
Design and Implementation of a Secure Instant Messaging Service

based on Elliptic-Curve Cryptography

Chung-Huang Yang1,* Tzong-Yih Kuo
1
 TaeNam Ahn2 Chia-Pei Lee1

1 Graduate Institute of Information and Computer Education

National Kaohsiung Normal University

Kaohsiung 802, Taiwan, ROC

chyang@nknucc.nknu.edu.tw

 2 Security Engineering Research Center

Hannam University

Daejeon 306-797, Korea

taenamahn@hotmail.com

Received 16 November 2007; Revised 30 November 2007; Accepted 9 December 2007

Abstract. Instant Messaging (IM) is a useful communication and work collaboration tool between individu-

als, groups, or enterprises. Unfortunately, most IM systems lack the needed security mechanism capable of

ensuring the secure communications of IM client-client and IM client-server. In order to find a solution to

secure IM communications, we designed and implemented a Secure Instant Messaging and Presence Protocol

(SIMPP) based on elliptic-curve cryptography. The proposed IM service is compatible with the IETF XMPP

(eXtensible Messaging and Presence Protocol)/Jabber Standard. Open source jabberd software was revised

to create a SIMPP server on the Linux platform, wherein we used C++Builder to create a SIMPP client on the

Windows platform. Our IM client and IM server use open source MIRACL cryptographic libraries with ik-

semel XMPP library.

Keywords: instant messaging, XMPP, peer-to-peer, key exchange, open source

1 Introduction

Instant Messaging (IM) [1] is one of the most important Internet applications and people are using IM both for

personal and business reasons. However, most IM systems are not secure [2,3]. For instance, in the MSN Mes-

senger, any user that has successfully logged into the system will communicate in plaintext with other users [4,5],

communications are not properly protected. In year 2000, IETF released the RFC 2778 standard [6] which de-

fines IM systems to be composed of two types of services, Presence Service and Instant Messaging Service, as

shown in Fig. 1. The Presence Service, shown in Fig. 1(a), is responsible for the presence exchanges where the

Watcher will receive presence information provided by the Presentity. Presence information includes users’

status and willingness to accept or decline a chat session. The Instant Messaging Service, shown in Fig. 1(b), is

responsible for the inter-client real-time message exchanges.

 (a) Presence Service

PRESENTITY WATCHER

PRESENCE SERVICE

(b) Instant Messaging Service

INSTANT MESSAGING SERVICE

SENDER INSTANT BOX

Fig. 1. Two types of IM service models defined in RFC 2778

* Correspondence author

Journal of Computers Vol.18, No.4, January 2008

32

IM Server S

IM Client A IM Client B

text

audio

video

file

presence

contact list

Fig. 2. Three-Way IM communication model

Under the IM service models, data communications between any two clients should pass through the server. If

the system could only assure client-server communication security, it would overlook the privacy and security

considerations of the message contents revealed at the server after message has been transmitted between clients

and from clients to the server. In this research, we designed and implemented a secure IM protocol, SIMPP

(Secure Instant Messaging and Presence Protocol) for the 3-way IM communication model, shown in Fig. 2, thus

we enhanced the communication security of the IM system. The proposed SIMPP was implemented with the

XMPP/Jabber [7,8,9] protocol of RFC 3920-3923 and JEPs (Jabber Enhancement Proposals) while ECC (Ellip-

tic Curve Cryptosystem) [10] was selected to speedup public-key cryptographic functions.

2 Secure IM Protocols

In [11], Berson reported that SKYPE 1.3 was implemented with cryptographic functions correctly and efficiently,

but few details were given about SKYPE protocol and system security. No much work has been done on IM

security in academia. In order to avoid administrator eavesdropping into client-client communication, Kikuchi,

Tada, and Nakanishi [12] designed a secure IM protocol based on the Diffie-Hellman key-agreement algorithm.

Their design, as shown in Fig. 3, which will be called KTN protocol in this paper, is consisted of two phases: (1)

registration, (2) key establishment in peer-to-peer. On registration, the server will initiate the requesting user to

create a client private key (xi) and public key (yi). The final step on registration is basically a public key distri-

bution, stored other user’s public key. Main drawback of this KTN protocol is that IM server is required to per-

form modular exponentiation operations both during registration and key establishment Phase. Therefore, heavy

computational overhead on the server.

Ui
S UjUiUi
SS UjUj

r∈Zq

Key Establishment

z = gr mod p

bj = zaj mod p

Kij = yj
r mod p Kij = bj

xj mod p

r∈Zq

Key Establishment

z = gr mod p

bj = zaj mod p

Kij = yj
r mod p Kij = bj

xj mod p

Let p, q be secure primes such that q|p-1 and Z be multiplicative group of order q.

gi = gai mod p

ai∈Zq

yi = gi
xi mod p

xi∈Zq

Store:

yi, ai

Registration

Store: yj Store: yi

yjyj yiyi

gj = gaj mod paj∈Zq

yj = gj
xj mod p

xj∈Zq

Fig. 3. The KTN protocol [5]

Yang et. al: Design and Implementation of a Secure Instant Messaging Service

33

A S B

PAKE:

IDA, {KAS}
E
S, {KUA, f1(PA)}KAS

{RS}
E
A, {f2(PA)}KAS

f3(RS)

Session key K
S

AS = f4(KAS, RS)

MAC key K
m

AS = f5(RS, KAS)

Public Key Distribution:

{KUB, IDB} K
S

AS, [KUB, IDB]AS {KUA, IDA} K
S

BS, [KUA, IDA]BS

Session Key Transport:

{KAB}
E
B, {RA}KAB

{RB}
E
A, {f6(RA)}KAB

f7(RA, RB)

Session key K
S

AB = f8(KAB, RB)

MAC key K
m

AB = f9(RB, KAB)

Notations:

A, B, S IM Clients A and B, and Server S.

KUA A’s public key.

IDA User ID of A (unique within the IM service domain).

PA Password shared by A and S.

RA Random number generated by A.

{data}K Symmetric (secret-key) encryption of data using key K.

{data }E
A Asymmetric (public-key) encryption of data using A’s public key KUA.

[X]AS MAC output of data X under key K
m

AS.

fi One-way hash functions.

Fig. 4. The IMKE protocol [6]

Mannan and van Oorschot then designed an IMKE (Instant Messaging Key Exchange) protocol [13] to ensure

the confidentiality, integrity and authentication of client-server and client-client communications. The IMKE is

consisted of three phases: (1) password-authenticated key exchange (PAKE) [14], (2) public key distribution, and

(3) session key transport. Fig. 4 illustrates the IMKE protocol. The session key used for message encryption in

IMKE is derived from short-lived secrets and provides the so-called “forward secrecy” to users. Also, IMKE

allows authentication of exchanged messages between tow parties, and the send is able to repudiate a message.

The authors also implemented IMKE based on RSA cryptographic algorithm. In comparison, KTN protocol is

more efficient than IMKE protocol but IMKE protocol provides better security than the KTN protocol.

3 Secure Instant Messaging and Presence Protocol (SIMPP)

The main objective of the proposed secure IM design is to reduce computational overhead imposed on an IM

systems due to security enhancement. Since security does not come from free and additional computational time

is required to perform security functions, therefore, we revised the IMKE protocol to get a more efficient IM

Journal of Computers Vol.18, No.4, January 2008

34

system, while still maintaining its security. The proposed Secure Instant Messaging and Presence Protocol

(SIMPP) contains three phases: (1) registration, (2) client-server communications, and (3) client-client communi-

cations. Our design used notations and definitions shown in Table 1.

Elliptic curve cryptosystems (ECCs) have been accepted in the standardization bodies and recently adopted as

ANSI X9.62, ISO 11770, IEEE P1363, and FIPS 186-2 standards. We use the ECC over prime field [10] to

implement SIMPP. Significantly smaller cryptographic parameters can be used in ECC than in other competitive

public-key cryptographic systems such as the popular RSA cryptosystem but with equivalent levels of security.

For ECC in our design, first an elliptic curve E : y
2
=x

3
+ax+b over prime field F(p) is chosen. Then system pa-

rameters of a base point G = (xG, yG) on E is selected which must have large order n (ANSI X9.62 mandates that

n > 2
160

). Each entity then find a statistically unique and unpredictable integer d in the interval [1, n-1] and com-

pute the point Q = (xQ, yQ) = d․G, where d is the private key while Q is the public key of entity.

We will assume that IM server and all IM clients will use the same base point G, IM server has randomly se-

lected a big integer KRS as its private key and derives corresponding public key point KUS = KRS• G. This pub-

lic key KUS is known to all IM clients.

Table 1. Notations used in the proposed SIMPP

A, B, S User A, B and server S

IDA A’s ID

pwA A’s password, randomly generated string

RS Random string generated by S

KUA, KRA A’s public key KUA and private key KRA

KA, KB Master key sharing between A (B) and server S

{data}KAS Encrypt data with symmetric key KAS

[data]KAS HMAC of data with key KAS

[data]
sign

A Sign data with A’s private key KRA

h One-way hash function

3.1 Registration

Every new IM user has to register for once. SIMPP registration phase is shown in Fig. 5.

1. User A generates a random secret number KRA in the interval [1, n-1] or computes KRA from h(pwA) with

randomly generated secret password pwA that might be stored on a smart card. Public key of A will be KUA

= KRA• G . A then calculates the master key KA to be shared with server

KA = KRA․KUS

where KUS is the known public key of server S. This KA is actually a point of elliptic curve but its coordi-

nate could be used for cryptographic key. A sends message IDA and KUA (R1 in Fig. 5) to S.

2. Once S receives (R1), S calculates the master key sharing with A by the following equation

KA = KRS․KUA

where KRS is the secret key of server S. S then generates a random string RS and sends encrypted message

(R2) back to A.

KRA = h(pwA)

KUA = KRA˙G

KA = master key

RS = random string

IDA, KUA (R1)

{Rs, h(IDA, KUA)}KA (R2)

 [Rs]
sign

A (R3)

Store IDA, KA, KUA.

A S

Fig. 5. SIMPP registration

Yang et. al: Design and Implementation of a Secure Instant Messaging Service

35

3. A decrypts message (R2), compares it with the hash value of message (R1) created before, and disconnects

if the two quantities are unequal. Otherwise, A secretly stores KA and digitally signs RS with private key KRA

and sends message (R3) to S.

4. S verifies signature (R3) with public key KUA of A and disconnects if verification failed. Otherwise, S

stores IDA, KUA, and KA.

3.2 Client-server Communications

In the client-server communication phase, user A and server S authenticate each other using the pre-established

master key KA during the registration phase and create a dynamic secret session key KAS. This client-server

communications phase is shown in Fig. 6.

1. A randomly generates symmetric session key KAS which is then encrypted with the master key KA sharing

with S. A sends (S1) to S.

2. S looks up master key KA using IDA, symmetrically decrypts (S1) with KA, and gets KAS.. S generates a ran-

dom challenge RS, calculates h(IDA, KAS), and responds with encrypted message (S2) to A.

3. Once A receives (S2), decrypts with the master key KA, calculates h(IDA, KAS) independently and compares it

with the corresponding value received with (S2), and disconnects if the two quantities are unequal. Other-

wise, A computes hashed value of RS, encrypts with session key KAS, and responds with (S3).

4. S independently computes hashed value of RS and compares it with the quantity received in message (S3). If

they mismatch, S disconnects; otherwise, S indicates A successful IM client login.

SS

RS = random string

{RS , h(IDA, KAS)}KA{RS , h(IDA, KAS)}KA (S2)

IDA, {KAS }KA (S1)IDA, {KAS }KAIDA, {KAS }KA (S1)

{h(RS)}KAS{h(RS)}KAS (S3)
Login.

AA

Fig. 6. SIMPP client-server communications

3.3 Client-client Communications

When two users, A and B, both successfully login into system and accept each other for communication, they will

at first obtain public key of each other. Then they apply the Elliptic Curve Diffie-Hellman (ECDH) key ex-

change mechanism to establish a symmetric key. To avoid the common man-in-the-middle problem of Diffie-

Hellman schemes, they will mutually authenticate data with the Elliptic Curve Signature Algorithm (ECDSA).

This client-client communications phase is shown in Fig. 7.

1. A and B securely receive the other party’s public key from S through messages (C1) and (C2).

2. A randomly generates an integer x in the interval [1, n-1] and computes Gx = x․G, sends message (C3) of

Gx to B with its signature.

3. B randomly generates an integer y in the interval [1, n-1] and computes Gy = y․G, sends message (C4) of

Gy to A with its signature.

4. A and B verify the signature received from the other party, disconnects if verification failed. Otherwise, they

use ECDH algorithm (C5) to calculate the common curve point KAB.

KAB = x․Gy = y․Gx

5. With common key KAB, A and B could then securely communicate with each other by encryption and mes-

sage authentication (C6 and C7).

Journal of Computers Vol.18, No.4, January 2008

36

[IDB, KUB]KAS (C1) [IDA, KUA]KBS

(C2)

Public Key Distribution:

{Message}KAB, [Message]KAB (C6)

{Message}KAB, [Message]KAB (C7)

Client-Client Communication:

A S B

 Gy = y˙G

Gx , [Gx]
sign

A
K

(C3)

Gy , [Gy]
sign

B

(C4)

KAB = x˙G y = y˙G x (C5)

Session Key agreement:

Gx = x˙G

Fig. 7. SIMPP client-client communications

4 System Implementation

We implemented a SIMPP IM prototype system through the open source XMPP/Jabber (http://www.jabber.org/)

and used iksemel (http://iksemel.jabberstudio.org/) to conduct XMPP encoding and decoding. Cryptographic

functions of our system is established with MIRACL (http://www.shamus.ie/). The SIMPP server is revised from

open source jabberd (http://jabberd.jabberstudio.org/) and operated in Linux platforms. On the other hand, Bor-

land C++ Builder 6 is used to develop the SIMPP client on Windows platforms. Fig. 8 illustrates main menu for

our client for registration and file transfer. Table 2 shows the implementation specifications of our secure IM

systems.

Fig. 8. Secure IM client software with SIMPP

Yang et. al: Design and Implementation of a Secure Instant Messaging Service

37

Table 2. SIMPP implementation specifications

Server Revised from jabberd run on Linux

Client Software implemented using Borland C++ Builder 6 on Windows XP

Database MySQL

Public-Key Cryptosystem ECC GF(p) Server 224 bits / Client 160 bits

Symmetric Cryptosystem 128 bits AES with CBC mode

One-way Hash Function SHA-256

MAC Function HMAC using SHA-256

Crypto Library MIRACL

XMPP/Jabber Library iksemel

5 Conclusion

The growth of IM use is inevitable and IM is now everywhere: desktops, laptops, cell phones, PDAs, etc. How-

ever, IM also provides a significant security risk and public IM products, such as Microsoft’s MSN Messenger,

generally contain no provision for message confidentiality. In this research, we designed an efficient Secure

Instant Messaging and Presence Protocol (SIMPP) to provide a secure and efficient IM system. SIMPP is com-

plied with the IM service model defined by IETF RFC 2778 standard and is based on elliptic-curve cryptography

to give better performance. We also implemented a secure SIMPP IM system where secure IM server is revised

from jabberd open source software while secure IM client is developed with ourselves, both use MIRACL and

iksemel for cryptographic and XMPP functions.

6 Acknowledgement

This research was partially supported by a grant (NSC 95-2221-E-017-007) from the National Science Council of

Taiwan.

References

[1] S. Chatterjee, T. Abhichandani, L. Haiqing, B. TuIu, and B. Jongbok, "Instant messaging and presence

technologies for college campuses," IEEE Network, Vol. 19, No. 3, pp. 4-13, May-June 2005.

[2] N. Leavitt, “Instant Messaging: A New Target for Hackers,” IEEE Computer, Vol. 38, No. 7, pp. 20-23,

July 2005.

[3] M. Mannan and P. C. van Oorschot, “Secure Public Instant Messaging: A Survey,” Proceedings of the

Second Annual Conference on Privacy, Security and Trust (PST), pp. 69-77, 2004.

[4] MSN Sniffer, http://www.effetech.com/msn-sniffer/

[5] J. Rittinghouse and J. Ransome, Instant Messaging Security, Elsevier Digital Press, 2005.

[6] M. Day, J. Rosenberg, and H. Suugano, A Model for Presence and Instant Messaging, IETF RFC 2778,

Feb. 2000.

[7] P. Saint-Andre, “Streaming XML with Jabber/XMPP,” IEEE Internet Computing, Vol. 9, No. 5, pp. 82-89,

Sep./Oct. 2005.

Journal of Computers Vol.18, No.4, January 2008

38

[8] P. Saint-Andre, ed., Extensible Messaging and Presence Protocol (XMPP): Core, IETF RFC 3920, Oct.

2004.

[9] I. Shiegoka, Instant Messaging in Java: The Jabber Protocols, Manning Publications, 2002.

[10] D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Curve Cryptography, Springer, 2004.

[11] T. Berson, "SKYPE Security Evaluation," http://www.skype.com/security/files/2005-

031%20security%20evaluation.pdf, Oct. 2005,

[12] H. Kikuchi, M. Tada, and S. Nakanishi, “Secure Instant Messaging Protocol Preserving Confidentiality

against Administrator,” Proceedings of the 18th Int’l Conf. Advanced Information Networking and Appli-

cations (AINA), Vol. 2, pp. 27–30, 2004.

[13] M. Mannan and P.C. van Oorschot, “A Protocol for Secure Public Instant Messaging,” Proceedings of the

Financial Cryptography and Data Security 2006 (FC'06), pp. 20-35, 2006.

[14] J. O. Kwon, I.R. Jeong, K. Sakurai, and D.H. Lee, “Directions in Password-Authenticated Key Exchange,”

Communications of the CCISA, Vol. 12 No. 2, pp. 43-60, Apr. 2006.

