
A Bayesian network-based Simulation Environment for Investigating 
Assessment Issues in Intelligent Tutoring Systems 

 
Chao-Lin Liu, Yu-Ting Wang, and Yu-Chih Liu 

Department of Computer Science, National Chengchi University, Taipei 11605, Taiwan 
chaolin@nccu.edu.tw 

 
Abstract - Assessment is a crucial task in develop-
ing a high quality intelligent tutoring system that can 
provide appropriate material to learners at the right 
timing. In order to explore some theoretical aspects 
of the assessment task, we construct a simulator that 
creates simulated test results of students. The simu-
lated students may make lucky guesses in responding 
to questions that they are not competent enough to 
return correct responses, but they may also make 
unintentional errors on questions that they should be 
able to handle correctly. We cope with this uncer-
tainty problem by incorporating Bayesian networks 
in the simulator. This paper elaborates on details of 
the simulator, and overviews experimental results of 
some studies that we have explored with the simula-
tor. Experience not only indicates that this simulator 
is instrumental for us to explore the nature of the 
assessment task, but also shed light on how the 
simulator may be improved. 

                                                          

Keywords: Bayesian networks, e-learning, psycho-
metric and educational assessment, uncertain reason-
ing, artificial intelligence 

1. Introduction 
As accessibility of the Internet expands with the 

explosive popularity of personal computers, e-
learning† has become a very promising complement 
for traditional learning channels that rely heavily on 
direct contacts between instructors and learners, and 
the number of related research work and commercial 
products soars accordingly. Juang’s and Tan’s 
groups study issues regarding e-learning in the mo-
bile computing environment [8,15], while Kuo’s and 
Chen’s groups explore the applications of Web-
based e-learning systems [3,9]. The teaching targets 
cover a variety of different topics, including English 
[9,15,19] and Algebra [20], and the research targets 
contain authoring [19,23] and delivery [10,20,23] of 
educational material, and assessment of students’ 
competence levels [10]. Instead of further covering 
this very broad research field, this paper concerns us 
with issues of assessing students in an uncertain sce-
nario.   

Assessment is a key and challenging issue in edu-
cation in general. Educators need to assess students’ 
competence so that the educators know how to help 

 
† Although some people may insist that the term e-learning has a 
different connotation than the phrase intelligent tutoring, we will 
consider them semantically equivalent and use them interchangea-
bly in this paper. 

the students to learn, and the most common way of 
assessment is asking students to answer questions in 
some forms of tests nowadays. It is well recognized, 
however, that the correctness of students’ answers 
does not necessarily reflect students’ competence [2]. 
Students might make mistakes on questions that they 
should be able to respond correctly, and might luck-
ily respond to questions correctly when they do not 
have sufficient knowledge to do so. For simplicity of 
reference, these situations are often called slipping 
and guessing, respectively, in the literature. This 
uncertain relationship between students’ competence 
and their item-response patterns (IRP) contribute a 
lot to the difficulty in student assessment. (The word 
item carries different meanings in the literature on 
sub-fields of Computer Science, but it is used to rep-
resent an item of problem in a test in the literature on 
Education.) 

Educators conduct assessment activities for dif-
ferent purposes [22], and the most common and per-
ceived one is to assign each testee a score. As a result, 
researchers have developed theories for assigning 
scores to testees based on testees’ item response pat-
terns. Item Response Theory (IRT) [6] is the most 
dominant and widely applied theory among all alter-
natives, and the three-parameter IRT model considers 
the possibility of guessing.  

Although few will deny the importance of grad-
ing the testees, grading is not the only possible pur-
pose of conducting assessment. Through the IRPs of 
testees, the educators may infer what teaching goals 
have not been achieved yet and how the educators 
should and could further help the testees in their 
learning. For instance, the IRPs allow educators to 
infer what concepts the testees have not really under-
stood and what instructional material should be pro-
vided to the testees. Such applications of test results 
are particularly important for e-learning systems be-
cause many users adopt e-learning systems for off-
line and self-paced learning. For this particular rea-
son, we consider that IRT cannot meet our demand, 
and we look into more details about assessment for 
the e-learning applications. 

To this end, we build a simulated assessment en-
vironment that adopts Bayesian networks [7] for cap-
turing the uncertain relationships between the IRPs 
and competence levels of the testees. Using simu-
lated students in intelligent tutoring systems (ITSs) is 
not new to the research community. For instance, 
VanLehn applies simulated students to helping peo-
ple to adjust their teaching and learning strategies [18] 
where the models are constructed based on some 
reasonable cognitive analyses, e.g., [13], and Beck 
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employs simulated students for locating which com-
ponent in his system for improvement [1]. VanLehn 
refers to the simulated students as simulees, and we 
will continue to use this term. Researchers have ad-
mitted that simulees built on contemporary technol-
ogy can mimic only limited human functions, so 
simulees cannot take the place of real students. How-
ever, the literature also argues that simulees are good 
enough for some applications and that simulees “be-
have” in more controllable and explainable ways 
such that designers of ITSs can establish more direct 
relationship between teaching effectiveness and 
simulee-dependent parameters [1,18].  

We have applied the simulated system in selected 
ITS-related studies. We develop a mutual informa-
tion-based method for adaptive item selection, and 
conduct a comparison study among different adap-
tive methods [10]. We compare some distance-based 
metrics, including the Euclidean and Mahalanobis 
distances [5], for student classification [11], and ex-
plore the possibility of mapping students’ learning 
processes using their IRPs [21]. Experiences col-
lected from these studies indicate that the simulation 
system allows us to explore technical issues that 
would be impossible to achieve had we used the data 
collected from real students. However, we also iden-
tify weakness in the current simulator that we will 
enhance so that we can conduct more convincing 
experiments.  

In Section 2, we formally define the problems 
that we want to tackle, and, in Section 3, we quickly 
review the basics of Bayesian networks. We thor-
oughly examine the details of the simulator in Sec-
tion 4, and go through the experiments that we con-
duct with the simulator in Section 5. 

2. Problem Definition 
Consider the domain in which students should 

learn a set of concepts C={C1, C2,…, Cn}. Some of 
the concepts in C are basic concepts, and others are 
composite ones that are integrated from the basic 
concepts. For easier identification, we use cX and dY 
to denote the basic and composite concepts, respec-
tively, where Y signifies the components that com-
prise the composite concept. For instance, dAB is 
integrated from cA and cB. We also assume that, for 
each concept Cj, there is a set of m(j) test items for 
evaluating students’ competence in Cj, and denote 
this set of items by Ij={Ij,1, Ij,2,…,Ij,m(j)}. For easier 
reference, we refer to the basic concepts of the com-
posite concepts as the parent concepts of the 
composite concepts. We also refer to Cj as the parent 
concept of items in Ij. 

We classify students according to whether stu-
dents are competent in what concepts in C, so there 
are at most 2n competence patterns. However, we 
assume that there are a limited number of compe-
tence patterns that the students really exhibit, and 
denote these types of students by G={g1, g2, …, gs}.  

We employ the Q-matrix that Tatsuoka [16] 
originally used to encode the relationships between 
items and concepts for representing the relationship 
between student types and their competence patterns 

in C. Let qg,c be a cell in the Q-matrix. If c represents 
a basic concept, then qg,c=1 signifies that the g-th 
type of students are competent in c. If c represents a 
composite concept, then qg,c=1 signifies that the g-th 
type of students are competent in integrating basic 
concepts for c. Note particularly that, when c repre-
sents a composite concept, qg,c=1 is not a sufficient 
condition  for the g-th type of students to be compe-
tent in c. Note also that, although we use 1 or 0 in the 
matrix, our simulator embraces a randomization 
mechanism to make the relationships between stu-
dent groups and competence patterns a bit uncertain, 
which will become clear in Section 4.1. Table 1 con-
tains a sample Q-matrix where we assume only 7 
types of students. 

Table 1. A sample Q-matrix 
student types cA cB cC dAB dBC dAC dABC

1 1 1 1 1 1 1 1 
2 1 1 1 1 1 0 0 
3 1 1 1 0 0 1 1 
4 1 1 0 1 0 0 0 
5 0 1 1 0 1 0 0 
6 1 0 1 0 0 1 0 
7 1 1 1 0 0 0 0 

 

3. Bayesian Networks 
In the past decade or so, Bayesian networks [7] 

have become an important formalism for represent-
ing and reasoning about uncertainty, using probabil-
ity theories as their substrate. Researchers of educa-
tional assessment have also studied the applications 
of Bayesian network in education [4,10].  

A Bayesian network is a directed acyclic graph, 
consisting of a set of nodes and directed arcs. The 
nodes represent random variables, and each node can 
take on a set of possible values. The arcs signify di-
rect dependence between the connected nodes in the 
applications. In addition to the graphical structure, 
associated with each node in the network is a condi-
tional probabilistic table (CPT) that specifies the 
probabilistic relationship between values of the child 
and the parent nodes. By construction, the contents 
of the CPTs of all nodes in the network indirectly 
and economically encode the joint distribution of all 
variables in the network. As a result, we can compute 
any desired probabilistic information with a given 
Bayesian network [7].  

group

cA cB cC

dAB dBC dAC dABC  
Figure 1. A sample Bayesian network 

Figure 1 shows a possible Bayesian network for a 
realizing the Q-matrix in Table 1. The group node 
represents the types of students. The other nodes are 
Boolean, each representing whether or not a student 
understands the concept denoted by the names of the 
nodes. The arcs connecting the related basic and 
composite concepts, e.g., those between cA, cB, and 
dAB, suggest that the competence of the parent con-
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cepts directly influences the competence of the com-
posite concepts. The arcs connecting the group node 
and cX nodes capture the assumption that different 
student groups show different competence in cX, 
while the arcs connecting the group node and dY 
nodes capture the assumption that different student 
groups have different ability in integrating the basic 
concepts for a dY.  

Due to the page limits, Figure 1 does not include 
all the necessary ingredients for the problems we 
described in Section 2. In particular, the network 
does not have nodes for test items. We cannot do so 
because depicting nodes for all items requires a large 
area. If m(j)=3 for all Cj in C, we will have to add 
three nodes for each concept, and add links from the 
parent concepts to their test items. Figure 1 does not 
show the CPTs either, but more details about the 
CPTs will be provided in Section 4.1. 

4. The Simulation Environment  
Figure 2 shows major components of the simula-

tions. Simulation administrators need to provide a 
command file that describes the simulation scenario. 
Given the command file, the simulator generates a 
Bayesian network that models the learning domain, 
and uses this network to create simulees for further 
applications. In our current simulations, the concept 
nodes are Boolean, meaning that we assume that a 
student is either competent or not competent in a 
concept. Similarly, we assume that the item nodes are 
dichotomous, meaning that each student responds to 
items either correctly or incorrectly. The final output 
of the simulator is a list of records of testees’ item 
response patterns. 

s imulation
scenario

Bayesian network

simulee profilesBayesian network
generation

simulee
generation

 
Figure 2. Major steps of the simulations 

4.1. Bayesian Network-based Simulations 
The BNF grammar 

<sim>  <pgroup> <concept>+ <pitem>* <params> 
<pgroup>  group-name number-of-group <subgroup>+ 
<subgroup>  subgroup-name subgroup-probability 
<concept>  <concept-type> concept-name 
<concept-type>  bconcept | dconcept 
<pitem>  item item-name parent-concept-name 
<params>  Q-matrix <p1> <p2> <p3> <p4> 
<p1>  guess value-of-guess 
<p2>  slip value-of-slip 
<p3>  gguess value-of-gguess 
<p4>  gslip  value-of-gslip 

This BNF grammar summarizes how we describe 
the setups for simulations in the command files. The 
semantics of the grammar will become clear in the 
following elaboration. 

As described in Section 2, major ingredients of 
the problems that we plan to explore include the set 
of student types G, the set of concepts C, and the set 

of test items Ij for each Cj in C, and the Q-matrix. In 
addition to specifying these ingredients, there are 
more details before the simulation can better mimic 
the uncertainty in the real world using a Bayesian 
network similar to that shown in Figure 1. 

The current simulator allows us to specify the dis-
tribution over the student types. Since the group node 
is a discrete and probabilistic, simulation administra-
tors need to specify the prior probability of each stu-
dent type, i.e., Pr(group=gj) for all gj in G.  

For convenience, we use only 1s and 0s in speci-
fying the Q-matrix, and take the risk of giving an 
illusion of our introducing deterministic relationships 
between the student types and their competence pat-
terns. We compensate this by requiring the simula-
tion administrators to specify two parameters, i.e., 
gSlip and gGuess, in the command files. These pa-
rameters control the probability of how students of 
each type will deviate from the stereotypical behav-
iors that are specified in the Q-matrix: gSlip controls 
the degree a variable will deviate from a positive 
value, and gGuess controls the degree a variable will 
deviate from a negative value. When qg,c=1 for a stu-
dent type g and a basic concept c, the conditional 
probability Pr(c|g)‡ will be sampled uniformly from 
the range [1-gSlip, 1]. When qg,c=0, Pr( c |g) will be 
sampled uniformly from the range [0, gGuess]. At 
this moment, we rely on the default random number 
generator rand() in Microsoft Visual C++ for the 
sampling task. 

The task for creating the CPTs for the composite 
concepts is more complex. Recall that both types of 
students and competence of parent concepts of the 
composite concepts influence the competence of the 
composite concepts. Hence, if a dichotomous com-
posite concept has k dichotomous parent concepts, 
the simulator must determine s×2k parameters for this 
composite concept. Although this is not impossible 
for a simulator to do so, doing so would be unneces-
sary. Take dAB for example. Using a logical way of 
thinking, a student must be competent in its parent 
concepts, and be able to integrate its parent concepts 
so that s/he can be competent in dAB. Namely, there 
are three main factors that simultaneously affect the 
student’s competence in dAB. This is clearly an ex-
ample of the “AND” concept in logics, and there is 
an extension of it for Bayesian networks. We choose 
to employ “noisy-AND” nodes [7] in Bayesian net-
works to model composite concepts. Take the second 
student type in Table 1 for example. We need to ob-
tain the influences from the basic concepts cA and cB 
to dAB for setting the values for Pr(dab|ca, cb ,g2). 
Because cA is positive, we sample the influence of 
cA uniformly from [1-gSlip, 1], and because cB is 
negative, we sample the influence of cA uniformly 
from [0, gGuess]. The influence of being a student in 
g2 will be sampled uniformly from [1-gSlip, 1] be-

                                                           
‡ This is a typical shorthand for the probability 
Pr(c=competent | group=g). We use c and c to denote the 
true and the false value of a Boolean variable, where the 
true value indicates competent or respond to the item cor-
rectly and the false value indicates the opposite.  
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cause a stereotypical student of g2 is capable of inte-
grating cA and cB. After obtaining these three ran-
dom numbers, we set Pr(dab|ca, cb ,g2) to their prod-
ucts, and  Pr( dab |ca, cb ,g2) to 1- Pr(dab|ca, cb ,g2). 
We set the parameters for other parent configurations 
of dAB using an analogous method. 

Simulation administrators control the assignment 
of the CPTs for the item nodes by choosing values 
for slip and guess, which control the degree students 
make slipping and guessing, respectively. For any 
concept c and any of its test items, we set Pr(i|c) to a 
number sampled uniformly from [1-slip, 1], and 
Pr(i| c ) to a number sampled uniformly from [0, 
guess]. We then set Pr( i |c) to 1- Pr(i|c) and Pr( i | c ) 
to 1- Pr(i| c ). 

4.2. Creating Simulees 
Once we create a Bayesian network according to 

the directions given in the command file, we are 
ready to create simulees using the generated Bayes-
ian network. The network in Figure 1 along with the 
item nodes that are not shown is one of such gener-
ated Bayesian networks, and we can easily use it to 
simulate how simulees respond to test items in ex-
aminations.  

We simulate whether a testee respond to a test 
item correctly or incorrectly with the help of random 
numbers. For a testee that belongs to the g-th student 
type, we can calculate the conditional probability of 
answering a test item i correctly, Pr(i|g), with the 
Bayesian network. In our simulations, we assume 
that testees always respond to test items, so the re-
sults of their responses must be categorized as either 
correct or incorrect. To this end, we sample a random 
number ρ uniformly from the range [0,1] to deter-
mine whether a particular testee responds to the item 
correctly or not. We record that the testee answers i 
incorrectly if ρ>Pr(i|g) and correctly otherwise. 

We apply a similar procedure to assign a type to 
each simulee. Based on the probability provided in 
the command file, we let each student type occupy an 
interval in the range of [0,1]. We sample a random 
number ρ uniformly from [0,1], and assign the 
simulee the student type whose interval includes ρ. 

In the simulations, we create simulees one at a 
time, and record their type and their IRPs in the out-
put file. Further experiments are then conducted with 
the recorded data. 

4.3. A Brief Comparison with IRT 
Item Response Theory [6] is so prominent as a 

theory for educational assessment that we have to 
compare our models and IRT models. There are three 
IRT models, each including different factors in the 
model. The three-parameter model considers item 
discrimination i , item difficulty ib , and the guess 
parameter i . The model prescribes that a testee with 
competence 

a
c

θ  will respond to item i correctly with 
probability provided in (1), where  is a constant. ik

)(1
1)|Pr(

iii bak
i

i e
c−ci −+

+= θθ          (1) 

For grading testees, it is common to assume that 
the probabilities of correct responses to different 

items are independent given a particular θ . Assume 
that  is the set of items administrated 
in the test. We estimate the competence Θ of testee 
using the following formula. 

},...,,{ 21 tiii=ℑ
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It should be clear that formula (2) is a realization 
of the naïve Bayes (NB) models that are familiar to 
the artificial intelligence community. Although for-
mula (1) is more complex than typical formula used 
in NB models, there is no essential difference be-
tween NB models and IRT models when we use the 
latter for grading testees.  

From this perspective, we can easily see that the 
models we build in Section 4.1 are more complex 
than the IRT models. Given that we know a testee’s 
type, say g, the probability of correctly responding to 
different items, e.g. i and j, may remain dependent in 
our models. More specifically, unlike IRT models, 
the equality in (3) is not guaranteed in our models. 
Moreover, the equality will hold only if the parent 
concepts of the test items are independent given the 
tesstee’s identity, which generally does not hold in 
our simulations and in reality. 

)|Pr()|Pr(?)|,Pr( gjgigji =         (3) 
 Hence, there are two major differences between 

our and the IRT models. Students are classified into 
types not competence levels, although we may de-
sign a conversion mechanism between these two cri-
teria. The responses to different test items may re-
main dependent given the identity of the tests in our 
models. 

5. Current Applications 
We have applied the simulated data in some stud-

ies on assessment-related problems. Due to the page 
limits, we can provide only part of the results that we 
observed in the individual studies, and we cannot 
provide detailed accounts of the studies in this paper. 

5.1. Student Classification 
As we stated in Section 1, knowing the types of 

testees is more useful for intelligent tutoring systems 
than simply grading the testees. Hence, we compare 
some distance-based methods for student classifica-
tion [11]. More specifically, we classify testees based 
on Euclidean distance (ED), statistical distance (SD), 
and Mahalanobis distance (MD) [5] between the 
testees’ IRPs and the typical IRPs of different student 
types. In this study we rely on supervised learning 
[14] to learn necessary parameters from part of the 
simulated data (i.e., training data) for computing the 
distance-based similarity. We compute the degrees of 
similarity between the testees with unknown types 
(i.e., test data) and the student types based on the 
learned parameters for each student type.  

We conducted a series of experiments, and Figure 
3 shows results of one experiment [11]. The horizon-
tal axis shows that we gradually increased slipping 
and guessing from 0.05 to 0.25 when gGuess and 
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gSlip were both set to 0.1, and the vertical axis shows 
the correct rate. We can see that the correct rates 
decreased with the increasing chances of responding 
to items in unexpected manners, and, when all four 
parameters were 0.1, the classification error had ex-
ceeded 5%. We conjecture that, due to our relying on 
uniform distributions in assigning the CPTs of the 
Bayesian networks, the dependency among test items 
are not as strong as we expected, so the resulting 
performances of using MD and SD were not better 
than that of using ED. It is also possible that, even 
though the dependency exists, the strength of de-
pendency is typically not very strong, and IRT 
should be good enough. We are currently investigat-
ing the validity of these conjectures.  

0.7

0.8

0.9

1

0.05 0.1 0.15 0.2 0.25
slip (=guess )

A
cc

ur
ac

y

ED
SD
MD

 
Figure 3. Classification errors decrease with slip 

5.2. Adaptive Item Selection 
For computerized tests, one would like to use the 

least number of test items to evaluate the testees and 
achieve a high classification rate [17]. In previous 
work, we applied the simulated data to compare the 
classification performance achieved by different 
adaptive item selection criteria, and Figure 4 shows 
one of the experimental results [10].  

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1 6 11 16 21
Number of Administrated Items

A
cc

ur
ac

y

BnMi
DistMi
BnHMi
DistHMi

 
Figure 4. Mutual information-based methods win 

The horizontal axis shows the number of admin-
istrated test items, and the vertical axis shows the 
corresponding classification rates. In this study, a 
number of item selection criteria were compared, but 
only two of them, i.e., Mi and HMi, were included in 
Figure 4. The curves for Mi were achieved by a se-
lection criterion that considered exact mutual infor-
mation, and the curved for HMi were achieved by a 
selection criterion that considered a heuristic version 
of mutual information. Not surprisingly, curves in 
Figure 4 support the intuition that we generally 
achieve higher classification rate if we afford to ad-
ministrate more test items. The experimental results 
also suggest that different item selection methods 
lead to quite different classification rate when a lim-
ited number of test items were administrated. In par-
ticular, the mutual information-based selection crite-
rion offered pretty good performance, and, when 
computing exact mutual information during the tests 

is considered costly, the heuristic version of mutual 
information can be of help. 

5.3. Mapping Students’ Learning Processes 
When we discuss the Bayesian network shown in 

Figure 1, we say that the structure is a possible way 
to model the Q-matrix in Table 1. The main reason 
for this vagueness is that there can be different ways 
for students to learn dABC. For instance, one may 
learn dABC by directly integrating cA, cB, and cC, as 
was indicated in Figure 1. One may also learn dABC 
by integrating cA and dBC as indicated in the net-
work in Figure 5. An interesting question is that 
whether we can tell which network structure is used 
to generate the simulated data? If we can achieve this 
goal, we may be able to map how students learn 
composite concepts in the real world. 

group

cA cB cC

dAB dBC dAC dABC

 
Figure 5. A competing structure for dABC  
We tried two measures for evaluating the fitness 

of structures to the observed IRPs [21]. The first one 
was based on mutual information, and the second 
was a heuristic stimulated by the chi square statistics. 
In the chart in Figure 6, we mark these two methods 
with M and C, respectively. Numbers “1” and “2” 
that are appended to both M and C, respectively, tell 
us whether gSlip and gGuess were set to 0.1 and 0.2. 
We recorded the data for the chart in Figure 6, when 
we actually used the structure in Figure 5 as the 
structure in the simulation scenario.  

0
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1

0.00 0.05 0.10 0.15 0.20
slip (=guess )
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Figure 6. Finding the real structure is possible 

The curves in Figure 6 suggest that finding the 
real structure is possible when slip, guess, gSlip, and 
gGuess are all set to 0.1. When our system made 
errors, it chose the structure shown in Figure 1 most 
of the time. This is the kind of error that we would 
consider reasonable. By a closer examination of the 
network structures shown in Figures 1 and 5, we find 
that cA, cB, and cC are parent nodes of dABC, so it is 
easy for our system to mistakenly consider these 
three nodes are the direct parents of dABC rather 
than cA and dBC. 

Despite these encouraging findings, we found 
some cases in which it is very hard to judge the hid-
den structure based on the observed IRPs of testees. 
We have found that the contents of the Q-matrix 
have a great influence on the identification rates of 
our methods. More specifically, it is possible for us 
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to moderately change contents of the Q-matrix but 
detrimentally impact the performance of our methods. 
The stereotypical item response patterns of student 
types provided in the Q-matrix and the distribution 
over the student types are key factors. However, we 
have not figured out any theoretical conclusions on 
this front besides these observations.  

6. Summary 
This paper provides a detailed account of the 

simulator that we construct and use for generating 
testees’ item response patterns under some uncertain 
conditions. The uncertainty is a natural result of stu-
dent normal behavior. The uncertainty in the simula-
tion scenarios are captured with Bayesian networks, 
and the generated IRPs are used in some studies on 
educational assessment. Experiences indicate that the 
simulator is instrumental to our studies and that we 
may improve the simulator so that the simulation 
better mimic the real world. 
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