parallel file systems such as PFS for the Intel Paragon [12], PIOFS 
and GPFS for the IBM SP [13], HFS for the HP Exemplar [14], and XFS for the SGI Origin2000 [15]. These file 
systems provide high performance and functionality desired for I/O-intensive applications but are available only 
on the specific platforms on which the vendor has implemented them. 

The second group comprises of distributed file systems such as NFS [16], AFS/Coda [17, 18], InterMezzo 
[19], and GFS [20]. These file systems are designed to provide distributed access to files from multiple client 
machines, and their consistency semantics and caching behavior are designed accordingly for such access. The 
types of workloads resulting from large parallel scientific applications usually do not mesh well with file systems 
designed for distributed access. Distributed file systems are not designed for high-bandwidth concurrent writes 
that parallel applications typically require. 

The third group consists of some research projects in the areas of parallel I/O and parallel file systems, such as 
PIOUS [21], PPFS [22], Galley [23], and PVFS [7]. PIOUS focuses on viewing I/O from the viewpoint of 
transactions, PPFS research focuses on adaptive caching and pre-fetching, and Galley looks at disk-access 
optimization and alternative file organizations. These file systems may be freely available but are mostly 
research prototypes not intended for everyday use by others. The PVFS project is an effort to provide a parallel 
file system for PC clusters, which provides a global name space, striping of data across multiple I/O nodes, and 
multiple user interfaces. 

2.2 Cluster Technology for Network Services 

Clusters of servers, connected by a fast network, are emerging as a viable architecture for building highly 
scalable and available services. This type of loosely coupled architecture is more scalable, more cost effective, 
and more reliable than a tightly coupled multiprocessor system. However, a number of challenges must be 
addressed to make cluster technology an efficient architecture to support scalable services. 

We can see that in client/server applications there are many ways to dispatch requests to a cluster of 
servers in the different levels. In general, these servers provide the same service and contain the same set of 
contents. The contents are either replicated on each server’s local disk, shared on a network file system, or are 
served by a distributed file system. Request dispatching techniques can be classified into the following four 
groups: server-side Round-Robin DNS approach, client-side approach, server-side application-level scheduling 
approach, and server-side IP-level scheduling approaches. The four groups are described as follows: [3]. 

The first group is server-side Round-Robin DNS approach, which has some problem such as the caching 
nature of clients and hierarchical DNS system. It easily leads the system to a dynamic load imbalance state 
among the servers; thus, it is quite a challenge for a server to handle its peak load.  
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The second group is the client-side approach, which has some problems that are not client transparent. 
They require modification of client applications, so they cannot be applied to all TCP/IP services. Moreover, 
they will potentially increase network traffic by extra querying or probing. 

The third group is the server-side application-level scheduling approach, which has some problems, too. 
This approach requires establishing two TCP connections for each request, one is between the client and the load 
balancer, the other is between the load balancer and the server; thus, the delay is high. The overhead of dealing 
with HTTP requests and replies in the application-level is high. Therefore, the application-level load balancer 
will be a new bottleneck when the number of server nodes increases. 

The fourth group is server-side IP-level scheduling approaches, such as Berkeley’s Magic Router [24], 
Cisco’s Local Director [25], IBM’s TCP router [26], Net Dispatcher [27], ONE-IP [28], and Linux Virtual 
Server (LVS) [11].  

Although server-side IP-level scheduling approaches present many great commercial products for practical 
applications, LVS was constructed in this project to meet our two main objectives.  The foremost is to provide a 
high performance and highly available cluster of servers platform for future research into Linux clusters.  The 
second objective is to pick an architecture which meets our low-cost implementations with fast dispatching for 
scalable network services.  Detailed discussion on the merits of these products will be provided in the late 
section where we examine the existing approaches to distributing client’s requests for a single service to 
different servers using one shared cluster address for all servers in the cluster.    

2.3 Linux Virtual Server 

The Linux Virtual Server (LVS) [3, 9, 10, 11] is a Linux project developed by China’s National Laboratory for 
Parallel and Distributed Processing. It is a scalable and highly available server built on a cluster of loosely 
coupled independent servers. The architecture of the cluster is transparent to clients outside the cluster. The 
client interacts with the cluster as if it is working under a unified, yet highly available and powerful server. 

The LVS directs network connections to the different servers according to predefined scheduling 
algorithms in the kernel and makes parallel services of the cluster appear as a service on a single IP address. 
Client applications interact with the cluster as if it were a single high-performance and highly available server. 
The clients are not affected by interactions with the cluster and do not need modification. Transparent adding or 
removing of a node in the cluster achieves scalability and detecting node or daemon failures and reconfiguring 
the system appropriately provide high availability. 

There are three IP load-balancing techniques for directors: Virtual Server via Network Address Translation 
(VS/NAT), Virtual Server via IP Tunneling (VS/TUN), and Virtual Server via Direct Routing (VS/DR)[3]. The 
director running the modified kernel acts as a load balancer of network connections from clients who know a 
single IP address for a service to a set of servers that actually performs the work. In general, real servers are 
identical, they run the same service and they have the same set of contents. The contents are replicated on each 
server’s local disk, shared on a network file system, or served by a distributed file system. The data 
communication between a client’s socket and a server’s socket connection occurs regardless of whether a TCP or 
UDP protocol is used.  

2.4 Parallel Virtual File System 

The parallel virtual file system (PVFS) [5, 6, 7, 8] project was developed by the Parallel Architecture Research 
Laboratory (PARL) established by the National Aeronautics and Space Administration (NASA) Goddard Space 
Flight Center. It is an effort to provide high performance and scalable parallel file systems for PC clusters. PVFS 
is an open source and released under the Gnu's Not Unix (GNU) General Public License (GPL). It requires no 
special hardware or modifications to the kernel. PVFS provides four important capabilities, including: consistent 
file name space across the machine, transparent access for existing utilities, physical distribution of data across 
multiple disks in multiple cluster nodes, and high-performance user space access for applications. For a parallel 
file system to be easily used, it must provide a name space which is the same across the cluster and it must be 
accessible via the utilities to which we are all accustomed. PVFS file systems may be mounted on all nodes in 
the same directory simultaneously, allowing for all nodes to view and access all files on the PVFS file system 
under the same directory scheme. Once mounted, PVFS files and directories can be cooperatively operated with 
other familiar tools such as Unix tools. 



Chang and Chen: Constructing and Enhancing a PC Cluster System for Scalable Network Services 
 

45 

3    System Architecture 

The enhanced cluster system for scalable network services (CSSNS) consists of the parallel virtual file system 
(PVFS), the Linux Virtual Server (LVS), the Director, and several high-end Pentium PCs connected by high-
speed switched Ethernet network for I/O nodes and cluster nodes. The architecture of the CSSNS combined with 
PVFS and LVS is depicted in Fig. 1. 
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Cluster Node 2

Cluster Node N

Backup Director 1

Backup Director N

Parallel File System

Management Node

I/O Node 1

I/O Node 2

I/O Node N

Parallel 
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Interface

 

Fig. 1.  The System Architecture of CSSNS 

3.1  IP Load-balancing Technique 

In Fig. 1, the VS/DR mode of the LVS is applied in our cluster system for network services. Although it is more 
complicated to configure. the environment for direct routing, it has the highest performance among all 
architectures of the LVS. Requests from the Internet flow to the director, and the director selects a cluster node 
for connection among many cluster nodes based on the scheduling algorithm used. The director keeps the session 
records by hashing tables between the clients and the chosen cluster node. Each cluster node receives exactly the 
same requests from the director as the clients from the Internet responds to the Internet clients directly without 
sending the responds back to the director. It is a highly efficient method to deal with requests from the Internet 
because the director does not have to process the responding packets from the cluster node. Each cluster node 
directly responds data to clients on the Internet.  

To provide high-performance access to data stored on the system for many clients, the PVFS spreads data 
out across multiple cluster nodes, which is called I/O nodes.  By spreading data across multiple I/O nodes, 
applications have multiple paths to data through the network and multiple disks to which data is stored.  This 
eliminates single bottlenecks in the I/O path and increases the total potential bandwidth for multiple clients. For 
a low cost, high performance, and high scalability file system design in cluster nodes, we employ the PVFS for 
our parallel file system and the Linux kernel interface is used to access the parallel file system in PVFS. 

3.2  Scheduling Algorithm Modification 

There are four scheduling algorithms implemented in LVS: Round-Robin Scheduling, Weighted Round-Robin 
Scheduling, Least-Connection Scheduling, and Weighted Least-Connection Scheduling [24]. Because the 
weighted least-connection scheduling algorithm is dependent on the connections and processing capacities of the 
cluster nodes, it is perhaps a proper algorithm for the CSSNS to satisfy our high performance design criteria for 
network service. The administrator assigns a weight to each cluster node based on its relative processing speed, 
and network connections are scheduled to each cluster node by the percentage of the current number of live 
connections. Each cluster node is a ratio to its weight. A modified weighted least-connection scheduling 
algorithm (MWLC) is proposed in this project to optimize the scheduling process for the cluster system.  Fig. 2 
portrays the design to determine the next connected cluster node, where 
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M: the number of cluster nodes in CSSNS, 
Wi: the weight of cluster node i, 1 <= i <= m, 
Ci: the sum of file size of alive connections in cluster node i, 1 <= i <= m, 
ALL_CONNECTIONS: ΣCi, 1 <= i <= m. 
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Fig. 2.  Modified Weighted Least-Connection Scheduling 

and the next network connection will be directed to the cluster node j, such that 
 

(Cj/ALL_CONNECTIONS)/Wj = min { (Ci/ALL_CONNECTIONS)/Wi }        (1) 
 
This formula can be simplified as 
 

Cj/Wj = min { Ci/Wi, i = 1 .. m }                (2) 
 

4    Experiment 

4.1  Test Environment 

As shown in Fig. 3, clients access network services from the director as requests are forwarded to the cluster 
nodes and the server processor receives data from parallel access interface then passes the responses directly to 
clients. The system comprises of seven personal computers: three of them are 1.7GHz Intel Pentium IV 
processors, 512MB of RAM, 100Mbps Ethernet Card, and each has a 40GB hard disk for cluster nodes, and the 
other four are for the director and I/O nodes with 1 GHz Pentium III processors with 256MB of RAM, 100Mbps 
Ethernet Card, and each has a 20GB hard disk. The operation system of all PCs is Redhat 6.2, which kernel 
version is 2.2.17. The package version of Parallel Virtual File System is 1.5.0, which kernel version is 0.9.0. The 
package version of Linux Virtual Server is 0.8.2. The networks are connected by DLINK DES-1016D 100Mbps 
full duplex locally and isolated from the Internet.  

The network configuration includes three network segments. The first includes the connection that clients 
send requests to the director, and the connection that the cluster nodes respond data to the clients, which is called 
“Internet Connection”. The second network is the connection, which the director distributes requests to the 
cluster nodes, and is called “LVS connection”. The third is the connection for network file system, which is 
between the cluster nodes and the PVFS file system, and is called “PVFS connection”. 
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Fig. 3.  The CSSNS Test Environment 

4.2 Results 

The performance of the two systems are compared, one is on a cluster node with PVFS and without LVS, and 
another system is on the combination with PVFS and LVS, which is tested on two and three cluster nodes, a 
director, and three I/O nodes. These systems are tested based upon different client numbers and file sizes. 
Requests produced by three clients, on average, are sent to the director simultaneously. The five results are 
illustrated as following. 

Result 1. As shown in Table 1, Table 2, and Table 3, the CSSNS costs less time than the system only with 
PVFS. Each cluster node sends data to the client respectively, and parallel access to the file from the PVFS file 
system. Each cluster node can more efficiently communicate with the clients and respond to data for its clients 
quickly. 

 
Table 1. Complete Time ( Only with PVFS ) 

FS\PN 100 150 200 250 300 350 400 450 

10 156.9  252.3 341.8  463.5 596.9 749.2 937.6 1384.5  

20 261.1  335.6 476.4  632.7 812.1 1135.8 1354.7 1912.3  

30 473.2  698.7 975.4  1427.9 1886.5 2014.2 2173.5 2411.6  

40 563.4  723.5 1205.3  1732.8 2057.6 2192.4 2401.9 2693.6  

50 717.2  896.2 1237.5  1847.3 2219.5 2356.6 2631.0 2846.5  

*FS: file size (MB), PN: process number    (unit: second)

         
Table 2. Complete Time for Two Cluster Nodes(CSSNS ) 

FS\PN 100 150 200 250 300 350 400 450 

10 95.6 161.7 206.8 315.6 386.1 512.6 627.8 910.3 

20 157.8 216.3 324.2 394.7 529.3 687.5 874.9 1214.7 

30 287.5 457.1 615.3 874.5 1135.4 1254.1 1338.4 1488.4 

40 367.2 483.1 756.7 1097.2 1317.0 1375.9 1487.5 1589.6 

50 445.7 563.1 724.4 1086.9 1394.9 1481.3 1591.7 1657.4 

*FS: file size (MB), PN: process number    (unit: second)
 



Journal of Computers   Vol.19, No.2, July 2008 
 

48 

Table 3. Complete Time for Three Cluster Nodes (CSSNS) 

FS\PN 100 150 200 250 300 350 400 450 

10 72.6  110.8 164.5  237.7 289.3 368.4 501.9 713.2  

20 103.7  153.1 223.5  290.9 385.3 539.2 579.4 919.2  

30 265.3  352.7 534.3  784.6 953.9 1068.7 1224.6 1305.3  

40 305.1  374.6 634.7  912.5 992.8 1137.9 1263.7 1407.6  

50 389.6  467.9 653.9  1003.1 1105.4 1317.5 1385.2 1488.7  

*FS: file size (MB), PN: process number    (unit: second)
 

Table 4. Complete Time Ratio for Two Cluster Nodes (CSSNS / PVFS ) 

FS\PN 100 150 200 250 300 350 400 450 

10 0.61  0.64  0.61  0.68  0.65  0.68  0.67  0.66  

20 0.60  0.64  0.68  0.62  0.65  0.61  0.65  0.64  

30 0.61  0.65  0.63  0.61  0.60  0.62  0.62  0.62  

40 0.65  0.67  0.63  0.63  0.64  0.63  0.62  0.59  

50 0.62  0.63  0.59  0.59  0.63  0.63  0.60  0.58  

*FS: file size (MB), PN: process number    
 

Table 5. Complete Time Ratio for Three Cluster Nodes (CSSNS / PVFS ) 

FS\PN 100 150 200 250 300 350 400 450 

10 0.46  0.44  0.48  0.51  0.48  0.49  0.54  0.52  

20 0.40  0.46  0.47  0.46  0.47  0.47  0.43  0.48  

30 0.56  0.50  0.55  0.55  0.51  0.53  0.56  0.54  

40 0.54  0.52  0.53  0.53  0.48  0.52  0.53  0.52  

50 0.54  0.52  0.53  0.54  0.50  0.56  0.53  0.52  

*FS: file size (MB), PN: process number    
 
Result 2. As shown in Table 4 and Table 5, the average completion time with PVFS and LVS for two and 

three cluster nodes is about 63% and 51% of the time with only PVFS respectively. Therefore, the performance 
of the system with two and three cluster nodes is about 1.6 (1/0.63) and 2 (1/0.51) times the performance of the 
system with only PVFS, respectively. It is possible to have more than three cluster nodes to improve the CSSNS, 
but it depends on your system load and connections. 

 
 
To find the speedup, some wording notations are defined as follows, where 
 

P: the performance of the cluster system, 
P1: the performance of the cluster system for a single cluster node, 
N: the total number of cluster nodes, 
N’: the number of added cluster node(s). 

 
From result 2, we obtain the following formulas: 
 

N=1+N’                   (3) 
 
The performance of the entire cluster system with more than three cluster nodes, as derived from Table 4 and 

Table 5, can be represented and predicted by the following formulas: 
 

P=(0.4N’+1.2) * P1                         (4) 
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Table 6. Saving Time for Two Cluster Nodes 

FS\ PN 100 150 200 250 300 350 400 450 

10 61.3 90.6 135.0 147.9 210.8 236.6 309.8 474.2 

20 103.3 119.3 152.2 238.0 282.8 448.3 479.8 697.6 

30 185.7 241.6 360.1 553.4 751.1 760.1 835.1 923.2 

40 196.2 240.4 448.6 635.6 740.6 816.5 914.4 1104.0 

50 271.5 333.1 513.1 760.4 824.6 875.3 1039.3 1189.1 

*FS: file size (MB), PN: process number    (unit: second)

 
Table 7. Saving Time for Three Cluster Nodes 

FS\PN 100 150 200 250 300 350 400 450 

10 84.3 141.5 177.3 225.8 307.6 380.8 435.7 671.3 

20 157.4 182.5 252.9 341.8 426.8 596.6 775.3 993.1 

30 207.9 346.0 441.1 643.3 932.6 945.5 948.9 1106.3 

40 258.3 348.9 570.6 820.3 1064.8 1054.5 1138.2 1286.0 

50 327.6 428.3 583.6 844.2 1114.1 1039.1 1245.8 1357.8 

*FS: file size (MB), PN: process number    (unit: second)
 

Result 3. As shown in Table 6 and Table 7, the saving time grows with client numbers and the total amount 
of the files. That is, it saves more time when both the number of service requests and the number of clients 
increase. Even though this graph encompasses only values of file capacity ranging from 10 to 50, the relative 
saving time growth rates are still evident (Fig. 4 and Fig. 5). These saving time behaviors are greatly contributed 
by the load balancer device from the LVS which distributes network connections among a pool of similar 
devices. 
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Fig. 4. Saving Time for Two Cluster Nodes 
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Fig. 5. Saving Time for Three Cluster Nodes 
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Result 4. As shown in Fig. 4 and Fig. 5, the saving time steadily grows with client numbers for moderately 
small amounts of file capacity (< 30 MB).  Although the graphs for 30 MB, 40 MB, and 50 MB seem linear, it is 
easily verifiable that they are not by using a straight-edge. In essence, the performance of the cluster system is 
degraded when the client number exceeds three hundred. Two suggestions are provided to avoid this situation. 

Suggestions 1: To increase the number of cluster nodes to share heavy workload. Since each cluster node has to 
construct one-to-many connections between I/O processes and I/O nodes, the processor of the cluster nodes must 
handle lots of connections, so the system performance slowdown is inevitable. Increasing the number of cluster 
nodes to share heavy workloads is one of the best ways for load balance. 

Suggestion 2: To raise the network bandwidth.  We have found that the network utility rate is usually full while 
the cluster node is busy dealing with large-scale files and plenty I/O processes. To improve the system 
performance, it must raise the network bandwidth to avoid the system performance abruptly shutting down. 

4.3  Memory Load and PVFS Performance 

Using the system monitor to observe the system load is a good way to understand the characteristics of system 
performance. The monitor shows that the system costs a lot of memory to run the program and the memory 
utility rate is full during the experiment. Measurement results for the memory utility rate are presented for a 
variety of testing parameters such as file size and the process number. 

Fig. 6 illustrates the memory utility rate changes when the capacity of handled files vary with time. When the 
memory utility rate is 1, it means the memory load of the system is at normal state. When the rate value is 
greater than 1, it means the memory load of the system is getting worse than normal. If the value is 2, the 
memory load of the system is two times worse than the normal state and the system performance will degrade 
50% from the normal operation. 
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Fig. 6. Memory Load and Capacity of Handled Files  

To find the formula, some notations are defined as follows. Let 
 

P: process number, 
S: file size in MB, 
U: the memory utility rate, 

 
According to Fig. 6, the following formula is obtained. 

 
U = 0.001*P*S+0.9051        (5) 

 
From the formula, it shows that the relation of the memory utility rate, U, and the total capacity of handled 

files, P*S, is linear and under any operational circumstances we would like to keep the value of U equal to 1. 
When the value of U is equal to 1, the memory utility rate is at the normal operational state on cluster node. A 
memory utility rate of k means the system performance will degrade (1 – (1/k)) * 100% from normal level and k-
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1 times the size of the current system memory on the compute mode must be added in order to bring the U value 
down to 1. 
 
Suggestion 3: To optimize the performance of PVFS, the physical memory of the cluster node must be adjusted 
appropriately according to the calculated U value when the compute node has to handle many large-scale files. 
This can be done by adding memory to the system to bring the U value down to 1 (the normal operation level).   

5    Discussions on Alternative Approaches for Single-IP-Image 

The server-side single-IP-image approach implements a single IP image to the clients. Products of this category 
such as Berkeley's MagicRouter, Cisco's LocalDirector, IBM's TCP router and NetDispatcher, ONE-IP , and 
Linux Virtual Server (LVS) all have the design and different implementations, based on dispatching packets at 
the IP level, for providing single name images for a server cluster. They possess the advantages of fast 
dispatching, load-balancing, and ease of implementation and have become the defacto industry standard to 
distributing client’s requests to different servers using only one published cluster address for all servers in the 
cluster.    

Berkeley's MagicRouter [24] and Cisco's LocalDirector [25] use the Network Address Translation approach. 
In this approach, all address changes are performed by the server-site router, including changing the source 
addresses of the responding packets.  First, the load balancer changes the destination address of request packets 
and forwards the selected server, then changes the source address of response packets back to the original 
address, so that clients believe packets are from a single IP address. However, the MagicRouter does not survive 
to be a useful system for others, the LocalDirector is too expensive, and they only support part of TCP protocol. 

The TCP router [26] approach proposed by IBM achieves the single-address image by publicizing the address 
of the server-side router.  It uses the modified Network Address Translation approach to build scalable web 
servers on IBM scalable Parallel SP-2 system. Every client request is sent to the router which then dispatches the 
request to an appropriate server based on load characteristics.  The dispatching is performed by changing the 
destination IP address of each incoming IP packet to the address of a selected server. In order to create a 
seamless TCP connection, the selected server puts the router address instead of its own address as the source IP 
address in the replying packets. The advantage of the modified approach is that the TCP router avoids rewriting 
the reply packets and is totally transparent to the clients; the disadvantage is that it requires modification of the 
kernel code of every server in the cluster. NetDispatcher [27], the successor of TCP router, configures all server 
machines to have another IP address alias to the published cluster address in the set up, thus it no longer modifies 
the packet header or server machine kernels. The approach has good scalability, but NetDispatcher is a very 
expensive commercial product. 

ONE-IP requires that all servers have their own IP addresses in a network and they are all configured with the 
same router address on the IP alias interfaces. ONE-IP supports two dispatching techniques, called routing-based 
dispatching which is based on a central dispatcher routing IP packets to different servers, and broadcast-based 
dispatching which is based on packet broadcasting and local filtering [28]. In both techniques, the destination 
server is selected by applying a hash function that maps the client IP address into a server identifier. The 
difference between the two techniques lies in the cluster component that applies the hash function. In routing-
based dispatching, the Web switch selects the target server using the hash function, while in broadcast-based 
dispatching the Web switch broadcasts the packets destined to the Virtual IP address to every server in the 
cluster; each server evaluates whether it is the actual destination of the packets by applying the hash function 
[29]. The main advantage of the ONE-IP approach is that the Web switch does not need to keep track of any 
system state information and the rewriting of response packets can be avoided. The disadvantage is that it cannot 
be applied to all operating systems because some operating systems will shutdown the network interface when 
detecting IP address collision and the local filtering also requires modification of the kernel code of server [3]. 
Despite its merits, the absence of dynamic load balancing makes the ONE-IP approach less useful than other 
approaches. The goal of the ONE-IP project is solely designed to investigate the issues involved when the 
networking protocol stacks are modified to support a single-IP image for a cluster of machines. 

6    Conclusion and Future Works 

We constructed an enhanced cluster system for scalable network services, CSSNS, combined with PVFS and 
LVS. Each cluster node can be marked by its efficiency in communicating with the clients and its fast response. 
In order to sustain the system’s performance, one could raise the network bandwidth to avoid performance 
deterioration. While PVFS will particularly benefit the most from parallel applications when bandwidth 
increases as multiple clients access data simultaneously [7], it may not always be cost-effective. A natural 
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solution for load balancing is to deploy a set of compute nodes.  Increasing the I/O node may also improve the 
writing and reading performance of the PVFS. To optimize the performance of PVFS, the physical memory of 
cluster nodes must be adjusted appropriately according to the calculated U value when the compute node has to 
handle many large-scale files. 

The performance test further revealed that the cluster system with fewer than three hundred clients is more 
efficient than one with over three hundred clients. Increasing the compute node to balance the connections with 
I/O nodes will improve the performance of PVFS. The results also revealed that parallel access with PVFS and 
LVS resulted in better performance and was more efficient than only with PVFS. Both LVS and PVFS are free 
software and are easy to be configured as a working component in the integrated environment for cluster 
network service. The overall system performance can be further improved by using powerful network devices 
such as Giga Ethernet. 

PVFS, as a whole, is undergoing a full redesign at the current time.  This will result in a complete rewrite of 
PVFS that incorporates new technology and lessons learned from the previous implementations.  Some of the 
critical features that must be considered in the next generation are: 

 
 Modular support for a variety of networking systems, so that the file system is no longer bound to TCP/IP 

but can take advantage of more advanced messaging protocols as they become available. 
 Modular support for a variety of storage methods to allow I/O daemons to access local data through 

various methods, such as raw I/O or asynchronous I/O. 
 Redundancy of both I/O data and metadata in case of system failure.  

 
PVFS, in its current state, does not provide any redundancy or high security features. The existence of 

redundancy and security issues has prevented a scalable system such as CSSNS from widespread practical 
applications. However, the research is still going, and the authors believe that if PVFS were to provide access 
security, data redundancy and management node redundancy, then it would be more suitable for adoption as part 
of a highly scalable, reliable and fault-tolerant Linux cluster for general applications.   

In the future, there are three important parts to be improved: scheduling algorithms for the director and PVFS, 
partitioning and stripping sizes of the file, and developing TCP redirector daemon inside the kernel. We may 
design a reactive scheduling algorithm that allows PVFS to adapt policies based on system state and application 
load in real time. The sizes of partitioning and stripping of the files for each network service will also be 
considered in design such a desirable and efficient scheduling algorithm.  Much system flexibility can be 
obtained by porting/developing the TCP redirector daemon inside the kernel. By doing this, we can parse 
requests and do content-based scheduling, and we can explore higher degrees of fault-tolerance; transaction and 
logging process [27] would be tried to add in the load balance so that the load balancer can restart the request on 
another server and the client need not send the request again.  All these efforts, when successfully completed and 
tested, will make Linux cluster system even more scalable, flexible,  load-balancing, and fault-tolerant system 
for general network services.  
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