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Abstract. Visual surveillance, object tracking and activity monitoring are some of the important issues for 
homecare systems. In this work, an omnidirectional video camera is adopted to provide a 360 degree view 
angle of the indoor scene with a single image sequence. Some basic functions for smart living and elderly 
care, such as motion detection, object tracking and target behavior analysis, are implemented. For the motion 
detection, a foreground object model is first detected and the CamShift algorithm is used for object tracking 
by extracting color information of the target. To make the motion detection and object tracking fully auto-
matic and robust under different illumination conditions, an optical flow approach is cooperated to detect 
small changes of the mobile object. In addition, the camera is calibrated to obtain the one-to-one correspon-
dences between the image pixels and the locations on the ground. The information is then combined with the 
object model for fall detection and abnormal behavior analysis. Experimental results are presented for the 
real scene images. 
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1   Introduction 

Detection, localization, and tracking of moving objects such as people or vehicles are key components for many 
applications including public surveillance, home monitoring, and elderly care [17]. The fundamental capabilities 
of a visual surveillance system aim to provide recognition and the trajectories of moving objects in the scene, 
and use them for further processing, for example, decision making or proper reaction given by the system ad-
ministrator. In the past few decades, vision-based surveillance has been extensively applied on industrial inspec-
tion, traffic control, security systems, and medical and scientific research [1-3]. Most of the applications either 
require significant manual assistance or have to be performed under controlled environments, especially for the 
proper illumination condition.  

Recently, due to the availability of inexpensive imaging hardware and high demand of home and public 
monitoring for nursing care or security purposes, visual surveillance has become one of the most important re-
search topics in computer and robot vision systems [4]. Commonly implemented approaches include using fixed 
CCTV (closed circuit television) cameras for traffic monitoring and public surveillance, and using PTZ 
(Pan/Tilt/Zoom) cameras for flexible installation and specific applications. The major purpose of the PTZ capa-
bilities is to increase the field of view of a fixed camera and thus reduce the number of cameras required for 
surveillance. However, there always exist blind spots caused by the restricted rotation and tilt angles, and the 
slow motion of the PTZ mechanism. In addition, unsupervised video surveillance is usually not possible without 
manual scene selection in most situations.  

In this work, an omnidirectional video camera [18], [20] is adopted to provide a 360° view angle of the indoor 
scene in a single image. The vision systems equipped with omnidirectional sensors have been extensively used 
for mobile robot localization and navigation [5]. Different from image acquisition on a mobile platform, our 
camera is mounted on the ceiling of the indoor space to provide global surveillance of the environment. As a 
part of homecare surveillance system design, the omnidirectional video camera is not only responsible for real-
time image acquisition used in the nursing and homecare systems. Some basic functions for smart living and 
elderly care, such as motion detection [15], people tracking and human activity analysis, are also important fac-
tors of the system design requirements. For motion detection and people tracking, we propose a method based 
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on MHI (motion history image), CamShift (Continuously Adaptive Mean Shift) [6] and optical flow [7], to in-
crease the robustness of the surveillance and tracking system. As for the human activity recognition [8], we 
present a fall detection method [19] for elderly care using a calibrated one-to-one correspondence between the 
ground locations and the ODVS (omni-directional vision sensor) images, combined with the trajectory of the 
tracked target.  

The paper is organized as follows. Section 2 describes the experimental setup of the homecare surveillance 
system and camera calibration of the ODVS [16]. In Section 3, we present the theoretic background of the track-
ing algorithms adopted in this work, followed by the proposed method for robust omnidirectional visual tracking. 
In Section 4, we perform the mathematical combinations of optical flow and CamShift. Human activity recogni-
tion with region classification and fall detection for the elderly care are discussed in Section 5. Some experimen-
tal results are presented. Finally, Section 6 concludes the paper and points to possible directions of future re-
search.  

 

Fig. 1. It is given by the intersection of the edges estimated from vertical objects. 

2   Vision System Setup and Camera Calibration 

The proposed vision system for homecare surveillance is mounted on the ceiling of an indoor environment. It 
contains a CCD camera with a PAL (Panoramic Annular Lens) optical system [9], a frame grabber, and a PC. 
The video sequences are transferred to the PC at a frame rate of 7.5 fps with image resolution of 640 × 480 pix-
els. The PAL optics consists of a single glass block with two reflective and two refractive planes, and has a 
single center of projection. Thus, the captured concentric omnidirectional image can be unwarped to create a 
panoramic image provided that the equivalent focal length is available.  

Camera calibration of the omnidirectional vision system includes two parts– one is to derive the equivalent 
focal length and image center, and the other is to find the one-to-one correspondence between the ground posi-
tions and the image pixels. Although the geometry of the PAL imaging system is complex, it can be modeled by 
the cylindrical coordinate system with a single virtual viewpoint located at the original of the coordinate system. 
The panoramic image corresponding to the “virtual camera” is given by the cylinder with radius of the effective 
focal length. The center of the annular image, i.e., the viewpoint or origin of the virtual camera, is determined by 
the intersection of vertical edges in the scene. In the implementation, several upright poles were hung from the 
ceiling, the Sobel detector was used to obtain an edge image, followed by Hough transform for robust line fitting.   
To increase the stability, a sequence of images was recorded for camera calibration and the mode of the distribu-
tion from the images was given as the image center. Fig. 1 shows the image center obtained using three poles 
hung from the ceiling. It is given by the intersection of the three edges in the annular image. 

To obtain the effective focal length of the PAL imaging system, upright calibration objects (poles) with 
known metric are placed at several fixed locations. Suppose the height of a pole is h and its location is d from 
the ground projection of the camera, then the effective focal length is given by 
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Fig. 2. Calibration pattern for the image-ground mapping. The objects are placed on the ground with known locations. 

 

h
dvsf =                                                                                              (1) 

where v is the size of the object in pixel, and s is the pixel size of the CCD in the radial direction. Due to the 
characteristics of the PAL sensors, the effective focal length obtained from Eq. (1) is usually not a constant for 
different object sizes and locations. In the experiments, the calibration pattern was placed upright such that the 
projection of its midpoint appeared in the central row of the panoramic image. However, it should be noted that 
the image scanline does not necessarily correspond to the middle concentric circle in the PAL image.  

The second part of omnidirectional camera calibration is to establish the relationship between the image pix-
els and the 3-D ground positions. Generally speaking, 3-D to 2-D projection is an illposed problem and cannot 
be recovered from a single viewpoint. However, if the object possesses additional geometric constraints such as 
coplanarity, collinearity, it is possible to create a lookup table with the 3-D coordinate of each image pixel. 
Since the lookup tables are not identical for different omnidirectional camera position and orientation, they 
should be obtained for the individual environments prior to any surveillance tasks. Fig. 2 shows the scattered 
calibration objects placed on the ground. The locations of the objects are given by physical measurements. For 
simplicity, it is assumed that the camera is installed such that the optical axis is perpendicular to the ground. 
Thus, the mapping is circular symmetric and can be derived by a one-dimensional calibration pattern. Fig. 3 
shows the relationship between the image coordinate and the ground position. 

3   Omnidirectional Visual Tracking 

In this work, motion history image, CamShift and optical flow are used for object detection and tracking. We 
first describe the theoretic background of the tracking algorithms, followed by the proposed methods used in 
omnidirectional tracking. 
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Fig. 3. The relationship between the image coordinate and ground position. It is assumed that the mapping is circular 
symmetric. 

3.1 Theoretic Background 

Motion history image (MHI) is a motion representation of a moving object. In an MHI , pixel intensity is a 
function of the temporal history of motion at that point. In this work, a simple replacement and decay operator 
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is used, and the result is an intensity image with more recently moving pixels shown in brighter. To obtain a 
MHI, the foreground silhouette of the moving object should be segmented from each image using background 
subtraction techniques. For a sequence of image with a moving object, the most recent foreground silhouette is 
set as the highest values in the MHI, and a layered history of the resulting motion is then generated as the MHI. 
The MHI’s are updated for each image frame, and the earlier motions have decreasing values subject to a 
threshold below which the value is set to zero. The MHI can be used to create a motion gradient image by find-
ing the orientation and magnitude of the gradient given by the Sobel operator. The resulting gradient can be 
further used to estimate the direction of motion flow of the object.  

CamShift algorithm operates on the color probability distribution image produced from histogram back pro-
jection. Each image frame is converted to a color probability distribution image via a color histogram model of 
the color being tracked. Although the core of the CamShift algorithm is the Mean Shift algorithm [10], it is de-
signed for dynamically changing distributions rather than static distributions. Thus, the CamShift algorithm 
adjusts the search window size during the object tracking. In our implementation, the algorithm is modified with 
the following steps: 

(i) Choose the initial location of the search window. 
(ii) Perform Mean Shift algorithm and find the zeroth moment, which is given by 

 

∑∑=
x y

yxIM ),(00                                                                                     (3) 

 
where  is the pixel (probability) value at position  in the image, and ),( yxI ),( yx yx,  range over 
the search window. 

(iii) Set the new search window size based on the derived zeroth moment. 
(iv) Repeat steps (ii) and (iii) until convergence. 

For general object such as human face, the result usually converges in several iterations. Optical flow represents 
the image changes due to the motion during a time interval, and its computation is based on two assumptions– (i) 
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The observed brightness of any object point is constant over time. (ii) Nearby points in the image plane move in 
a similar manner [11]. Let  refer to the gray-level of the point (x, y) at time , then the optical flow is 

to find  such that 
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If  are very small, the equation is equivalent to computing the motion velocity  subject to the 

equation 
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dv = . It is clear from the above equation that the gray-level difference  at the 

same location of the image at times t  and

tf

tdt +  is a product of spatial gray-level difference and velocity in this 
location according to the observer. Determination of the optical flow is then based on a Gauss-Seidel iteration 
method using pairs of consecutive dynamic images [12]. 

3.2 Omnidirectional Tracking 

To detect the object motion in the surveillance environment, the background model is first created using pixel 
brightness according to normal distribution with several image frames. A motion history image, a scalar-valued 
image where intensity is a function of recency of motion, is generated to rapidly determine where a motion oc-
curred, how it occurred, and in which direction it occurred [13]. CamShift algorithm is then used for object 
tracking by extracting color information of the mobile target. It finds the mode of a color distribution within a 
video sequence based on a robust non-parametric technique for climbing density gradients [10]. CamShift algo-
rithm is commonly used for face tracking, and the initial tracking region is selected according to the location and 
size of the face. For the omnidirectional tracking of a person, the body part which contains uniform color of 
cloth is used for CamShift algorithm. Fig. 4 shows the tracking result of the CamShift implementation.  

 

  
 

Fig. 4. The left image shown the original image. The right image is the tracking result using CamShift algorithm. The 
tracked target is shown by a red ellipse. The axes can be used to represent the direction of the motion. 

One major drawback of the CamShift algorithm is the requirement of manual selection of the ROI (region of 
interest) prior to object tracking. This step is to extract the color distribution of the target. To make the motion 
detection and object tracking fully automatic and more robust under different illumination conditions, the optical 
flow approach is cooperated to detect small changes of the mobile object. Motion flow of the target given by the 
initial image frames (typically 5 to 10 images) is used to select the ROI for CamShift tracking algorithm. Fur-
thermore, a constrained single vector derived from the average of the optical flow is used to represent the motion 
vector of the target. It provides a way to relocate the ROI in case that CamShift loses tracking due to illumina-
tion changes in the scene. The motion vectors estimated from optical flow also gives the trajectory of the object 
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motion independent of color information of the scene. Figs. 5 and 6 show the results of optical flow and the 
combination of CamShift and optical flow, respectively.  

Since the geometric projection model of the omnidirectional vision sensor is different from the conventional 
pinhole camera model, the recorded video sequences have to be unwarped to generate panoramic images for 
better viewing purpose. Thus, camera calibration of the omnidirectional sensor involves finding the equivalent 
optical center and focal length of the camera, i.e., the origin and radius of the cylindrical image representation. A 
simple calibration method using upright object edges is implemented [14]. Image unwrapping requires a map-
ping from a concentric area to a rectangular area. To reduce the undesired resampling effect, the mapping is 
based on the circle with the average radius of the inner and outer circles. Suppose the center of the PAL image 

 is , then the cylindrical panoramic image ),( yxI ),( 00 yx ),( θrI  is generated by 
 

2
0

2
0 )()( yyxxr −+−=                                                              (6) 

0

01tan
xx
yy

−
−

= −θ                                                                                 (7) 

 

 

Fig. 5. Tracking result using optical flow. The vectors represent the image gradient change above a threshold. 

 

 
Fig. 6. Tracking result from the combination of both methods. CamShift is represented by a red ellipse and optical flow is 

represented by a blue vector. 
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Fig. 7. The flowchart of the surveillance system. 

 
Fig. 8. 360° unwrapped image with tracking result. 

Fig. 8 shows a 360° unwarped image with object tracking result. The camera is also calibrated to obtain the one-
to-one correspondences between the image pixels and the points on the ground. Since the mapping varies for 
different height of the camera location, it is created for the surveillance environment and used for activity moni-
toring.  

4   Combination of CamShift and Optical Flow 

This section discusses the combination of these two fundamental algorithms to achieve the robust surveillance. 
First, assume there are a lot of motion vectors  which calculated from optical flow. The motion vectors distrib-
ute full of omnidirectional image.  

iv

 ),,( tyxi dddOFv =                                                                    (8) 

where  is the optical flow algorithm.  represents the motion vector. In order to locate the moving per-
son, a constraint is adopted to reduce the motion vectors. And we observe the motion vectors and moving person, 
the long length vectors follow the moving person usually. The other vectors have the uncertain direction and 
small motion. We consider those vectors are noise, so it is easy to find the reduction constraint.  

(.)OF iv
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where k is a constant value. Length  is the length of a motion vector. The location of the moving person is 
calculated by averaging of the remaining motion vectors. We call the above procedure is “Detection” shown in 
Fig. 7. The moving person could be detected by the “Detection” step. But the cost of the CPU time is expensive.  
To perform the real-time processing of the surveillance, the CamShift tracking algorithm is adopted to track the 
moving object.  

)( iv

As mention in section 3.2, CamShift might loses tracking due to illumination changes in the scene. To solve 
the problem, a method is to reuse the motion vectors which detected by optical flow algorithm. The optical flow 
algorithm is applied to detect the motion vectors, but the detection region is nearby the previous position of the 
moving person. The equations are as follows: 
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where  is a position of the ,  is a region of the omnidirectional image. The equation is used to relocate 
(or check tracking, see Fig. 7) the ROI which CamShift could revise the tracking target. Fig. 7 is the flowchart 
of the proposed robust surveillance system. 

iR w w

5 Human Activity Recognition and Fall Detection 

In the home environment, there are typically several places where people spend most of their time without sig-
nificant motion changes, such as chairs, beds, or the regions close to the television or computers. These places 
can be marked as “inactivity zones” and usually have little changes in the visual surveillance. On the other hand, 
there are some places involve frequent changes in the scene such as the hallway, entrance to the room, and free 
space in the environment. These regions are referred to as “activity zones” since most of the detectable motion 
changes happen in those areas. There is also a third case called “non-activity zones”, which indicate that any 
normal human activities should not occur in the regions. Based on the above classification, the surveillance 
environment is partitioned into three regions. An abnormal behavior warning system is established according to 
the activities happened in the different zones.  

Fig. 9 shows the trajectory of the human motion after 3121 frames of omnidirectional tracking in the indoor 
environment. The isolated points are due to the low frame rate of image acquisition (7.5 fps). The density of the  

 

 
Fig. 9. The trajectory of the human motion after 3121 frames of omnidirectional tracking, the data points are shown in red. It 

means the non-red points are not safe for active of the environment. 
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Fig. 10. Based on the trajectory observed in Fig. 9, the indoor environment is partitioned into three regions. 

data points in the image is used to classify the three different regions. As illustrated in Fig. 10, the yellow color 
region is the activity zone, which contains low density data points. The regions consist of little changes during a 
long period is shown in the red bounding box, which is classified as the inactivity zone. The rest of the surveil-
lance area is assigned by blue bounding box, which is used to provide the information about non-activity zone. 

It is clear that the size of an object appeared in the image depends on the location of the object, even for the 
omnidirectional imaging sensors. Based on this fact and the above calibration information, the projected height 
of an object (or a person) with known physical dimension can be computed for different ground position in a 
concentric manner. Thus, fall detection of the target can be given by identifying its standing position (the bottom) 
and its top. By comparing the object length appeared in the image and the computed length according to the 
object’s physical height, some activities of the object such as falling, sitting, etc. can be detected. To make the 
fall detection algorithm more robust and to avoid false alarm, the motion vectors obtained from optical flow are 
used to detect the sudden changes of the object’s height and motion direction. Fig. 11 shows fall detection and 
length change of the object at different locations.  
 

  
 

  
 
Fig. 11. Fall detection with predicted length. Note that the object size in the image is not fixed for different locations even if 

the object physical height is not changed. 
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6   Conclusion 

Visual surveillance is one of the important topics in the nursing and homecare systems. In this work, we have 
proposed a video surveillance system using an omnidirectional CCD camera and combined different algorithms 
for robust human motion tracking as shown in Fig. 12. Automatic object detection, people tracking, fall detec-
tion, and surveillance region classification for abnormal behavior warning have been implemented. Experimen-
tal results with several hours of video surveillance are presented. In the future research, a PTZ camera will be 
combined with the omnidirectional tracking system to obtain a closer look of the target for recognition purposes. 
Human activity will also be analyzed and discussed in more detail. 
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(a) Experimental results one detected motion by the optical flow algorithm. The green points follow the moving person. 

  
(b) Experimental results two detected motion vectors by the optical flow algorithm. The red arrows show the moving direc-

tion of the person. 

  
(c) Experimental results three reduced the noise motion vectors. 

Fig. 12. Experimental results of the robust visual surveillance system. 
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(d) Experimental results four tracked the moving person by the CamShift. 

   
Frame 28.                                        Frame 30.                                        Frame 36. 

(e) Experimental results five contain the figures relocated the moving person while the CamShift loses track. 

Fig. 12. Experimental results of the robust visual surveillance system.(Continued) 
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