
Applying PSP to Support Teaching of Programming Courses

Chien-Hung Liu1*, Shu-Ling Chen2, and Chia-Jung Wu1

1 Department of Computer Science and Information Engineering

National Taipei University of Technology

Taipei 106, Taiwan, ROC
{cliu, t5598022}@ntut.edu.tw

2 Department of Management and Information Technology

Southern Taiwan University

Tainan 700, Taiwan, ROC
slchen@mail.stut.edu.tw

Received 20 June 2008; Accepted 16 July 2008

Abstract. The programming assignments are an essential means in programming courses to help students de-
velop problem-solving skills and improve their understanding of programming concepts. By analyzing the
process about how students practice their assignments, instructors can obtain valuable insights into student
performances and understand their learning progresses. However, gathering the process data of assignment
practices not only can be time-consuming and error-prone, but also can impose significant overheads to stu-
dents. This paper describes how PSP can be useful in examining the process of students’ programming prac-
tices and discusses several process statistics and their indications to student performances. A supporting tool
is proposed to facilitate the tracking and analyzing of the process data. In particular, the proposed tool can
automatically gather the process data for students, such as the size of programs, the time spent on the assign-
ments, and the number of injected and removed defects. Moreover, based on the collected data, the tool can
provide various statistical reports to facilitate the analysis of student performances and the understanding of
students’ programming problems so that instructors can develop a more effective teaching strategy to help
students improve their programming skills.

Keywords: PSP, programming courses, programming assignments, process metrics

1 Introduction

In today’s information age, software has become essential to our lives. In particular, software has been used to
control or support different kinds of applications in all areas, such as business, transportation, and communica-
tion. Thus, many computer science departments offer various programming courses to enhance students’ pro-
gramming skills. In order to ensure that students have sufficient practices to develop problem-solving skills and
improve their understanding of programming concepts, most instructors of programming courses will give stu-
dents programming assignments (or laboratories). From the results of programming assignments, instructors can
evaluate student performances and have an idea about students’ learning progresses. Ideally, instructors can
obtain valuable information about students’ programming skills by examining whether the students’ programs
satisfy the assignment requirements. However, students may discuss or share their ideas for solving the assign-
ments or even copy someone else’s work. This could result in a situation that students seem to be able to com-
plete their homework assignments by themselves, but their programming skills actually are not improved too
much. Thus, instructors may misunderstand students’ learning progresses if they rely only on checking whether
the students’ programs satisfy the assignment requirements.

Although many approaches [1, 2] have been proposed to detect the plagiarism in programming assignments
and prevent students from copying other’s programs, the detection of plagiarism does not provide additional
information to instructors for understanding students’ programming skills and learning experiences. To know
students’ learning statuses and to help students improve their programming ability, instructors need more infor-
mation, such as the efforts spent on the assignments, the problems encountered during the assignment practices,
and the quality of students’ programs. By obtaining and analyzing the information about how students practice

* Correspondence author

Journal of Computers Vol.19, No.3, October 2008

56

their programming assignments, instructors can have a better understanding of students’ learning processes and
recognize students’ problems in software development.

To obtain the information about the process of assignment practices, the approach of Personal Software Proc-
ess (PSP) [3] can be very helpful. The PSP is proposed to help programmers improve their personal performance
in software development. It defines several methods and practices that can be gradually applied in developing
small programs. In particular, the PSP discipline requires programmers to gather their process data, such as
program size, development time, and defect information. Through tracking and analyzing the process data, pro-
grammers can understand their talents in software development and determine which technologies to adopt or
which methods work best for them. It has been shown that PSP can significantly reduce the number of defects,
increase the software quality and programmer’s productivity, and improve the predictability of software process
[4, 5].

Based on the concepts of PSP, instructors can understand the learning experiences of students by tracking and
analyzing students’ process data of programming practices. For example, through gathering the size, time, and
defect information of the practices, the student performances, such as productivity and defect density, can be
derived and evaluated. By analyzing the trends of various process data, instructors can obtain valuable insights
into the learning progresses of students so that they can develop a better teaching strategy and improve their
teaching quality of programming courses. Meanwhile, the analysis of the process data also allows students to
better understand their personal programming ability and recognize their problems in programming, and hence,
provides an important foundation for students to make improvement.

Although the process data of students’ assignment practices can be valuable for instructors to improve their
teaching quality and for students to understand their programming ability, gathering the process data can be
tedious and time-consuming. For each assignment, students have to gather various process data manually, such
as the size of each class or program module, the time spent on each process phase, the number of injected and
removed defects, the defect injection and removal phases, and defect fix time. This can impose significant over-
heads on students, especially for those students taking the introductory programming courses. To reduce these
overheads, an automatic tool used to facilitate the data gathering becomes important so that students can concen-
trate on their programming practices without the distractions from process data gathering.

To support the teaching of programming courses, this paper adopts the concepts of PSP to gather and assess
the process data of students’ programming practices. Several process statistics are proposed and their indications
to student performances are discussed. An automatic tool, called the Programming Data gathering and Analysis
Tool (PDAT), is proposed to facilitate process data tracking and analysis. In particular, the proposed tool is
based on the client-server architecture. The client of PDAT is developed as an Eclipse plug-in, where Eclipse is
a widespread popular open source IDE [6]. With the PDAT client, the process data can be automatically gath-
ered while students use Eclipse to develop their programming assignments. The collected data are then sent to
the PDAT server automatically for data consolidation and analysis. From the analysis results, the PDAT server
will provide several statistical reports that show the process statistics and trends for each individual student’s
performance and the overall performance of the entire class. Based on the performance results, instructors can
design more appropriate teaching strategies and materials those can help students improve their programming
skills more effectively.

The rest of the paper is organized as follows. In the next section, several considerations for applying the PSP
to programming courses are described. Section 3 presents the approach used in the PDAT to gather the process
data of assignment practices. Section 4 describes various process statistics and their possible indications. Section
5 presents the architecture design of the PDAT and illustrates its implementation. The last section summarizes
the conclusions and describes our future work.

2 Integrating PSP Concepts into Programming Courses

Although the PSP can be taught as a stand-alone course [7, 8, 9], a number of studies have incorporated PSP
concepts into programming courses [8-13]. Since the PSP involves various process practices and statistics, a
complete PSP methodology is much too complex for those students who are beginning programmers. Thus,
most programming courses that incorporate PSP introduce only parts of PSP concepts, such as the notions of
process, planning, and estimation. Students are then asked to record their time spent on the programming labora-
tories and the defects found in the laboratories. The major purpose for introducing PSP concepts in program-
ming course is to help students develop good programming habits in an early stage and to help novice program-
mers manage their time better.

As reported in [9, 12, 13], the integration of PSP into programming courses can have several advantages. For
examples, the concepts of PSP can help students understand the software development process better and estab-
lish better concepts of planning, estimation, measurements, and data analysis. However, the incorporation of
PSP into programming courses also has a number of problems. For instances, the data collection adds much

Liu et al.: Applying PSP to Support Teaching of Programming Courses

57

overheads to students even with the assistance of supporting tools like spreadsheet [9]. Moreover, students have
the tendency to record defects less accurately [8].

The incorporation of PSP into programming courses can help students understand the software process in the
early stage and establish better ability in the size estimation and time management. However, students taking
introductory programming courses are more concerned with programming than with the software process issues.
Since our research purpose is to help instructors assess student performances and improve their teaching quality
of programming courses, we attempts to minimize the PSP concepts to be taught in the programming courses in
order to reduce students’ overheads and avoid possible distractions from programming practices. Specifically,
only basic concepts of PSP process and data collection forms, such as time log and defect log, are introduced so
that students can understand the data gathered by the PDAT. Students are asked to use Eclipse with the PDAT
plug-in to develop their assignment programs. The finished programs and the automatically gathered data are
then submitted to the PDAT server for further analysis. As a result, students can get rid of unnecessary interrup-
tions and overheads and are able to concentrate on the programming.

Moreover, in programming courses, the sizes of assignment programs are usually small and most of defects
appeared in the programs can be either revealed by compiler or detected by students through program testing.
Such defect information is important for instructors to understand the programming mistakes made by students.
Thus, in order to gather the defect data revealed via program testing, students are asked to perform unit testing.
Since Eclipse can be integrated with different unit testing tools, such as JUnit [14] or cppUnit [15], both the
compilation and program testing defect information can be obtained through the Eclipse platform.

In addition, to gather complete and consistent defect data of program testing, it is suggested that instructors
provide unit test cases for the assignment programs. Although unit testing is crucial to software development,
most beginning programmers lack the skills of designing satisfactory test cases to test the programs adequately.
Thus, instructors can define the interfaces (i.e., skeleton code) required for the assignment programs, such as the
names and data types of the methods and parameters, and provide essential test cases based on the interfaces to
students. In such a case, instructors can ensure if the programs are correctly implemented by students while
obtaining more complete and consistent defect data.

3 Collection of the Process Data

Gathering process data manually can be time-consuming and error-prone. It will impose additional overheads on
students and result in significant distractions while students are programming. In order to reduce students’ over-
heads, the PDAT is designed to collect the process data automatically. Basically, this can be achieved by assess-
ing the information of Eclipse workspace and plug-ins through their corresponding extension points [16].
Through the extension points, the events and data of program editor, compiler, and unit testing plug-ins can be
obtained, and hence, the process data, such as the program size, the time spent on the program development, and
the defects revealed by compiler or unit testing tool, can be collected automatically [17].

In order to facilitate the data gathering, the development process of assignments is divided into the code and
test phases. In the code phase, students will focus on the program development and the time spent on the code
phase includes the coding time and the fix time of compiler errors. Once the compilation is success and the unit
testing is commenced, the process phase will change from the code phase to the test phase. In the test phase,
students will focus on the unit testing and the time spent on the test phase includes the test execution time and
the defect fix time. Note that the process defined in our approach is different from that of the PSP in which a
process contains the plan, design, code, compile, test, and postmortem phases. This is because that, in our pro-
gramming courses, Eclipse is used only for developing and testing programs. It will not be used for planning or
designing the assignments. Moreover, the Eclipse supports continuous compilation in order to save the compila-
tion time. This means that, when students are writing code, Eclipse will continuously compile the programs and
show the syntax errors found so far. As a result, there is no specific compile phase as defined in the PSP process
structure. Thus, the PDAT is designed to gather the process data only for the code and test phases.

According to the concepts of the PSP, three kinds of data including the size, time, and defect data need to be
gathered. Table 1 lists the types of process data to be automatically gathered in different phases.

In Table 1, the lines of code (LOC) for each method, the number of methods for each class, and the number
of classes for each assignment program are gathered during the code phase. The development time is the period
that students employ Eclipse to write and compile the programs in the code phase. During this period, the pro-
gram errors detected by compiler are considered as syntax defects and the error messages will be recorded for
further analysis. Moreover, if there is any interruption to the tasks in the code or test phase, the interrupt time
will not be counted when gathering the time data. For example, students may take a break, such as going to

Journal of Computers Vol.19, No.3, October 2008

58

lunch, and tem porarily leave the programming tasks1. Such interrupt time will be ignored when computing the
time data of the process.

Once students start to perform unit testing, the process of assignment practices then enters into the test phase.
The process will remain at the test phase until all the test cases are passed. In the test phase, students need to test
the program and remove all the defects identified by the test cases. As compared with the code phase in which
the defect data are gathered from the compiler, the defect data of test phase are captured through the unit testing
plug-in of Eclipse. Moreover, different types of defects can have different influences to students. For example, a
logical error is usually more complex than a syntax error, and hence, is more difficult to remove. Thus, in order
to understand the effects caused by different defects, the PDAT collects various defect data including the num-
ber of defects, the type of defects, the injection and removal phases, the fix time of defects, and the defect de-
scriptions.

To obtain the defect fix time, the defects found by compiler and those found by unit testing tool are consid-
ered. Basically, the fix time will be the elapsed period between the time when defect error messages appear and
disappear in the corresponding problem view of Eclipse or the failure window of unit testing tool2. If there are
more than one defect disappeared in the period, then the fix time for each disappeared defect will be the average
of the time period. Note that the defect fix time automatically obtained by the PDAT may not be fully accurate
since there could be some interruptions during the programming process. To measure the precise time period of
interruptions, it will require human interventions since there is no way to determine if students are thinking of
the design or taking a break when they are not interacting with the computers. Since the size of the programming
assignment is usually small, we will assume that there are only a few or no interruptions during the process.
Thus, the defect fix time gathered by the PDAT can be close to the actual time spent on fixing the defects.

Table 1. The types of process data to be collected

Data/Phase Code Test
Size numbers of class (NOC), numbers

of method (NOM), lines of code
(LOC) of each method

none

Time development time test execution time

Defect number of defects (syntax), defect
type, injection & removal phases,
fix time, defect description

number of defects (functional), defect
type, injection & removal phases, fix
time, defect description

4 Analysis of the Process Data

After students complete their assignment programs and submit their process data to the PDAT server, instructors
can analyze the student performances based on the gathered data. The process data can be analyzed from the
perspective of an individual student or entire class. Several analysis reports regarding individual students and the
entire class are discussed in this section.

4.1 Analysis of the Process Data for Individual Students

For analyzing the process data of individual students, several statistical reports that can facilitate the understand-
ing of students’ programming abilities and the improvement of teaching quality are considered. These process
statistics include (1) time statistics; (2) familiarity of syntax; (3) defects hard to fix; (4) frequent defects; (5)
productivity; and (6) defect density. The indications of the process statistics and how to obtain these statistics are
discussed as follows.

• Time statistics

 The analysis of time data is concerned with the time that students spend on each phase and the time that
students spend on each program assignment. By analyzing the time data, instructors can understand the ef-
forts that students spend on the assignments and can evaluate if the loading of the assignments is appropriate
to students. In addition, by taking into account the time statistics, productivity, and defect density, instructors

1We assume that students will save the programs or exit Eclipse when their programming tasks are interrupted.
2We assume that students will attempt to fix only one defect each time.

Liu et al.: Applying PSP to Support Teaching of Programming Courses

59

can know if students encounter difficulties when practicing the assignments. In general, when students spend
too much time on the assignments and also have a low productivity and a high defect density, it implies that
the students could encounter some problems in the program development. Instructors then can identify the
possible causes of the problems through analyzing the defect data of the students.
 In addition, the ratio of the time spent on the code phase and the time spent on the test phase can be used
to evaluate if students carefully carry out the planning and design of the assignments. When students have
extremely high ratio on testing time to development time and also have a large number of defects, it usually
indicates that the students rush into coding without adequate planning and design. Thus, more defects could
be injected into the programs, and hence, more testing time is required in order to remove the defects.

• Familiarity of syntax

 The familiarity of syntax is concerned with students’ understandings to the programming language.
Through analyzing the defect data gathered in the code phase, instructors can assess if students are familiar
with the syntax of programming language. The defects found by compiler in the code phase are usually re-
lated to the programming syntax. For example, if students forget to declare an identifier, the compiler will
generate an error message like “xxx cannot be resolved.” If the students make typographical errors or miss
semicomma, they may see a compiler error message similar to “yyy syntax error zzz.” Thus, instructors can
predefine some keywords that are related to the syntax errors in programming languages, such as “cannot be
resolved.” Then, by analyzing the frequency of such keywords appeared in the descriptions of compiler de-
fects, instructors can presume the degree of students’ familiarities to the syntax of programming language.
 In addition, instructors can analyze the descriptions of similar compiler error messages that frequently ap-
pear in student’s historical defect data. From the causes of these syntax errors, instructors can know which
programming syntax or concepts are misunderstood by students. For instance, if the frequent syntax error is
associated with “null pointer,” it usually suggests that the students do not have a clear concept about the
pointer initialization. Moreover, a frequent error message associated with “type mismatch” may indicate that
students do not understand the definitions of various data types. Thus, from the scope covered by the as-
signment practices and the gathered compiler defects, instructors can easily realize the students’ program-
ming syntax familiarities and help the students to clarify their misunderstandings.

• Defects hard to fix

 The defects hard to fix are concerned with the defects that have large fix time. These defects can be used
to identify the possible problems encountered by students during their programming practices. Most of the
time a complex defect will have a larger fix time than that of a trivial one. In general, the compiler defects
are injected due to typo, omission, or unfamiliar with the programming syntax. Such defects usually will not
take students too much time to fix or be the difficult problems to students. In contrast, the logical defects
typically relate to the logic design of the programs. Such defects are usually complex, and hence, require
more time to analyze and fix. Thus, instructors can know the problems that cause students much trouble by
analyzing the defects hard to fix in their defect data.
 The defects hard to fix can be identified by sorting the fix time of the defects. The descriptions of these
defects may provide the clues for students’ problems. By considering the defects hard to fix and taking into
account other process statistics, instructors can assess if students have difficulties in understanding the pro-
gramming concepts or design algorithms required for solving the assignments. If most students have similar
problems, this may indicate that instructors did not explain the programming concepts or design well enough.
As a result, students need to spend more efforts in order to figure out how to fix the problems.

• Frequent defects

 The frequent defects are concerned with the occurrences of defects in students’ historical defect data. If
similar defects appear very often, it could suggest that students constantly make similar mistakes. By analyz-
ing the descriptions and causes of such defects, instructors can know if students have clear concepts about
the uses of programming constructs, data structures, or design algorithms. For example, students can have
frequent defects like “assertion failed error,” “array out of boundary,” and “memory allocation error.” Such
defects can be identified by examining the error messages of defects based on some predefined keywords.
These defects may suggest that the students need to enhance their understanding on the particular program-
ming construct, data structure, or exception handling. Instructors should clarify the corresponding concepts
again in order to help students not to produce similar defects repeatedly.

• Productivity

 The productivity is concerned with the program implementation efficiency of students. It can be used to
partially assess student performances. For each assignment, the productivity of students is the ratio between
the size of program and the time spent on the program. The average productivity will be the ratio between

Journal of Computers Vol.19, No.3, October 2008

60

the total LOC (i.e., Total_LOC) of all assignments and the total time (i.e., Total_Hours) spent on the assign-
ments. The formula for computing the average productivity is given below:

Average Productivity = Total_LOC / Total_Hours. (1)

 By considering the productivity of students and the quality of their programs, instructors can understand
the programming talents of students [18]. In general, a student with high productivity and low defect density
has a better programming ability. In addition, from the trend of the productivity, instructors can understand if
the programming skills of students are improved. Moreover, by comparing personal productivity and defect
density with class averages, students can have a better understanding for their own programming ability
when compared with others. Figure 1 shows an example of student’s productivity. The figure shows that the
productivity of the student varies for different assignments. The trend of the productivity also indicates that
the productivity of the student is gradually improved.

Productivity Trend - Student 1

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10

Program Number

LO
C

/H
ou

r

Max
Min
Stu1

Fig. 1. An example of student’s productivity trend

 Note that the productivity may not accurately reflect students’ programming talents. Students may rush
into coding, and ignore the exception handling required for the assignments. As a result, the students may
have a high productivity at the expense of poor software quality. Thus, instructors need to consider both the
productivity and defect density in order to assess student performances. Moreover, based on students’ pro-
ductivity, instructors can estimate the possible effort required for students to complete the next assignment.
The effort estimation can be valuable to instructors for adjusting the loading of the assignments.

• Defect density

 The defect density is the number of defects found in per thousand lines of code (KLOC). It can be used as
a metric to represent the software quality. The formula for computing the defect density is given as follows:

Defect density = NumberOfDefect/KLOC. (2)

 Instructors can use the defect density as an indicator to evaluate students’ programming talents and under-
stand if students have designed and implemented the assignments carefully. The students with better pro-
gramming ability usually produce fewer defects, and hence, have a lower defect density. In contrast, the stu-
dents with poor programming ability have a tendency to produce more defects, which can result in a higher
defect density. Moreover, by considering both the defect density and productivity, instructors not only can
understand the programming talents of students, but also can evaluate the maturity of students’ processes. A
mature process usually implies that the students have received adequate programming disciplines. Typically,
the productivity and defect density of students could fluctuate from time to time in the early stage of the pro-
gramming course. If the students’ programming skills are improved, the software development process of the
students will gradually become stable and more predictable. Thus, if the variations of both productivity and
defect density become small, this may indicate that the students make progress steadily in developing their
programming skills. If the productivity and defect density still fluctuate, instructors can analyze the possible
causes of the variation in order to help students improve their programming skills. Further, if both the pro-
ductivity and defect density of students are high, this may suggest that the students rush into implementation
without an adequate design. However, if the productivity is low and the defect density is high, it could indi-

Liu et al.: Applying PSP to Support Teaching of Programming Courses

61

cate that the students have serious difficulty in the program development and they require additional pro-
gramming assistance from instructors.

4.2 Analysis of the Process Data for Entire Class

In addition to each student’s process data, the process information for the entire class can also be insightful for
instructors and students themselves. From the statistics of the process data, such as average, deviation, and re-
gression of the time, productivity, and defect records for the entire class, instructors can assess the overall learn-
ing progress of the class. Students also can understand their own process statistics and know the differences of
their programming abilities from the class average. This may point out the directions for students to enhance
their programming skills or increase the student motivations.

Figure 2 shows an example of the time effort and productivity statistics for the entire class. From the average
time that students spent on the assignments, instructors can understand if the efforts of students or the difficulties
of assignments are proper. For example, in figure 2(a), the average time for developing programs 6 and 10 is
larger than that of other programs. This may imply that the concepts for designing programs 6 and 10 are harder
than that of other programs. In addition, the productivity of the entire class can facilitate the understanding of
the overall performance of the class or can be used as a baseline for students to improve their own programming
skills. For instance, figure 2(b) shows that the productivity of the entire class fluctuates, but the trend of the
overall productivity is gradually increasing.

Actual Time Range

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10

Program Number

H
ou

rs Max
Avg
Min

Productivity Range

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10

Program Number

LO
C

/H
ou

r

Max
Avg
Min

(a) (b)

Fig. 2. An example of the time effort and productivity statistics for the entire class

Moreover, from the defect data of the entire class, instructors can know the frequent defects of the class and
identify students’ common programming problems. Further, by sorting the defect data of the entire class accord-
ing to defect fix time, those complex defects that have large fix time in the entire class can be identified. Such
information can help instructors understand which programming constructs or concepts are misunderstood by
most students in the class and what are the potentially serious programming problems for students in the class.

Notice that the performance or programming problems of students could be biased or misunderstood if in-
structors simply consider only one of the proposed process statistics. In order to obtain a better understanding of
students’ programming talents, instructors should attempt to consider as many process statistics as possible and
take into account their teaching experiences and observations. In such a case, the process data can be very useful
to instructors for designing a more effective strategy to improve their teaching quality.

5 The Architecture Design and Implementation of PDAT

In order to reduce students’ overheads and increase the data quality, a supporting tool, called PDAT, is proposed
to help students gather the process data of programming practices automatically. The PDAT is based on the
client-server architecture as shown in Figure 3. In particular, the client of the PDAT is developed as an Eclipse
plug-in so that the process data can be automatically collected during the development of assignment programs.
The collected data are stored in XML format and are submitted to the server of the PDAT when students com-
plete the programs. The server will maintain the historical process data for each student and the entire class and

Journal of Computers Vol.19, No.3, October 2008

62

provide the statistical reports, as described in section 4, to facilitate the analysis of student performances. The
server also maintains the assignment programs submitted by students. Thus, instructors can examine the pro-
grams, associated process data, and corresponding process statistics for each student in order to analyze the
learning progresses and the programming problems of students.

Eclipse PDAT
Client

Eclipse PDAT
Client

Eclipse PDAT
Client

Managemnt
Client

 XML

HTTP

Data Analyzer

Report Generator
Controller

PDAT Server

Middleware

Repository

Web Server

Course & Assignment
Manager

DB Manager

Account
Manager

Fig. 3. The system architecture of the PDAT

Figure 4 shows the architecture design of the PDAT client and the relationships between the client and the

Eclipse platform. Basically, the PDAT client consists of four subsystems. Each subsystem is described briefly as
follows:
• The Data Collection Subsystem (DCS) mainly focuses on the gathering of process data that include the sizes

of programs, the time efforts spent on the programs, and various defect data.
• The Controller & Plug-in Subsystem (CPS) manages the interactions among the subsystems of the PDAT

client and the Eclipse platform. In particular, the CPS controls the changes of the process phases, observes
various Eclipse events through the workbench and JUnit, and accesses the program information through the
workspace.

• The Data Analysis Subsystem (DAS) provides the summary and reports for the collected process data, such
as time statistics, productivity, and defect information.

• The Data Management Subsystem (DMS) mainly supports the management of the process data. It provides
the repository for maintaining the historical process data and the functionality to upload the data to the
PDAT server.

Fig. 4. The architecture design of the PDAT client

Liu et al.: Applying PSP to Support Teaching of Programming Courses

63

To use the PDAT client, students first need to specify the repository for storing the process data. Once the
data repository is specified, the process data will be gathered automatically when the students start developing
programs with Eclipse. The gathered data will be shown in the corresponding views of the PDAT. As shown in
Figure 5, the collected data are presented in the size, time, and defect log views, respectively. Specifically, the
size log view shows various information of each object class in the programs, such as name, location, creation
time, LOC, and the number of methods. The time log view depicts the start time, stop time, and delta time (i.e.,
time duration) for each phase. The defect log view records various defect data of compilation and unit testing
errors, such as detection time, defect type, defect injection and removal phases, fix time, and defect descriptions.
Moreover, the summary of the process data is also provided and shown in the PDAT view.

After students complete their programming assignments, they can submit the collected process data to the
PDAT sever through the PDAT client. The collected data are then consolidated in the PDAT server and several
statistical reports about the students’ processes will be generated. Figures 6 and 7 show the examples of the
process statistics for an individual student and the entire class, respectively. Instructors (or students) can login
the PDAT server and check the results of process analysis to evaluate the student performances.

6 Conclusions and Future Work

This paper has presented an approach to support teaching of programming courses based on the concepts of the
PSP. The approach basically gathers the information about the development process of students’ programming
assignments, such as the sizes of programs, the time spent on the assignments, and the defect data. By analyzing
the gathered process data, instructors can obtain valuable insights into students’ learning progresses and under-
stand their frequent programming problems. In addition, we have proposed several process statistics, including
(1) time statistics; (2) familiarity of syntax; (3) defects hard to fix; (4) frequent defects; (5) productivity; and (6)
defect density. The computations of these process statistics and their possible indications to student perform-
ances are described. Based on the analysis of the process statistics, instructors can develop a more effective
strategy to improve their teaching quality.

Moreover, to reduce the overheads of data collection and improve the quality of process data, an automatic
tool, called PDAT, is developed. The PDAT is based on the client-server architecture. The PDAT client is an
Eclipse plug-in. It can gather the process data automatically when students develop assignment programs with
Eclipse. The recorded data are submitted to the PDAT server where the data are consolidated and several statis-
tical reports for individual students and entire class are provided. Such reports can facilitate instructors to help
students improve their programming ability. In the future, we plan to apply the proposed approach to introduc-
tory programming courses, and report the experiences obtained from the experiments. Based on the experiences,
we also plan to enhance the supporting tool to gather more process data, such as the time and size estimations,
the size of reused programs, and the information of debugging process, and provide more process statistics in
order to support the teaching of programming courses as well as the improvement of students’ programming
skills.

Fig. 5. A screen snapshot of the PDAT client

Journal of Computers Vol.19, No.3, October 2008

64

Fig. 6. An example of the process statistics of an individual student

Fig. 7. An example of the process statistics of the entire class

7 Acknowledgement

This work was partially supported by the National Science Council, Taiwan, under the grant number NSC 96-
2221-E-027-033.

Liu et al.: Applying PSP to Support Teaching of Programming Courses

65

References

[1] F. Rosales, A. Garcia, S. Rodriguez, J. L. Pedraza, R. Mendez, and M. M. Nieto, "Detection of Plagiarism in Program-

ming Assignments," IEEE Transactions on Education, Vol. 51, No. 2, 2008, pp. 174-183.

[2] K. W. Bowyer and L.O. Hall, "Experience Using "MOSS" to Detect Cheating on Programming Assignments," in Pro-

ceedings of the 29th Annual Frontiers in Education Conference, Vol. 3, 1999, pp. 10-13.

[3] W. S. Humphrey, A Discipline for Software Engineering, Addison Wesley, 1995.

[4] P. Johnson and A. Disney, "The Personal Software Process: A Cautionary Case Study," IEEE Software, Vol. 15, No. 6,

November, 1998, pp. 85-88.

[5] J. Kamatar and W. Hayes, "An Experience Report on the Personal Software Process," IEEE Software, Vol. 17, No. 6,

2000, pp. 85-89.

[6] Eclipse. http://www.eclipse.org

[7] S. K. Lisack, "The Personal Software Process in the Classroom: Student Reactions (an experience report)," in Proceed-

ings of the 13th Conference on Software Engineering Education & Training, 2000, pp. 169-175.

[8] P. Runeson, "Experiences from Teaching PSP for Freshmen," in Proceedings of the 14th Conference on Software Engi-

neering Education and Training, 2001, pp. 98-107.

 [9] J. Borstler, D. Carrington, G. W. Hislop, S. Lisack, K. Olson, and L. Williams, "Teaching PSP: Challenges and Lessons

Learned," IEEE Software, Vol. 19, No. 5,, 2002, pp. 42-48.

[10] M. Towhidnejad and A. Salimi, "Incorporating a Disciplined Software Development Process into Introductory Com-

puter Science Programming Courses: Initial Results," in Proceedings of the 26th Annual Conference on Frontiers in

Education Conference, Vol. 2, 1996, pp.497-500.

 [11] I. Syu, A. Salimi, M. Towbidnejad, and T. Hilburn, "A Web-based System for Automating a Disciplined Personal

Software Process (PSP)," in Proceedings of the Tenth Conference on Software Engineering Education & Training, 1997,

pp. 86-96.

[12] D. Carrington, B. McEniery, and D. Johnston, "PSP in the Large Class," in Proceedings of the 14th Conference on

Software Engineering Education and Training, 2001, pp. 81-88.

[13] J. I. Maletic, A. Howald, and A. Marcus, "Incorporating PSP into a Traditional Software Engineering Course: an Ex-

perience Report," in Proceedings of the 14th Conference on Software Engineering Education and Training, 2001, pp.

89-97.

[14] JUnit. http://www.junit.org/

[15] CppUnit. http://sourceforge.net/projects/cppunit

[16] B. Daum, Professional Eclipse 3 for Java Developers, Wrox, 2005.

[17] C.-H. Liu and Y.-C. Huang, "A PSP Eclipse Plug-in Tool for Collecting Time and Defect Data," in Proceeding of 2006

Conference on Open Source, Taiwan, Nov. 2006.

[18] W. S. Humphrey, "Using a Defined and Measured Personal Software Process," IEEE Software, May 1996, pp.77-88.

Journal of Computers Vol.19, No.3, October 2008

66

