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Abstract- Application of the eXtensible Markup 
Language (XML), a well-known standard serialized 
format on databases, in the World Wide Web (WWW) is 
growing swiftly in recent years. Previous researches on 
XML focus mainly on indexing techniques and 
broadcasting approaches, less on the updating, of the 
XML databases. In this paper, we apply ABI+HCQU and 
SWRCC+MUVI, two of our previously proposed cache 
invalidation schemes, to perform data updates in the XML 
databases. Our center design is to figure out the 
correlation between the XML databases and use it to 
assist data updates under the operation of the two cache 
invalidation schemes. Simulation results show that by 
making use of data correlation, our schemes attain higher 
cache hit ratios and lower query uplink ratios, which 
together yield much shorter average access time, than 
other related schemes.  
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1. Introduction  
 

A wireless network, such as a Notebook or PDA, 
usually consists of one or more servers and lots of clients. 
Databases are stored in the servers and the connection 
between the servers is wired. As a client needs to comply 
with the mobility and lightweight characteristics of a 
wireless network, its storage is limited and will store only 
a certain portion of the database. In such a wireless 
environment, if each client is installed with a cache and 
allowed to fetch the newly accessed hot data from the 
cache upon a query request, both the query uplink 
bandwidth and average data access time will be 
significantly reduced. In doing so, how to maintain data 
consistency between a client’s cache and the server’s 
database becomes an important and critical issue which 
has drawn considerable investigations from researchers, 

e.g., [1, 2, 3, 4]. 
In fact, the rapid advancement of mobile techniques has 

facilitated the application of mobile networks in quite a 
variety of daily uses, including weather prediction, traffic 
information, medical diagnosis and even military detection 
in recent years. Data gathered by mobile networks can be 
stored by XML [5] and accessed through XQuery [6]. The 
database can be managed using XQUF[7] and the 
Document Type Definition (DTD) for each XML 
document can be attained using [8]. Current researches on 
XML center either on the indexing techniques ([9, 10]) or 
on how to broadcast the XML data efficiently [11]. 
Updates on databases, by contrast, are less considered. 
Seeing this, [6] and [12] put their efforts to deal with the 
issue (i.e., updating the XML databases) to pursue more 
desirable function of XML. 

General cache invalidation schemes for the wireless 
networks hardly consider the correlation between data. 
But in the XML databases, correlations among data do 
exist due to their hierarchical architectures, and if we 
ignore such data correlations and simply bring in general 
cache invalidation schemes to work on XML databases, 
performance will certainly degrade. In order to take the 
correlations among XML data into consideration and use, 
[13] broadcasts additional Structural Invalidation Reports 
(SIR) to update the architecture information in the cache. 
That is, such additional structure information must be 
broadcast if a general cache invalidation scheme is to be 
applied on the XML databases.  

The main goal of this research is to define and use data 
correlations which exist in the XML databases to further 
investigate the update issue. To carry out our investigation, 
two of our previous cache invalidation schemes, 
ABI+HCQU and SWRCC+MUVI [14], are applied to 
work on the XML databases. In order to apply our 
schemes on the XML databases, we also broadcast the 
additional SIRs in [13] to manage the data correlations in 
the database. Simulation results show that by making use 
of data correlations (reserving the cache data with only 
architectural changes), our schemes attain higher cache hit 
ratios and lower query uplink ratios, and the two together 



yield much shorter average access time, than the other 
cache invalidation schemes.  

The paper is organized as follows. Section 2 gives 
background study on XML and cache invalidation. 
Section 3 describes the two cache invalidation schemes of 
ours and their applications on XML data. Experimental 
performance evaluation and comparison are provided in 
Section 4. Section 5 concludes the paper. 
 
2. Background Study  
 
2.1 The Extensible Markup Language (XML) 
 

Elements are the basic components of the eXtensible 
Markup Language (XML). An element in XML may 
appear in any depth and contains any amount of 
sub-elements. Each element has two important tags, the 
start tag and end tag, to indicate its start and end. In this 
paper, we construct an XML data tree based on the 
One-Sibling-Address (OSA) [15, 10]. The following are 
its associated definitions. 
 
Definition 1：Constructing the XML data with the tree 
architecture 
1. NAME: Storing the node’s name, it can be the Element 
plus Attribute or the Parsed Character DATA (PCDATA). 
2. DATA: Storing the node’s data, its data type is usually 
in strings or numbers. 
3. Child (C): The child pointer of a node will store the 
address of its first child (its other children will be 
cascaded by this first child) or be set as null when the 
node has no children at all.  
4. Father (F): The father pointer of a node will store the 
address of its father (or set as null if it has no father). 
5. Next (N): The next pointer of a node stores the address 
of its next brother (or set as null when there is no next 
brother). 
6. Previous (P): The previous pointer of a node stores the 
address of its previous brother (or set as null when there is 
no previous brother). 
 
Definition 2：Constructing the Prefix Sequence Number 
(PSN) and the XML Path (XP) 
1. PSN：The sequence number of each node obtained by 
tracing the XML data tree in the prefix order. 
2. XP：All the visited nodes from the root to a node are 
included in the node’s XP. 
 

Each node in XML tree includes six information items 
which are defined by Definition 1. The path and sequence 
number of each node can be obtained by Definition 2, and 
the tree root is set as the first element/attribute in an XML 
file. For instance, for Mondial.xml [16, 17], which 

contains 34948 nodes, the sequence numbers are from 
1~34948, while for XMark.xml [18, 19] (scaling factor = 
0.1), which has 267438 nodes, the sequence numbers will 
be 1~267438. 
 
2.2 The Update Operations 
 

Our investigation in this paper sets up several update 
situations according to [12] and [13]. 
1. Rename (ptr, name): Update only the element’s 
NAME, not C, N, F, P and DATA. The cached XP will 
also be updated. 
2. Replace (ptr, content): Update only the node’s DATA, 
not C, N, F, P, NAME or XP. 
3. Insert (ptr, newname, content): ptr is a pointer that 
points to a node in the XML tree. The Insert instruction 
will insert a new node (NAME=”newname”, DATA 
=”content”) between a node that ptr points to and its 
Child. 
4. Delete (ptr): ptr is a pointer that points to a node (in the 
XML tree) whose descendants will be deleted (the Child 
pointer of the node will be set as null after deletion). If the 
Child pointer of the node that ptr points to is null before 
deletion, this Delete (ptr) becomes an invalid case. 

Note that XP will change with Rename, Insert and 
Delete instructions but not with the Replace update, and 
we will update PSN and XP accordingly. 
 
2.3 The TS (IR-Naïve) and XIR Schemes 
 
2.3.1.  The TS (IR-Naïve) Scheme [2].  The basic 
cache invalidation scheme is the TS scheme in [2], to be 
called as the IR-Naïve scheme in our later discussion 
because it broadcasts periodic invalidation reports (IR). At 
the end of each broadcast interval L, IR-Naïve will collect 
and put the IDs and timestamps of all data items that have 
been updated from T-w*L (w being the window size) to 
the current timestamp T on the IR. The server then 
downlinks the IR to all clients for them to invalidate their 
caches. 
 
2.3.2.  The XIR Scheme [13].  Two concepts, the 
influenced area (IA) and the node sequence information 
(NSI), are defined in [13] in order to implement cache 
invalidation schemes on the XML database.  

XIR has two different channels, the broadcast channel 
(for the server to broadcast IRs and downlink the 
requested data) and the on-demand channel (for a client to 
uplink queries to the server). In a cache invalidation 
scheme, the server will periodically broadcast XIR which 
contains two IRs: the SIR and the data invalidation report 
(DIR). The SIR includes the updated NSI in XML and the 
corresponding DIR pointer. DIR includes IDs and 
timestamps which will update time from Ti-w*L to Ti. A 
client will update the XP of its cached data according to 



SIR which has a pointer pointing to the corresponding 
DIR.  
 
3. Our Proposed Schemes  
 

To attain more desirable utilization of the wireless 
resources, we have in our previous researches divided data 
into different groups based on their frequencies of being 
updated or queried, and adjusted their broadcast intervals 
accordingly to fit the real demands. 

If existing cache invalidation schemes are applied on 
the XML database without any modification, it is very 
likely that some still valid cached data items will be 
unnecessarily invalidated because the changed correlation 
between data will change the database architecture. To 
improve the situation, one can broadcast additional SIR. 
The implementation of IR and additional SIR has been 
illustrated in the XIR scheme in [13]. 

As mentioned before, the main purpose of this paper is 
to implement our ABI+HCQU and SWRCC+MUVI cache 
invalidation schemes [14] in the XML database and, by 
utilizing the data correlations in the XML database, to 
obtain efficient update of cached data. The detailed 
operation and implementation are given below. 
 
● The Adaptive Broadcasting Interval (ABI) 
Approach. 

To operate ABI, we first define a threshold H to decide 
if the information in an IR is valid. If the number of 
updated data exceeds H during 1 IR broadcasting interval 
L, the information in the IR is considered outdated. L 
needs to be adjusted: If the original L is B1, it can be 
changed to a shorter interval, say B1/2, to satisfy the 
frequent query requests of the clients. On the contrary, if 
the number of updated data falls below H during 1 L (i.e., 
the clients do not frequently file queries to the server), the 
length of L can be doubled (B1×2) to save resources. 
 
●The Hot/Cold vs. Query/Update (HCQU) Approach. 

The HCQU approach divides data into 5 groups: Hot 
Update (HU), Hot Query (HQ), Cold Update (CU), 
Cold Query (CQ) and the ReMAinder (RMA), and 
assigns each group a proper broadcasting interval to suit 
the actaul demands. It operates as follows.  
(1) The server and clients will predefine the five groups 
(to be redefined after a fixed time interval):  

HU/HQ：The top 5% of data which are updated / 
queried most frequently . 

CU/CQ：The bottom 5% of data which are updated / 
queried least frequently. 

RMA：The remainder of data, belonging to none of HU, 
HQ, CU or CQ. 
(2) The server will broadcast 5 different IRs, HU-IR, 
HQ-IR, CU-IR, CQ-IR and RMA-IR, in their own 

broadcasting intervals. 
(3) Repeat steps 1 and 2. 
 
Algorithm 1: The Algorithm at the Server 
(A) At the end of each corresponding broadcast intervals:  
HU-L / HQ-L / CU-L / CQ-L / RMA-L, 

Construct the corresponding IRi: HU-IRi / HQ-IRi / 
CU-IRi / CQ-IRi / RMA-IRi; 
Broadcast the corresponding IRi and requested data: 
Lbcast; 
Requested data =φ; 

(B) Receive a request Ldata from client Cj : 
Lbcast = Ldata∪Lbcast ; 

 
Algorithm 2: The Algorithm at the Clients 
(A) When a client Cj receives the corresponding IRi and 
Lbcast: 

if (Tl<Ti –w* corresponding-L), 
Drop the corresponding group 
(HU/HQ/CU/CQ/RMA) data entry stored in the 
cache; 

else { 
for each data item in the cache do 

if (the structural information is updated) 
Invalidate the structural information; 
if (the data information is updated) 

Invalidate the cached XML data; 
for each Lbcast do 

if (Ldata is the requested data) 
then download; 
Use the data to answer the previous request; 

} 
Save the last received corresponding IRi timestamp as 
the corresponding timestamp 
if (a request is issued) 

query(Q) 
(B) Procedure query(Q) 

When a client issues a query Q; 
if (the structural information of the requested data is 
invalidated) 

Check the related data information; 
if (the related data information is valid) 

Ldata = Ldata∪the structural information 
else 

Ldata = Ldata∪the entire requested XML data; 
else use the cached XML data 
for each XML data∈  Ldata send request (Ldata) 

 
●ABI+HCQU. 

After classifying the database into the five groups, we 
use the ABI to assign each data group a suitable broadcast 
interval to obtain efficient broadcasting. The broadcast 
algorithm for the server is given in Algorithm 1, and the 
cache invalidation algorithm at the clients is given in 



Algorithm 2. The five broadcast intervals in ABI+HCQU, 
i.e., HU-L, HQ-L, CU-L, CQ-L and RMA-L, are called the 
corresponding broadcast intervals, and the five IRs, i.e., 
HU-IR, HQ-IR, CU-IR, CQ-IR and RMA-IR, are the 
corresponding IRs. Each corresponding IR has its own 
corresponding timestamp and includes both the DIR and 
SIR, as defined in Section 2. Note that the SIR is the 
additional broadcast information which is absent in our 
original ABI+HCQU cache invalidation scheme but added 
here to suit the XML database. 
 
● The Sleep/Wakeup/Recovery/Check /Confirm 
(SWRCC) Approach. 

As a mobile client may get disconnected from the server 
actively (to conserve energy) or passively (due to moving 
or accidental factors), we thus need different cache 
invalidation approaches to verify the validity of the 
client’s cached data after reconnection. In our SWRCC 
approach, a client will send a Sleep message to inform the 
server of its intended disconnection. When the client 
reconnects to the server and receives the first query, it will 
send a Wakeup message (including also the information of 
the received first query) to the server. Receiving such a 
Wakeup message, the server in turn sends the client a 
Recovery message which encloses all data items that have 
been updated during the client’s disconnection and also 
the valid information of the first query. The client then 
invalidates its cache by the received Recovery message. 

When a client gets reconnected to the server and 
receives a query request after passive disconnection, it will 
send a Check message to the neighboring clients (via 
low-power broadcasting) at every Check Period time 
interval (to be set as 1/4 or 1/5 of the IR broadcasting 
interval). The Check message includes the id set of queries 
received during the time interval. Upon receiving such a 
Check message, a neighboring client first checks its own 
cache for the requested data item. If the item is in its cache 
and is still valid, the neighboring client then sends a 
Confirm message to the reconnected client (who will not 
answer the query until receiving the next IR from the 
server) and also the other neighboring clients.  
 
● Modified/Uncertain/Valid/Invalid (MUVI): The 
Validity States. 

To indicate the validity of cached items, we use two 
additional bits to denote the state of each cached item as 
Modified, Uncertain, Valid or Invalid. When a client 
reconnects to the server and receives a query, it will send a 
Check message to the neighboring clients and receive 
possibly valid data from their Confirm messages. At this 
point, the state of these possibly valid cached data will be 
changed from Uncertain to Modified (M). When a client 
is initially reconnected to the server, the validity of its 
cached data is uncertain and is therefore marked as 
Uncertain (U). After reconnection and receiving the first 

IR, the client moves on to check the validity of its own 
cached data. The state of data items which are still valid is 
marked as Valid (V), while the state of data items which 
become invalid is changed into Invalid (I). The detail 
concept of MUVI is in [14]. 
 
Algorithm 3: The Algorithm at the Server 
(A) At the end of each broadcast interval L: 

Construct IRi; 
Broadcast IRi and the requested data: Lbcast; 
Requested data =φ; 

(B) Receive a request Ldata from client Cj: 
Lbcast = Ldata∪Lbcast ; 

(C) Receive a Sleep message from the client 
Store the disconnection timestamp of the client. 

(D) Receive a Wakeup message from the client 
Broadcast the Recovery message that includes the data 
updated between Sleep and Wakeup 

 
Algorithm 4: The Algorithm at the Clients 
(A) Before going into active disconnection,  

The client sends a Sleep message to the server. 
(B) When coming back from active disconnection, 

The client sends a Wakeup message to the server; 
Invalidates its cache by the Recovery message received 
from the server. 

(C) if (cache misses or cache hits but Uncertain in the 
client’s cache) 

Broadcasts the Check message to the neighbors: 
if (receives the Confirm message during the Check 
Period Time Interval) 
then invalidates its own cache and waits for the next IR 
else query (Q) 

(D) When a neighbor client receives the Check message 
if (cache hits) 
then the neighbor client sends a Confirm message to 
the Check message sender. 

(E) When a client Cj receives IRi and Lbcast: 
(F) Procedure query (Q):  

(Steps E and F are the same as in algorithm 2.) 
 
●SWRCC+MUVI.  

We believe SWRCC+MUVI can be implemented into 
the XIR scheme [13] to enhance its ability to handle the 
disconnection consequences. Algorithms 3 and 4 
demonstrate respectively from the server’s and client’s 
sides how to effectuate SWRCC+MUVI in the XML 
database. Based on the algorithms, the server will 
construct an IR and broadcast it at the end of each 
broadcast interval. The broadcast IR (i.e., XIR) will 
include DIR and SIR as defined in Section 2. Upon 
receiving the XIR, a client will invalidate its cache 
according to the structural and data information in it. 
(Note that SIR is the additional broadcast information 



which is absent in our original SWRCC+MUVI cache 
invalidation scheme and is added here to comply with the 
distinct features of the XML database.) 
 
4. Simulation Results  
 

4.1 Simulation Environment  
 

Our simulation environment is similar to that in [13, 2, 
3], with some necessary changes to comply with the XML 
database. The adopted simulation parameters are as 
follows. The database size = the number of tree nodes (DB 
= 34948 in Mondial.xml and 267438 in XMark.xml); the 
cache size = 1/100 ~ 1/10 of the database, with the default 
value = 1000. The mean inter-update time is 100 sec and 
the mean inter-query time is 30 sec -- both are of 
exponential distribution. The update or query probability 
is of Zipf distribution: The ith data has a probability of1/ iz 
to update or query, z = 0.95 [20]. We meanwhile set the 
offset range [21] under the Zipf distribution from 0 to 80 
-- a bigger offset indicates a less frequently updated 
queried item. There are four types of updates: Replace, 
Rename, Insert and Delete, whose probabilities are 0.4, 
0.4, 0.1 and 0.1 respectively.  

The mean inter-disconnection time is 100 sec; each 
disconnect period is 50~5000sec. The broadcast interval L 
= 20 sec and the broadcast window size w = 10. Either the 
uplink bandwidth, downlink bandwidth or bandwidth 
between clients is set as 10 Kbps. We set the first 5% of 
the database as the HOT data while the rest as the COLD 
and RMA data. There are one server and 10 clients in the 
model. The timestamp size = 32 bits, the data ID size = 
332 bytes (because the maximum path length in 
Mondial.xml and XMark.xml is 332 bytes) and the data 
item size = 67 bytes (the average data size is 34 bytes in 
Mondial.xml and 67 bytes in XMark.xml).  

 
4.2 Simulation Results 
 

A number of performance parameters, such as the 
cache hit ratio, the query uplink ratio and the average 
access time, are simulated with different values of Offset 
or various disconnection probabilities under benchmarks 
Mondial.xml and XMark.xml, and the results are collected 
to evaluate and compare the performance of our cache 
invalidation schemes (ABI+HCQU and SWRCC+MUVI) 
and other schemes (XIR and IR-Naïve) in updating the 
XML databases.  

The following are our definitions for the cache hit ratio, 
the query uplink ratio and the average access time.  
The cache hit ratio = (# of queried data which are “in 
cache & valid”)/(# of queries) 
The query uplink ratio = (# of queried data which are “in 
cache but invalid” or “not in cache”)/(# of queries) 
The average access time = (the waiting time + data 
transmission time)/(# of queries) 
 
4.2.1.  The Cache Hit Ratio.  Figure 1 shows that 
IR-Naïve, which fails to consider data correlations, 
generates lower cache hit ratios than XIR, 
SWRCC+MUVI and ABI+HCQU which all yield better 
cache hit ratios due to the broadcasting of additional 
architecture information. The bigger OFFSET, the more 
rare update data will be queried frequently. The smaller 
OFFSET, the popular update data will be queried 
frequently. When the cache hit ratio grows, both the query 
uplink ratio and average access time get reduced. 

Cache hit ratios with various disconnection 
probabilities are plotted in Figure 2. As SWRCC+MUVI 
allows clients to request data (when possible) from the 
neighboring nodes after reconnection, it is least influenced 
by the effect of disconnection. 
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Figure 1. The cache hit ratios with 

different values of Offset. 
Figure 2. The cache hit ratios with 
various disconnection probabilities. 

Figure 3. The query uplink ratios with 
different values of Offset. 
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Figure 4. The query uplink ratios with 

various disconnection probabilities. 
Figure 5. The average access time with 

different Offset values. 
Figure 6. The average access time with 

various disconnection probabilities. 
 



4.2.2.  The Query Uplink Ratio.  In Figure 3, among 
the four schemes, our ABI+HCQU yields the lowest query 
uplink ratios thanks to its data classification and adaptive 
broadcast intervals which effectively help a client reduce 
its necessity to uplink requests to the server (and as a 
result takes the least time to get the requested data). The 
additional broadcast architecture information of XIR and 
SWRCC+MUVI also helps the two schemes attain lower 
query uplink ratios than IR-Naïve. 

Figure 4 shows that SWRCC+MUVI stands out as the 
one scheme least affected by the disconnection 
consequences. This is because after reconnection it is able 
to request data directly from neighbors, when available. 
 
4.2.3.  The Average Access Time.  Without 
disconnection, as Figure 5 displays, the average access 
time for SWRCC+MUVI and XIR appear similar. For 
IR-Naive, which has the lowest cache hit ratio (due to lack 
of architecture information) and therefore higher query 
uplink ratios, the average access time gets increased too. 

Our SWRCC+MUVI scheme, which is specifically 
designed to reduce the disconnection consequences, 
reassures its advantage again in Figure 6: It yields an 
overall average access time that is least affected by 
different disconnection probabilities. 

The two figures both clearly demonstrate a unique 
result: Due to its data classification and adaptive broadcast 
intervals, our ABI+HCQU approach generates 
distinctively lower average access time than the other 
schemes in all situations. 
 
5. Conclusion 
 

Traditional cache invalidation schemes for the wireless 
networks hardly deal with the correlations between data. 
In the XML database architecture, correlations 
nevertheless exist among the entire database because the 
data items are cascaded. To attain more desirable data 
updates using the data correlations in the XML databases, 
we apply two of our previous cache invalidation schemes 
to work in the XML data structure with certain 
modifications. The major modification is to broadcast 
additional SIRs (which are absent in our original schemes) 
to manage the data correlations in the XML database, and 
it requires only some architectural change to do so. 
Simulation results show that our ABI+HCQU scheme can 
produce much shorter average data access time than other 
related schemes. The results also show that when either 
active or passive disconnection happens, our 
SWRCC+MUVI scheme outperforms other schemes in 
countering the disconnection consequences. Both schemes 
show that they are able to attain favorable data updates for 
the XML database and meanwhile conserve the restricted 
energy and bandwidth resources. 
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