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Abstract—In a ubiquitous computing system, users carrying has a database server which enforces strict data consistenc
portable devices can access database services from any ea  Each mobile host is associated with a coordinator MSS that
without requiring a fixed position in the networking environ- . dinates the operations of the transactions submitied b

ment. Some examples of strategies supported by databases in . . . .
mobile computing include location dependent queries, londjved that mobile host. Transaction execution descriptions arhe

transactions that require migration of data into the portable followings:

devices, form-based transactions, and online informatiomeport. . . . . .
In a ubiquitous computing environment, the need for a real- « Mobile host process (MHP): A mobile transaction exists

time database management model is strong, because one of the  at the generating mobile host.
basic requirements in mobile data management is to provide « Fixed host process (FHP): A fixed transaction exists at
real-time response to transactions of the underlying stragies. the coordinator MSS of the generating host.

However, the resource constraints of ubiquitous computingsys- . Fixed cohort process (FCP): FCP at sides where the
tems make it difficult to satisfy timing requirements of supported - . ’
required data page reside.

strategies. Low bandwidth, unreliable wireless links, andfre-

quent disconnections increase the overhead of communicati ;
between mobile hosts and fixed hosts of the system. ThereBroadcaSt delivery [11][10] has been proposed and proven to

are many situations in which we need to incorporate real-tine be an e_fficientlwgy of disseminating data_ to the mobile_ client
constraints in broadcasting systems for mobile environmets. In ~ Population. This is due to the asymmetric nature of wireless
this paper, we study broadcast scheduling strategies for @h- communication, i.e., the downlink bandwidth is much higher
based broadcast with timing constraints in the form of deadines. than the uplink bandwidth. Associated with broadcast eejiv
Unlike previously proposed scheduling algorithms for broaicast s the problem of how to schedule the broadcasting of the
systems which aim to minimize the mean access time, our goal Lo o . .
is to identify scheduling algorithms for broadcast systemshat rgqugsts to minimize the wait time of the cllgnts. The Wa't
ensure requests meet their deadlines. We present a Study oft|me IS a|SO referred to as mean data access t|me, Wh|Ch IS the
the performance of traditional real-time strategies and mdile average amount of time from the arrival of a request, to the
broadcasting strategies, and demonstrate that traditionkreal-  time that the requested page is broadcast. With broadgastin
time algorithms do not always perform the best in a mobile na sarver can satisfy all pending requests on a data iterd-sim
environment. We propose a multichannel model based on push- N .
based real-time broadcast system and also provide an efficie taneously, thus, ellmlnathg the potentla!ly very Iargeltl_nead
scheduling algorithm, called dynamic adjustment with time Of data requests, and saving both the wireless bandwidtlaand
constraint (DATC), which is designed for timely delivery ofdata mobile client’s battery energy. Another feature is thatréagly
to mobile clients. increases the scalability of the broadcast system by kgepe
server from being swamped with data requests With the rapid
growth of time-constraint information services and bus@e
oriented applications, there is an increasing demand tpastip
quality of service (QoS) in mobile environments. In many
situations, user requests are associated with time camtstra

A typical mobile computing system consists of a number @fs a measure of QoS. These constraints can be imposed either
mobile and fixed hosts. A fixed host (FH) is connected withy the users or the applications. For example, the timing of
each other via fixed high-speed wired network and conssituteuying/selling stocks for a stock holder is very crucial. If
the fixed part of the system. A mobile host (MH) is capablhe stock information cannot reach a stock holder in time,
of connecting to the fixed network via a wireless link. Somthe information might become useless. For another example,
of the fixed hosts, called mobile support stations (MSS), atlee information about traffic congestion that is caused by a
augmented with a wireless interface to communicate withaffic control should also reach a mobile client headingat@iv
mobile hosts. The links between mobile computers and th@s direction timely. If a client receives such informatio
MSSs can change dynamically. In our model, we assume tleatrly enough, the client is able to react accordingly to @voi
all fixed hosts act as mobile support stations (MSS). Each M8& traffic jam. The value of the information would degrade
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1. INTRODUCTION



significantly when the client gets closer to the spot of thieigh, the LS and EDF strategies lose their advantage, evem ov
control. With data broadcasting approach a broadcast serF€FS, as most transactions are likely to miss their deaslline

can serve many mobile clients SimultanEOUSIy. TherefOIEi d For push-based Systems' the |0ngest wait first LWF a|go-
broadcasting is usually adopted for disseminating data fithm has been shown to outperform all other strategies at
mobile computing environments. Most of the related curregiinimizing wait time [13]. In LWF, the sum of the total time
research focuses on a data broadcasting approach, whereiig all pending requests for a data item have been waiting is
transmission of data is done without considering the dat@iculated, and the data item with the largest total waietig
items with time constraints. In this study, we present an 0Bhosen to broadcast next. However, LWF has been recognized
line scheduling algorithm to maximize the total number ofs expensive to implement. In [4] a strategy, called reguest
satisfied users in asymmetric communication environmeffiqes wait (RxW), is presented for push-based systems that
with time requirements. This is achieved by means of dynamigakes scheduling decisions based on the current state of a
adaptation of the broadcast program to the needs of t§geue (instead of access probabilities). The RxW algorithm
users, taking into account the bandwidth constraints niter provides an estimate of the LWF algorithm by multiplying

in asymmetric communication environments and the deadligfe number of pending requests for a data item times the
requirements of the user requests. The goal of our researciphgest request wait time. In general, the performance ef th
to study broadcast scheduling strategies on the multigHlangpproximate algorithms has been shown to be close to LWF.

systems fpr data .broadcast with t'm',ng constralr!ts. In such There has been some research work to consider broadcasting
broadcasting environment, the goal is to determine how Wci

h heduli loorith hat the datab gr mobile real-time systems [5]. A push-based protocol for
the scheduling algorithms ensure that the database seyesr rganizing broadcast disks for real-time applicationdleda

not miss deadlines, instead of minimizing wait time. Therﬁdaptive Information Dispersal Algorithm (AIDA), is pre-
are seyeral s_chedulmg algorithms for multichannel SySteanted in [3]. In this work, the data must be broadcast peri-
n m.‘?b"e environments [8][9]' However, we demonstratd thr’ESdicaIIy to satisfy the timing constraints. The AIDA protdc
trad|t|.onal WeII-_known. algorithms do not always perforne th considers fault-tolerance and the data items are allocattn:
best in a mobile environment, such as greedy and dynamli,,jeast disks to minimize the impact of intermittentfes
programming, when they are apph_ed W't_h time constraints (Eﬂ/ utilizing redundancy. AIDA guarantees a lower bound on
the multichannel systems in a mobile environment. We prepag, probability of meeting timing constraints. Similar Wor
a mod_el of a multichannel broadcgs_t system for_a S'mma_t'%'aldressing fault-tolerant real-time broadcast disks afspin
analysis and _also_propose an e_ff|C|ent sche_dulmg algorit 2]. In this work, the authors show that designing strategie
called dynamic adjgstment W'th time constraint (DATC)' Ther real-time broadcast disks is related to pinwheel schieglu
(rfSt of thei pa:jper 'i ]E)rganlzle_d as foIIow_s. In Zecuot?tj dwﬁﬁe authors derived a pinwheel algebra, which utilizessrule
Iscuss related work for real-time strategies and mobila dgy, 5 5 pe used to construct fault-tolerant real-time dcast

the DATC apProaCh_- In sec_tlon 4 we present the expenmenltﬁl(ljlt we schedule all data items with time constraints using
results_ and s!mulatlon environment. Finally, we concluue tadaptive algorithms under limited bandwidth to minimizessni
paper in section 5. rate. In the multichannel broadcast disks model, the server
periodically repeats a computed broadcast program, based
2. RELATED WORK on user access patterns. A broadcast cycle is defined as

Scheduli f . ¢ Ltime datab . one transmission of the periodic broadcast program. Deadli
cheduling of transactions for real-time databases in a NYnstraints have been integrated into the broadcast model

mobile environment is studied extensively in [1]. A reahd . (g1 |n order to minimize the total number of deadlines
client/server model is considered in which the server assigissed by making the most effective use of the available
priorities o tra_nsact_ions based on several strategietud_ing bandwidth, scheduling approach has to focus on criticabfac
Earliest Deadline First (EDF) and Least Slack (LS) first. ASuch as access frequency, time constraint, and bandwidth

its na-me.implies, for E,DF the .tra_nsaction with the earl,ie?équirements. In [15], scheduling mechanisms for broadas
deadline is given the highest priority. For LS, the SIaCket'mdata that are to minimize the delay incurred by insufficient

is defined asd — (¢ + £/ —P), whered is the deadline; is the - cpanneis put it is reasonable that all clients are satisfi
c_urrent time,E is the execution tlme and is _the processor expected time to optimize average access time.

time used thus far. If the slack time is8 0, it means that
the transaction can meet its deadline if it executes without
interference. The slack time indicates how long a transacti
can be delayed and still meet its deadline. The Least Slack ES
differs from EDF because the priority of a transaction dejsen
on the service time it has received. If a transaction is resta ~ We now describe a framework to support the push-based
its priority will change. Simulation results show that thBfE broadcast scheduling problem with time constraints. Iig thi
is the best overall policy for real-time database systems section, the real-time scheduling problem, system arctite

a non-mobile environment. However, when system loads ard solving mechanism are introduced.

BROADCASTING WITH TIME CONSTRAINTS



3.1. System Architecture 3.3. Design of Algorithm DATC

Server side: We assume that there dte channels in  We provide an algorithm to generate a valid broadcast
a broadcast area, each channel dendafedl < ¢ < K. program so as to minimize miss-rate. If miss-rate is zefbo, le
A database is made up oV unit-sized items, denotedaverage access time minimized. We formulate our problem
dj,1 < j < N. Each item is broadcast on one ofand make appropriate assumptions to make it a resolvable
these changels, so channeél; broadcasts IV; items, problem as follows.

1 <i < K,>) N,=N. Each channel cyclically broadcasts _ . . .
== ’Z ! 4 y Let each item contains two attributes: access probability

=1
its items. Tllz"ne is slotted into units called ticks. The sife QGnd time constraint. Given a databage with its size
data item is fixed and equal to one tick. Each data item ||@| — N and the number of Channe's}ﬁ’ we aim to allocate

denotedd; (id;, t;, p;) by the following parameters|6]: each item inD into K channels, such thalV items are
cyclically broadcast on multi-channel, the miss rate can be
« id: identifier of data item. . K . .
« t;: relative deadline, i.e. the maximum acceptable delé@’/‘tten aS:ZZ:l d%:cpi - Given an example using above the
for its processing. assumptions, we maké a comparison between greed algorithm

o p;: access probability fod;. [12] and our algorithm DATC.

Requests are for single item and assumed to be exponentially

distributed.

Client side: Each client can require one data item per requEZ@mple 1. G“’eT‘K = 3 broadcast channels, consider a set
d e & (2l = 10 data items,{dy, dz, ds, du, ds, de, dr, ds, o, dro}

associated with a time constraint. When a client needs a d ih the followi K d babilit d i
item, it first tunes in the broadcast channels to retrieve the! € lollowing skewed access probabiiiies and time

contents of channel. By the information of channels, thentli constraints:

can determine whether he can get the data item from the 4 s s o s
broadcast channels. If thg needed data item is in the_ brehdca 0199 0140 0.1141 0.099] 0.089
data set, the client tunes in the broadcast channels amelvestr 8 3 3 10 9

the desired data item. Otherwise, the client sends a retuest
the server via the uplink channel, and listens to the bragtdca
channels to retrieve the data pages.

3.2. Problem Formulation 4. EXPERIMENTAL RESULTS

We formulate our problem to make it a resolvable problem® 1 - simulation Environment
as follows. Given a number of data itemsto be broadcast in | i broad imulati del. bandwidth i
multiple broadcast channels. Each data item is associated n our real-time broadcast simulation model, bandwidth is

with a time constraint. Every access of a client is only oH?eOt explicitly modelled. Instead, similar to previous wd#,
data item. Expected delayp;,is the expected number ofWe use broadcast ticks as a measure of time. The greatest
. (2]

ticks a client must wait for the broadcast of data iteln advantage of this approach is that the results are not lintite

Average expected delay is the number of ticks a client mudtY particular bandwidth and/or data item size. Ratheimisa
wait for an average request and is computed as the sifcapture the fundamental characteristics of the systéhmes.

of all expected delays, multiplied by their access protitist model simulates a one-hop wireless network. All data items
are stored in a data server in a fixed location. Mobile clients

N need to send requests to the server via an uplink back-channe
Average Expected Delay(W) = Zwipi (1) before the requested page can be broadcast. The arrival of
i=1 requests generated by mobile clients follows a Poissongssoc
_ ) .. and the inter-arrival time is exponential with mean Each
wherew; is expected delay[14] ang; is access probability o4, est has a request id, arrival time and deadline. For each
for data item d; respectively. With time constraints, a5 a queue is maintained to store the information about
request for data itemd; has missed its deadline Whenrequests on the object. We assume the results produced after
timing fault(expected delay for data ited) exceeds its ime 5 geadiine are useless (firm deadlines), so all requests that
constralnttl-_ < W)_ occu_rred at some time slot. The miss ratfave missed their deadlines are discarded. Mobile cliemts a
of all data items is defined as follows: responsible for re-sending requests when link errors obver
K also assume a deadline can capture the mobility of clients
Miss Rate:ZZpi (2) Wwho are no longer able to receive the broadcast. In our
= model, since newly generated data requests are sent to the
server immediately, the request generating time is equal to
Our goal is to broadcast all data items with time constraintise time the server receives it (assuming network delay is
on multiple broadcast channels that minimizes the miss ratignored). We also ignore the overheads of request proggessin



Algorithm DATC(int N, int K, float P, int T)

(* N: number of itemsK: numbers of channels}: access probabilities]": time constraintsk)

Input: set of N unit sized items ordered by popularit§ channels.

Output: K partitions to minimize miss-rate.

1. Partition number = 1;

2. while (Partition number< K) do

3 for each partitionk with data items; throughj do

4. (x Find the best point to split in partitionk *)

5. for (s=4s<j;s=s+1) do

6 (+ Initialize the best split point for this partition as the fidata item. If we find a better one subsequently, update
the best split pointx)

7 if ((s = 1) or (Local.change> C7,))

8. ( C;’] is computed as the expected delay of a data item in a chanrgétef — i + 1. %)

9 (+ Initialize the best solution as the one for the first pantititf we find a better one subsequently, update

the best solutionx)

10. then Local S =s
11. Local change =C3;
12. if ((k=1) or (Global.change> Local_change))
13. then Global change = Localchange
14. GlobalS = Local S
15. Bestpart =k
16. Split partition Bestpart at point GlobalP
17. Partitionnumber = Partitionnumber + 1
18. for data items with time constraints on each channdd
19. Order data items by time constraints
20. Earliest deadline first to broadcast
Partitions
d, d, ds d, Broadcast cycle = 4
K=1 0.199] 0.140] 0.114] 0.099 Time constraint of d and d = 3 < broadcast cycle =
8 3 3 10 Miss rate = 0.140 + 0.114 = 0.254
ds ds dr Broadcast cycle = 3
K=2 0-389 0-281 0-275 Time constraint of =2 < broadcast cycle =3
Miss rate = 0.081
dg dy dio Broadcast cycle = 3
K=3 0.070 | 0.066 | 0.062 Time constraint of @, cy and do > broadcast cycle =
10 8 7 no miss rate

Total miss rate = 0.254 + 0.081 = 0.335

Fig. 1. Broadcasting 10 data items with time constraintsauifoon 3 disjoint subsets and the miss rate = 0.335.

at the server, because the main purpose of the modeltasbroadcast the selected page. All requests requesting the
to compare the scheduling power of various strategies. \Wage are satisfied when the broadcast is finished. A client

assume requests generated by mobile clients are read oody) request multiple pages and a page can be requested by
and no update request is allowed. Concurrency control sssurultiple mobile clients at a time. We assume that data demand

are not our main concern, and thus, not considered. At egutobabilitiesp; follow the Zipf [7] distribution in which:

tick of the simulation clock, the following occurs. A simtéd

request generator generates requests with exponentit int i = (1/2_)9 (i=1,2,3 M)
arrival time. The information about each request id, akiva Mo Y
time and deadline is recorded. The request is then inserted ;( /)

to the corresponding queue. The server checks the deadlines , )
of all the arrived requests, and discards those requests #{Rere pi represents the’th most popular page. The Zipf
have missed their deadlines. Then the server selects a péigiibution allows the pages requested to be skewed. &igur

to broadcast by applying a scheduling strategy and stagtShows the results of our simulatign compgriqg the DACT
strategy to the strategy EDF for uniformly distributed dead



Partitions

d, d, d d, d,
K=1 0.199 | 0.099 [ 0.089 [ 0.070 | 0.066 Broadcast cycle =5
8 10 9 10 8
d, d, d,
K=2 0.140 | 0.114 | 0.075 Broadcast cycle = 3
3 3 6
dﬁ dlﬂ =
K =3 0081 T 0.062 Broadcast cycle = 2
2 7

Time constraint of each data item on its channel > broadcast cycle, total miss rate = 0

Fig. 2. Using DATC algorithm to partition 3 disjoint subsetsd the miss rate = 0.

Symbol Description Default Range Unit
DBSIZE Total number of data pages stored irl00 100- pages

server 10000
A Mean request arrival rate (exponential) - 2-60 requesks/ti
0 Request skewness (Zipf) 1.0 0.0-1.0 -
MinSlack Minimum slack time 1.0 - ticks
MazxSlack Maximum slack time - 20-300 ticks
Adeadline Parameter of exponential deadline dis- 10-300 ticks

tribution

TABLE |

SIMULATION PARAMETERS

. TABLE Il
lines. PERFORMANCE COMPARISON OF DIFFERENT SCHEDULING ALGORITHMS

4.2. Simulation Parameters

We compare the DACT approach with the algorithms de- LWF

DMR ART AS Overhead
1
scribed in Section 2: EDF, LSF, RxW, and LWF. Figure 3 illus- Ifei\sv ;
3
5

trates the distribution of miss rate. We only choose the push gpg

based algorithms to compare the results since we beliege the DATC -
push-based algorithms better adapt to the dynamic chariges cﬁ&’f: A?/E?;glglgeR'\eﬂslf)z riaeteﬂme
the intensity and distribution of system workloads. Thelpus  as = average Stretch

based (access probabilities, broadcast histories, effeline

algorithms are not considered due to the fact that they are

mainly for fairly stable systems. We implement the simaiati

model described in the previous section using C++. In each

experiment, we run the simulation for 5000 time units, anthaximum slack time ranging from 20 to 300. This variation
we use an average of 20 runs of each simulation as the fimaimaximum slack time allows us to vary the tightness in the
result. The Parameters used in this simulation are sumethrizieadlines. In addition to a uniform distribution of deadbn

in Table 1. The default total number of data pages storad exponential distribution is utilized with lambda rargin

in the server, referred to as DBSIZE, is 100 pages. Cliefitom 10 to 300. After doing a large number of experiments
requests reach the system with exponential inter-arriva t with various factors that affect the performance, we come up
with mean), and \ is varied in our simulation from 2 - 60. with an overall performance comparison between the praviou
It is assumed that each data request requires 1 broaddast gigjorithms and our scheduling algorithm DATC in Table 2.
to broadcast. An open system model is used to simulate e grade the level of performance from 1 to 5. The higher
system for extremely large, highly dynamic populationsteDathe degree is, the better the performance is. On the contrary
access follows a skewed Zipf distribution with param@&eto  overhead with higher degree shows that the algorithm gets
control the skewness. The minimum slack time is 10, with thmaore cost in Table 2.

Gl w 0= N
P =N N NN
waboo
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Fig. 3. Deadlines missed

5. CONCLUSION

In this paper, we present an analysis model as well as a diomla
model for push-based real-time broadcast systems. As tgerp
demonstrates, the traditional well-proven strategié&s, EDF and LS
in the non-mobile real-time environment, do not performoédfitly in
a broadcast system environment. We propose an efficientisiihg
algorithm, called dynamic adjustment with time constrgdiDATC),
which is designed for timely delivery of data to mobile clienWe
compare DATC with traditional client/server based realetischedul-
ing strategies and mobile non-real-time broadcast siegeghe pro-
posed DATC strategy is shown to generally outperform thetig
real-time strategies, with different deadline distribuas. In the future
we plan to improve the DATC strategy by reducing its schedytime
complexity. Other concentrations include investigatidnreal-time
scheduling algorithms that can handle transmission erngpsate
requests, unfixed page size and multi-hop communication.
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