
Efficient Cache Invalidation Schemes for XML Data Accesses in Mobile
Environments

Po-Jen Chuang and Yu-Shian Chiu
Department of Electrical Engineering

Tamkang University
Tamsui, Taipei County
Taiwan 25137, R. O. C.

E-mail: pjchuang@ee.tku.edu.tw

Abstract- Application of the eXtensible Markup
Language (XML), a well-known standard serialized
format on databases, in the World Wide Web (WWW) is
growing swiftly in recent years. Previous researches on
XML focus mainly on indexing techniques and
broadcasting approaches, less on the updating, of the
XML databases. In this paper, we apply ABI+HCQU and
SWRCC+MUVI, two of our previously proposed cache
invalidation schemes, to perform data updates in the XML
databases. Our center design is to figure out the
correlation between the XML databases and use it to
assist data updates under the operation of the two cache
invalidation schemes. Simulation results show that by
making use of data correlation, our schemes attain higher
cache hit ratios and lower query uplink ratios, which
together yield much shorter average access time, than
other related schemes.

Keywords: Mobile Environments, Cache Invalidation,
eXtensible Markup Language (XML), Data Accesses, Data
Updates, Data Correlation, Invalidation Reports,
Experimental Performance Evaluation and Comparison.

1. Introduction

A wireless network, such as a Notebook or PDA,
usually consists of one or more servers and lots of clients.
Databases are stored in the servers and the connection
between the servers is wired. As a client needs to comply
with the mobility and lightweight characteristics of a
wireless network, its storage is limited and will store only
a certain portion of the database. In such a wireless
environment, if each client is installed with a cache and
allowed to fetch the newly accessed hot data from the
cache upon a query request, both the query uplink
bandwidth and average data access time will be
significantly reduced. In doing so, how to maintain data
consistency between a client’s cache and the server’s
database becomes an important and critical issue which
has drawn considerable investigations from researchers,

e.g., [1, 2, 3, 4].
In fact, the rapid advancement of mobile techniques has

facilitated the application of mobile networks in quite a
variety of daily uses, including weather prediction, traffic
information, medical diagnosis and even military detection
in recent years. Data gathered by mobile networks can be
stored by XML [5] and accessed through XQuery [6]. The
database can be managed using XQUF[7] and the
Document Type Definition (DTD) for each XML
document can be attained using [8]. Current researches on
XML center either on the indexing techniques ([9, 10]) or
on how to broadcast the XML data efficiently [11].
Updates on databases, by contrast, are less considered.
Seeing this, [6] and [12] put their efforts to deal with the
issue (i.e., updating the XML databases) to pursue more
desirable function of XML.

General cache invalidation schemes for the wireless
networks hardly consider the correlation between data.
But in the XML databases, correlations among data do
exist due to their hierarchical architectures, and if we
ignore such data correlations and simply bring in general
cache invalidation schemes to work on XML databases,
performance will certainly degrade. In order to take the
correlations among XML data into consideration and use,
[13] broadcasts additional Structural Invalidation Reports
(SIR) to update the architecture information in the cache.
That is, such additional structure information must be
broadcast if a general cache invalidation scheme is to be
applied on the XML databases.

The main goal of this research is to define and use data
correlations which exist in the XML databases to further
investigate the update issue. To carry out our investigation,
two of our previous cache invalidation schemes,
ABI+HCQU and SWRCC+MUVI [14], are applied to
work on the XML databases. In order to apply our
schemes on the XML databases, we also broadcast the
additional SIRs in [13] to manage the data correlations in
the database. Simulation results show that by making use
of data correlations (reserving the cache data with only
architectural changes), our schemes attain higher cache hit
ratios and lower query uplink ratios, and the two together

yield much shorter average access time, than the other
cache invalidation schemes.

The paper is organized as follows. Section 2 gives
background study on XML and cache invalidation.
Section 3 describes the two cache invalidation schemes of
ours and their applications on XML data. Experimental
performance evaluation and comparison are provided in
Section 4. Section 5 concludes the paper.

2. Background Study

2.1 The Extensible Markup Language (XML)

Elements are the basic components of the eXtensible
Markup Language (XML). An element in XML may
appear in any depth and contains any amount of
sub-elements. Each element has two important tags, the
start tag and end tag, to indicate its start and end. In this
paper, we construct an XML data tree based on the
One-Sibling-Address (OSA) [15, 10]. The following are
its associated definitions.

Definition 1：Constructing the XML data with the tree
architecture
1. NAME: Storing the node’s name, it can be the Element
plus Attribute or the Parsed Character DATA (PCDATA).
2. DATA: Storing the node’s data, its data type is usually
in strings or numbers.
3. Child (C): The child pointer of a node will store the
address of its first child (its other children will be
cascaded by this first child) or be set as null when the
node has no children at all.
4. Father (F): The father pointer of a node will store the
address of its father (or set as null if it has no father).
5. Next (N): The next pointer of a node stores the address
of its next brother (or set as null when there is no next
brother).
6. Previous (P): The previous pointer of a node stores the
address of its previous brother (or set as null when there is
no previous brother).

Definition 2：Constructing the Prefix Sequence Number
(PSN) and the XML Path (XP)
1. PSN：The sequence number of each node obtained by
tracing the XML data tree in the prefix order.
2. XP：All the visited nodes from the root to a node are
included in the node’s XP.

Each node in XML tree includes six information items
which are defined by Definition 1. The path and sequence
number of each node can be obtained by Definition 2, and
the tree root is set as the first element/attribute in an XML
file. For instance, for Mondial.xml [16, 17], which

contains 34948 nodes, the sequence numbers are from
1~34948, while for XMark.xml [18, 19] (scaling factor =
0.1), which has 267438 nodes, the sequence numbers will
be 1~267438.

2.2 The Update Operations

Our investigation in this paper sets up several update
situations according to [12] and [13].
1. Rename (ptr, name): Update only the element’s
NAME, not C, N, F, P and DATA. The cached XP will
also be updated.
2. Replace (ptr, content): Update only the node’s DATA,
not C, N, F, P, NAME or XP.
3. Insert (ptr, newname, content): ptr is a pointer that
points to a node in the XML tree. The Insert instruction
will insert a new node (NAME=”newname”, DATA
=”content”) between a node that ptr points to and its
Child.
4. Delete (ptr): ptr is a pointer that points to a node (in the
XML tree) whose descendants will be deleted (the Child
pointer of the node will be set as null after deletion). If the
Child pointer of the node that ptr points to is null before
deletion, this Delete (ptr) becomes an invalid case.

Note that XP will change with Rename, Insert and
Delete instructions but not with the Replace update, and
we will update PSN and XP accordingly.

2.3 The TS (IR-Naïve) and XIR Schemes

2.3.1. The TS (IR-Naïve) Scheme [2]. The basic
cache invalidation scheme is the TS scheme in [2], to be
called as the IR-Naïve scheme in our later discussion
because it broadcasts periodic invalidation reports (IR). At
the end of each broadcast interval L, IR-Naïve will collect
and put the IDs and timestamps of all data items that have
been updated from T-w*L (w being the window size) to
the current timestamp T on the IR. The server then
downlinks the IR to all clients for them to invalidate their
caches.

2.3.2. The XIR Scheme [13]. Two concepts, the
influenced area (IA) and the node sequence information
(NSI), are defined in [13] in order to implement cache
invalidation schemes on the XML database.

XIR has two different channels, the broadcast channel
(for the server to broadcast IRs and downlink the
requested data) and the on-demand channel (for a client to
uplink queries to the server). In a cache invalidation
scheme, the server will periodically broadcast XIR which
contains two IRs: the SIR and the data invalidation report
(DIR). The SIR includes the updated NSI in XML and the
corresponding DIR pointer. DIR includes IDs and
timestamps which will update time from Ti-w*L to Ti. A
client will update the XP of its cached data according to

SIR which has a pointer pointing to the corresponding
DIR.

3. Our Proposed Schemes

To attain more desirable utilization of the wireless
resources, we have in our previous researches divided data
into different groups based on their frequencies of being
updated or queried, and adjusted their broadcast intervals
accordingly to fit the real demands.

If existing cache invalidation schemes are applied on
the XML database without any modification, it is very
likely that some still valid cached data items will be
unnecessarily invalidated because the changed correlation
between data will change the database architecture. To
improve the situation, one can broadcast additional SIR.
The implementation of IR and additional SIR has been
illustrated in the XIR scheme in [13].

As mentioned before, the main purpose of this paper is
to implement our ABI+HCQU and SWRCC+MUVI cache
invalidation schemes [14] in the XML database and, by
utilizing the data correlations in the XML database, to
obtain efficient update of cached data. The detailed
operation and implementation are given below.

● The Adaptive Broadcasting Interval (ABI)
Approach.

To operate ABI, we first define a threshold H to decide
if the information in an IR is valid. If the number of
updated data exceeds H during 1 IR broadcasting interval
L, the information in the IR is considered outdated. L
needs to be adjusted: If the original L is B1, it can be
changed to a shorter interval, say B1/2, to satisfy the
frequent query requests of the clients. On the contrary, if
the number of updated data falls below H during 1 L (i.e.,
the clients do not frequently file queries to the server), the
length of L can be doubled (B1×2) to save resources.

●The Hot/Cold vs. Query/Update (HCQU) Approach.

The HCQU approach divides data into 5 groups: Hot
Update (HU), Hot Query (HQ), Cold Update (CU),
Cold Query (CQ) and the ReMAinder (RMA), and
assigns each group a proper broadcasting interval to suit
the actaul demands. It operates as follows.
(1) The server and clients will predefine the five groups
(to be redefined after a fixed time interval):

HU/HQ：The top 5% of data which are updated /
queried most frequently .

CU/CQ：The bottom 5% of data which are updated /
queried least frequently.

RMA：The remainder of data, belonging to none of HU,
HQ, CU or CQ.
(2) The server will broadcast 5 different IRs, HU-IR,
HQ-IR, CU-IR, CQ-IR and RMA-IR, in their own

broadcasting intervals.
(3) Repeat steps 1 and 2.

Algorithm 1: The Algorithm at the Server
(A) At the end of each corresponding broadcast intervals:
HU-L / HQ-L / CU-L / CQ-L / RMA-L,

Construct the corresponding IRi: HU-IRi / HQ-IRi /
CU-IRi / CQ-IRi / RMA-IRi;
Broadcast the corresponding IRi and requested data:
Lbcast;
Requested data =φ;

(B) Receive a request Ldata from client Cj :
Lbcast = Ldata∪Lbcast ;

Algorithm 2: The Algorithm at the Clients
(A) When a client Cj receives the corresponding IRi and
Lbcast:

if (Tl<Ti –w* corresponding-L),
Drop the corresponding group
(HU/HQ/CU/CQ/RMA) data entry stored in the
cache;

else {
for each data item in the cache do

if (the structural information is updated)
Invalidate the structural information;
if (the data information is updated)

Invalidate the cached XML data;
for each Lbcast do

if (Ldata is the requested data)
then download;
Use the data to answer the previous request;

}
Save the last received corresponding IRi timestamp as
the corresponding timestamp
if (a request is issued)

query(Q)
(B) Procedure query(Q)

When a client issues a query Q;
if (the structural information of the requested data is
invalidated)

Check the related data information;
if (the related data information is valid)

Ldata = Ldata∪the structural information
else

Ldata = Ldata∪the entire requested XML data;
else use the cached XML data
for each XML data∈ Ldata send request (Ldata)

●ABI+HCQU.

After classifying the database into the five groups, we
use the ABI to assign each data group a suitable broadcast
interval to obtain efficient broadcasting. The broadcast
algorithm for the server is given in Algorithm 1, and the
cache invalidation algorithm at the clients is given in

Algorithm 2. The five broadcast intervals in ABI+HCQU,
i.e., HU-L, HQ-L, CU-L, CQ-L and RMA-L, are called the
corresponding broadcast intervals, and the five IRs, i.e.,
HU-IR, HQ-IR, CU-IR, CQ-IR and RMA-IR, are the
corresponding IRs. Each corresponding IR has its own
corresponding timestamp and includes both the DIR and
SIR, as defined in Section 2. Note that the SIR is the
additional broadcast information which is absent in our
original ABI+HCQU cache invalidation scheme but added
here to suit the XML database.

● The Sleep/Wakeup/Recovery/Check /Confirm
(SWRCC) Approach.

As a mobile client may get disconnected from the server
actively (to conserve energy) or passively (due to moving
or accidental factors), we thus need different cache
invalidation approaches to verify the validity of the
client’s cached data after reconnection. In our SWRCC
approach, a client will send a Sleep message to inform the
server of its intended disconnection. When the client
reconnects to the server and receives the first query, it will
send a Wakeup message (including also the information of
the received first query) to the server. Receiving such a
Wakeup message, the server in turn sends the client a
Recovery message which encloses all data items that have
been updated during the client’s disconnection and also
the valid information of the first query. The client then
invalidates its cache by the received Recovery message.

When a client gets reconnected to the server and
receives a query request after passive disconnection, it will
send a Check message to the neighboring clients (via
low-power broadcasting) at every Check Period time
interval (to be set as 1/4 or 1/5 of the IR broadcasting
interval). The Check message includes the id set of queries
received during the time interval. Upon receiving such a
Check message, a neighboring client first checks its own
cache for the requested data item. If the item is in its cache
and is still valid, the neighboring client then sends a
Confirm message to the reconnected client (who will not
answer the query until receiving the next IR from the
server) and also the other neighboring clients.

● Modified/Uncertain/Valid/Invalid (MUVI): The
Validity States.

To indicate the validity of cached items, we use two
additional bits to denote the state of each cached item as
Modified, Uncertain, Valid or Invalid. When a client
reconnects to the server and receives a query, it will send a
Check message to the neighboring clients and receive
possibly valid data from their Confirm messages. At this
point, the state of these possibly valid cached data will be
changed from Uncertain to Modified (M). When a client
is initially reconnected to the server, the validity of its
cached data is uncertain and is therefore marked as
Uncertain (U). After reconnection and receiving the first

IR, the client moves on to check the validity of its own
cached data. The state of data items which are still valid is
marked as Valid (V), while the state of data items which
become invalid is changed into Invalid (I). The detail
concept of MUVI is in [14].

Algorithm 3: The Algorithm at the Server
(A) At the end of each broadcast interval L:

Construct IRi;
Broadcast IRi and the requested data: Lbcast;
Requested data =φ;

(B) Receive a request Ldata from client Cj:
Lbcast = Ldata∪Lbcast ;

(C) Receive a Sleep message from the client
Store the disconnection timestamp of the client.

(D) Receive a Wakeup message from the client
Broadcast the Recovery message that includes the data
updated between Sleep and Wakeup

Algorithm 4: The Algorithm at the Clients
(A) Before going into active disconnection,

The client sends a Sleep message to the server.
(B) When coming back from active disconnection,

The client sends a Wakeup message to the server;
Invalidates its cache by the Recovery message received
from the server.

(C) if (cache misses or cache hits but Uncertain in the
client’s cache)

Broadcasts the Check message to the neighbors:
if (receives the Confirm message during the Check
Period Time Interval)
then invalidates its own cache and waits for the next IR
else query (Q)

(D) When a neighbor client receives the Check message
if (cache hits)
then the neighbor client sends a Confirm message to
the Check message sender.

(E) When a client Cj receives IRi and Lbcast:
(F) Procedure query (Q):

(Steps E and F are the same as in algorithm 2.)

●SWRCC+MUVI.

We believe SWRCC+MUVI can be implemented into
the XIR scheme [13] to enhance its ability to handle the
disconnection consequences. Algorithms 3 and 4
demonstrate respectively from the server’s and client’s
sides how to effectuate SWRCC+MUVI in the XML
database. Based on the algorithms, the server will
construct an IR and broadcast it at the end of each
broadcast interval. The broadcast IR (i.e., XIR) will
include DIR and SIR as defined in Section 2. Upon
receiving the XIR, a client will invalidate its cache
according to the structural and data information in it.
(Note that SIR is the additional broadcast information

which is absent in our original SWRCC+MUVI cache
invalidation scheme and is added here to comply with the
distinct features of the XML database.)

4. Simulation Results

4.1 Simulation Environment

Our simulation environment is similar to that in [13, 2,
3], with some necessary changes to comply with the XML
database. The adopted simulation parameters are as
follows. The database size = the number of tree nodes (DB
= 34948 in Mondial.xml and 267438 in XMark.xml); the
cache size = 1/100 ~ 1/10 of the database, with the default
value = 1000. The mean inter-update time is 100 sec and
the mean inter-query time is 30 sec -- both are of
exponential distribution. The update or query probability
is of Zipf distribution: The ith data has a probability of1/ iz
to update or query, z = 0.95 [20]. We meanwhile set the
offset range [21] under the Zipf distribution from 0 to 80
-- a bigger offset indicates a less frequently updated
queried item. There are four types of updates: Replace,
Rename, Insert and Delete, whose probabilities are 0.4,
0.4, 0.1 and 0.1 respectively.

The mean inter-disconnection time is 100 sec; each
disconnect period is 50~5000sec. The broadcast interval L
= 20 sec and the broadcast window size w = 10. Either the
uplink bandwidth, downlink bandwidth or bandwidth
between clients is set as 10 Kbps. We set the first 5% of
the database as the HOT data while the rest as the COLD
and RMA data. There are one server and 10 clients in the
model. The timestamp size = 32 bits, the data ID size =
332 bytes (because the maximum path length in
Mondial.xml and XMark.xml is 332 bytes) and the data
item size = 67 bytes (the average data size is 34 bytes in
Mondial.xml and 67 bytes in XMark.xml).

4.2 Simulation Results

A number of performance parameters, such as the
cache hit ratio, the query uplink ratio and the average
access time, are simulated with different values of Offset
or various disconnection probabilities under benchmarks
Mondial.xml and XMark.xml, and the results are collected
to evaluate and compare the performance of our cache
invalidation schemes (ABI+HCQU and SWRCC+MUVI)
and other schemes (XIR and IR-Naïve) in updating the
XML databases.

The following are our definitions for the cache hit ratio,
the query uplink ratio and the average access time.
The cache hit ratio = (# of queried data which are “in
cache & valid”)/(# of queries)
The query uplink ratio = (# of queried data which are “in
cache but invalid” or “not in cache”)/(# of queries)
The average access time = (the waiting time + data
transmission time)/(# of queries)

4.2.1. The Cache Hit Ratio. Figure 1 shows that
IR-Naïve, which fails to consider data correlations,
generates lower cache hit ratios than XIR,
SWRCC+MUVI and ABI+HCQU which all yield better
cache hit ratios due to the broadcasting of additional
architecture information. The bigger OFFSET, the more
rare update data will be queried frequently. The smaller
OFFSET, the popular update data will be queried
frequently. When the cache hit ratio grows, both the query
uplink ratio and average access time get reduced.

Cache hit ratios with various disconnection
probabilities are plotted in Figure 2. As SWRCC+MUVI
allows clients to request data (when possible) from the
neighboring nodes after reconnection, it is least influenced
by the effect of disconnection.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80

OFFSET

C
ac

he
 H

it
 R

at
io

IR-Naïve
XIR

ABI+HCQU
SWRCC+MUVI

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80

OFFSET

C
ac

he
 H

it
R

at
io

IR-Naïve
XIR

ABI+HCQU
SWRCC+MUVI

0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 0.1 0.3 0.5 0.7 0.9
Disconnection Probability

C
ac

he
 H

it
R

at
io

IR-Naïve

XIR

ABI+HCQU

SWRCC+MUVI
0

0.1

0.2

0.3

0.4

0.5

0.0 0.1 0.3 0.5 0.7 0.9
Disconnection Probability

C
ac

he
 H

it
R

at
io

IR-Naïve

XIR

ABI+HCQU

SWRCC+MUVI 0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80

OFFSET

Q
ue

ry
 U

pl
in

k
R

at
io

IR-Naïve
XIR

ABI+HCQU

SWRCC+MUVI

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 20 40 60 80

OFFSET

Q
ue

ry
 U

pl
in

k
R

at
io

IR-Naïve
XIR

ABI+HCQU
SWRCC+MUVI

(a) Mondial.xml (b) XMark.xml (a) Mondial.xml (b) XMark.xml (a) Mondial.xml (b) XMark.xml
Figure 1. The cache hit ratios with

different values of Offset.
Figure 2. The cache hit ratios with
various disconnection probabilities.

Figure 3. The query uplink ratios with
different values of Offset.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0 0.1 0.3 0.5 0.7 0.9
Disconnection Probability

Q
ue

ry
 U

pl
in

k
R

at
io

IR-Naïve
XIR
ABI+HCQU
SWRCC+MUVI

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0 0.1 0.3 0.5 0.7 0.9
Disconnection Probability

Q
ue

ry
 U

pl
in

k
R

at
io

IR-Naïve
XIR
ABI+HCQU
SWRCC+MUVI

10.3

10.4

10.5

10.6

10.7

10.8

10.9

11.0

0 20 40 60 80
OFFSET

A
ve

ra
ge

 A
cc

es
s

T
im

e
(s

ec
)

IR-Naïve
XIR
ABI+HCQU
SWRCC+MUVI

3.4

3.3

3.2

0 10.5

10.6

10.7

10.8

10.9

0 20 40 60 80

OFFSET

A
ve

ra
ge

 A
cc

es
s

T
im

e
(s

ec
)

IR-Naïve
XIR
ABI+HCQU
SWRCC+MUVI

3.4

3.3

0
10.2

10.3

10.4

10.5

10.6

10.7

10.8

10.9

11.0

0.0 0.1 0.3 0.5 0.7 0.9
Disconnection Probability

A
ve

ra
ge

 A
cc

es
s

T
im

e
(s

ec
)

IR-Naïve
XIR
ABI+HCQU
SWRCC+MUVI

3.5

3.4

3.3

0

10.4

10.5

10.6

10.7

10.8

10.9

11.0

0.0 0.1 0.3 0.5 0.7 0.9

Disconnection Probability

A
ve

ra
ge

 A
cc

es
s

T
im

e
(s

ec
)

IR-Naïve
XIR
ABI+HCQU
SWRCC+MUVI

3.5

3.4

3.3

0

(a) Mondial.xml (b) XMark.xml (a) Mondial.xml (b) XMark.xml (a) Mondial.xml (b) XMark.xml
Figure 4. The query uplink ratios with

various disconnection probabilities.
Figure 5. The average access time with

different Offset values.
Figure 6. The average access time with

various disconnection probabilities.

4.2.2. The Query Uplink Ratio. In Figure 3, among
the four schemes, our ABI+HCQU yields the lowest query
uplink ratios thanks to its data classification and adaptive
broadcast intervals which effectively help a client reduce
its necessity to uplink requests to the server (and as a
result takes the least time to get the requested data). The
additional broadcast architecture information of XIR and
SWRCC+MUVI also helps the two schemes attain lower
query uplink ratios than IR-Naïve.

Figure 4 shows that SWRCC+MUVI stands out as the
one scheme least affected by the disconnection
consequences. This is because after reconnection it is able
to request data directly from neighbors, when available.

4.2.3. The Average Access Time. Without
disconnection, as Figure 5 displays, the average access
time for SWRCC+MUVI and XIR appear similar. For
IR-Naive, which has the lowest cache hit ratio (due to lack
of architecture information) and therefore higher query
uplink ratios, the average access time gets increased too.

Our SWRCC+MUVI scheme, which is specifically
designed to reduce the disconnection consequences,
reassures its advantage again in Figure 6: It yields an
overall average access time that is least affected by
different disconnection probabilities.

The two figures both clearly demonstrate a unique
result: Due to its data classification and adaptive broadcast
intervals, our ABI+HCQU approach generates
distinctively lower average access time than the other
schemes in all situations.

5. Conclusion

Traditional cache invalidation schemes for the wireless
networks hardly deal with the correlations between data.
In the XML database architecture, correlations
nevertheless exist among the entire database because the
data items are cascaded. To attain more desirable data
updates using the data correlations in the XML databases,
we apply two of our previous cache invalidation schemes
to work in the XML data structure with certain
modifications. The major modification is to broadcast
additional SIRs (which are absent in our original schemes)
to manage the data correlations in the XML database, and
it requires only some architectural change to do so.
Simulation results show that our ABI+HCQU scheme can
produce much shorter average data access time than other
related schemes. The results also show that when either
active or passive disconnection happens, our
SWRCC+MUVI scheme outperforms other schemes in
countering the disconnection consequences. Both schemes
show that they are able to attain favorable data updates for
the XML database and meanwhile conserve the restricted
energy and bandwidth resources.

References
[1] J.H. Choi and S.K. Lee, “An Efficient Cache Access Protocol

in a Mobile Computing Environment,” Proc. 3rd Int’l Conf.
on ISPA, Nov. 2005, pp.1123-1134.

[2] D. Barbara and T. Imielinski, “Sleepers and workaholics:
caching strategies in mobile environments,” Proc. 1994 ACM
SIGMOD Conf. on Management of Data, May. 1994, vol. 23,
no. 2, pp.1-12.

[3] G. Cao, “A scalable low-latency cache invalidation strategy
for mobile environments,” IEEE Transaction on Knowledge
and Data Engineering, vol. 15, no.5, pp.1251-1265, 2003.

[4] A. Madhukar and R. Alhajj, “An adaptive energy efficient
cache invalidation scheme for mobile databases,” Proc. 21th
ACM SAC, Apr. 2006, pp.1122-1126.

[5] http://www.w3.org/XML/
[6] http://www.w3.org/TR/xquery/
[7] http://www.w3.org/TR/xquery-update-10/
[8] http://saxon.sourceforge.net/dtdgen.html
[9] J. Lu, T. W. Ling, C.-Y. Chan, and T. Chen, “From region

encoding to extended dewey: On efficient processing of xml
twig pattern matching,” Proc. 31st Int’l Conf. on VLDB, Aug.
2005, pp.193-204.

[10] Y.D. Chung, and J.Y. Lee, “An indexing method for
wireless broadcast XML data,” Information Sciences: an
International Journal, vol. 177 no. 9, pp.1931-1953, May.
2007.

[11] S.H. Park, J.H. Choi, and S. Lee, “An effective, efficient
xml data broadcasting method in a mobile wireless network,”
Proc. 17th Int’l Conf. on DEXA’06, Sep. 2006, pp.358-367.

[12] I. Tatarinov, Z. G. Ives, A.Y. Halevy, and D. S.
Weld, ”Updating XML,” Proc. 2001 ACM SIGMOD, June
2001, pp.413-424.

[13] J. H. Choi, S. H. Park, M. S. Lee, Y. D. Chung, and S. K.
Lee, ”XIR: cache invalidation strategy for xml data in mobile
environments,” Proc. 2007 ACM MobiDE, June 2007,
pp.79-82.

[14] P.-J. Chuang and Y.-S. Chiu, “Constructing efficient cache
invalidation schemes in mobile environments,” Proc. 3rd
Int’l Conf. on Signal Image Technology & Internet Based
Systems, Dec. 2007, pp.260-267.

[15] C.S. Park, C.S. Kim and Y.D. Chung, “Efficient stream
organization for wireless broadcasting of xml data,” Proc.
2005 ASIAN, Dec. 2005, pp.223-235.

[16] http://www.informatik.uni-freiburg.de/~may/
mondial/florid-mondial.html

[17] http://www.cs.washington.edu/research/xmldatasets
/www/repository.html

[18] A. Schmidt, F. Waas, M.L. Kersten, M.J. Carey, I.
Manolescu, and R. Busse, “Xmark: A benchmark for xml
data management,” Proc. 28th Int’l Conf. on VLDB, Aug.
2002, pp.974-985.

[19] http://monetdb.cwi.nl/xml/generator.html
[20] B. Mandhani and D. Suciu, “Query caching and view

selection for XML databases,” Proc. 31st Int’l Conf. on
VLDB, Aug. 2002, pp.469-480.

[21] S. Acharya, M.J. Franklin, and S.B. Zdonik. “Disseminating
updates on broadcast disks,” Proc. 22nd Int’l Conf. on VLDB,
Sep. 1996, pp.354-365.

