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Abstract-When a Java JIT compiler is ported to 
a new hardware platform, it usually cannot take 
full advantage of the special features of the new 
platform unless it undergoes thorough and massive 
optimizing. We propose a new approach to 
improve the code generator in a ported Java JIT 
compiler. A static code analyzer is used to 
automatically discover frequently-occurring 
patterns in the generated code that are suitable for 
peephole optimizations. Then the patterns are 
incorporated in the JIT compiler by modifying 
instruction selection rules and code emitters. The 
approach of automatically discovering patterns is 
feasible because (1) there does exist patterns in the 
code generated by most compilers and (2) a 
peephole optimizer requires only quite simple 
patterns, which can be discovered easily. Our 
target platform is the Andes architecture, which 
features several novel hardware facilities. The 
result of our experiment shows the approach is 
quite promising. 
 
Keywords: JIT compiler, peephole optimization, 
pattern matching, embedded systems, peephole 
optimizer. 
 
 
1. Introduction 

Many existing compilers for embedded systems 
generate low-quality code since the compilers, 
which are usually ported from different platforms, 
cannot take full advantage of the special features 
of the new platforms [8]. There is a need for 
further optimizations for the code generated by the 
compiler. 

In this paper, we describe a new approach for 
optimizing ported compilers. We ported the 
CDCHI Java virtual machine [1][2][3][4] (which 
includes a Java JIT compiler) to the Andes 
platform [5][6]. For improving the code generator 
in a Java JIT compiler, we propose a new method. 

We implemented a local code analyzer and a 
pattern-based peephole optimizer that can 
automatically analyze the code generated by the 
ported JIT compiler for the Andes platform and 
help identify patterns of instruction that can be 
reduced to more efficient ones. The patterns are 
then implemented as JCS (Java Code Select, a 
code generator generator) rules or are incorporated 
into the code emitter in the ported Java JIT 
compiler. 

Because of the similarity of Andes and MIPS 
ISA, we start porting with the MIPS version of 
CVM. After finish porting work, we observed that 
the quality of the code generated by the ported JIT 
compiler can be improved. It did not make use of 
the special features provided by Andes ISA. On 
the other hand, since the Andes platform is still in 
the development stage, Andes people are eager for 
our feedback concerning the Andes ISA. These 
reasons motivate us to develop a tool to analyze 
code generated by the ported JIT compiler and 
identify patterns in the generated code that can be 
optimized. 

The rest of this paper is organized as follows. 
In Section 2, we briefly introduce the CDCHI 
virtual machine and the Andes architecture and 
review related work for peephole optimization. We 
describe, in Section 3, the optimization framework, 
the implementation details of the local code 
analyzer, and the pattern-based peephole optimizer. 
In Section 4, we discuss the effective patterns in 
the generated code and the results for the reduction 
of code sizes. Finally, we conclude the work in 
Section 5. 
 
2. Related work 
2.1 CVM Overview 

The Connected Device Configuration HotSpot 
Implementation virtual machine (CDCHI VM, 
a.k.a. CVM) is designed for resource-constrained 
devices, such as consumer products and embedded 
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devices, including smart phones, personal digital 
assistants (PDA) and global positioning systems 
(GPS)[2]. 

A Java program is compiled to bytecode by a 
Java compiler. Bytecode is then executed by the 
CVM. When the bytecode of a method is executed 
more often than a pre-set threshold, the JIT 
compiler in the CVM will translate the bytecode 
into native code for the underlying hardware 
platform, which, in our case, is the Andes binary 
code. 

 
Figure 1. The JIT compiler in CVM 

 
The JIT compiler consists of two parts (see 

Figure 1). The front end translates bytecode into 
intermediate representations (IR) and handles other 
issues, such as code verification and security 
checks, and numerous optimizations on the IR. 
Then, the back end parses IR and generates native 
code.  

The parser for the IR is generated from many 
instruction selection rules by the JCS tool. Most 
JCS rules have semantic actions, and this is where 
the code generator takes place [3]. The code 
generator manages the registers in the Andes 
processor, the constant pool, and the run-time 
stack. Then, the code generator will call the code 
emitter to emit instructions. The code emitter is the 
last stage of the JIT compiler and generates 
instructions for the underlying processor. 
 
2.2 Andes Architecture 

The Andes ISA is designed in the RISC style 
and is equipped with 32 registers [5]. It provides 
various types of load/store instructions. The “.bi” 
form of a load or store instruction means “before 
increment”, in which the base register will be 
updated after the memory operation. Instructions 
of the “before increment” type seldom occur in the 
code generated by the ported JIT because the 
original JIT (which was designed for MIPS) never 
generates such instructions since the MIPS 
processors do not provide instructions of this type. 

Another seldom used instruction type is the 
conditional branch instructions. The ported JIT 

compiler generates only the “equal” or “not equal” 
forms of the conditional branch instructions. Since 
Andes ISA supports more types of conditional 
branch instructions than MIPS, there should be 
good opportunity to improve the quality of the 
generated code. 

Many processors support special-purpose 
instructions, which are equivalent to a sequence of 
more primitive instructions. Special-purpose 
instructions are often smaller and/or faster than the 
more generic ones. In the Andes platform, the 
ported JIT compiler never emits the “load/store 
multiple word” instructions, “branch with link” 
instructions and “conditional move” instructions.  
Instead, the JIT compiler usually emits two or 
more instructions to achieve the effects of these 
special-purpose instructions. This means that we 
can find many such patterns in the code generated 
by the ported JIT compiler and transform them 
into the special-purpose instructions. 
 
2.3 Peephole optimization 

Peephole optimization has been studied since 
1965 [9]. The success of a peephole optimizer 
depends on the time and space for recognizing 
redundant sequences of instructions. Davison and 
Fraser [10][11][12] introduced a 
machine-independent and retargetable peephole 
optimizer, which replaces adjacent instructions 
with an equivalent single instruction. 

Peephole optimization introduced by Kessler 
[13] was, instead of hand-written, automatically 
generated from an architectural description and 
allowed optimizations across basic blocks. Using 
patterns matching for code optimization is still one 
of the most popular approaches [8][14]. Spinellis 
used string-pattern matching to find out patterns. A 
pattern is a regular expression. Recently, Kumar 
defined numerous finite automata to recognize 
patterns [8]. The finite automaton is good for 
recognizing patterns that are not adjacent. Kumar 
also provided a replacement algorithm for 
resolving optimization conflicts. In our research, 
we find patterns and resolve optimization conflicts 
in a recursive way.  
 
3. Code Analyzer and Peephole 
Optimizer 

We propose two techniques to help find 
redundant instructions and identify patterns that 
can be optimized. Based on optimizations on local 
code or adjacent instructions, we divide 
optimizations into two parts. First, the local code 
analyzer aims at discovering patterns and 
evaluating the benefits of the patterns in a 



peephole optimizer. It implements several 
common compiler optimizations within basic 
blocks. In addition, the local code analyzer will 
determine sequences of contiguous instructions as 
base patterns. The pattern-based peephole 
optimizer repeatedly finds occurrences of patterns 
in the benchmarks. It reports the proportion and 
the number of occurrences of various patterns in 
the benchmarks. Useful patterns are selected based 
on the occurrence frequencies. We will modify the 
JCS rules and revise the emitter functions so as to 
generate efficient code sequences for useful 
patterns. The overall optimizer framework is 
shown in Figure 2. 
 

 
Figure 2. Overview of the proposed 
optimizing framework for CVM 

 
3.1 Local Code Analyzer 

Before discussing the local code analyzer, we 
define two terms first. If the value of a register will 
be updated after executing an instruction, we 
called the register a “producer register”. On the 
other hand, if the value of a register is used but not 
updated, we called the register a “consumer 
register”. 

The optimization techniques which are 
implemented in the local code analyzer are 
classified into three categories: eliminating 
redundant instructions (which will reduce the code 
size), replacing with more efficient instructions 
(which will reduce the execution time), and 
supporting optimizations (which may increase the 
opportunities to eliminating redundant code). 

Dead code elimination is a common compiler 
optimization. It is used to reduce code size by 
removing instructions that do not affect the 
programs [7]. For example, the instructions that 
define values in a producer register can be safely 
removed, if it is redefined before any using.. 

Redundant load/store elimination attempts to 
identify useless load/store instructions. We record 
the target register, base register, and the offset 
value in an instruction. If another instruction 
carries the same target register, base register, and 
offset value, it could be considered redundant. 

Load copy optimization is implemented and 
applied in conjunction with redundant load/store 

elimination. This optimization will rewrite a load 
instruction as a move instruction if the value of a 
memory location has been loaded into another 
register. 

Constant propagation, copy propagation and 
common sub-expression replacement can reduce 
the usage of consumer registers and improve the 
opportunities of redundant code elimination. If the 
instructions are adjacent, the propagation could 
also reduce data dependency. 

These optimizations can help us to 
automatically find out reducible and optimizable 
sequences of successive instructions. Collected 
sequences (or patterns) are then feed into the 
pattern-based peephole optimizer to do further 
processing. 
 
3.2 Pattern-base Peephole Optimizer 

The pattern-based peephole optimizer, which is 
off-line, can be divided into four parts (see Figure 
3): basic patterns, pattern-matcher generator, 
pattern matcher, and peephole optimizer. The 
basic patterns are collected from the local code 
analyzer. A sequence of instructions may match 
several patterns. The peephole optimizer will try 
all possible combinations of pattern matchings and 
yield the one with the highest gains. The peephole 
optimizer will also create a new pattern so that the 
(on-line) code generator will use the pattern 
directly without trying all combinations of pattern 
matchings for similar instruction sequences when 
the patterns are incorporated into the JCS rules. 
The pattern matcher is generated automatically 
from the patterns by the pattern-matcher generator. 
Each pattern has a corresponding function in the 
pattern matcher, which will be called by the 
peephole optimizer. 
 

 
Figure 3. Framework of the pattern-based 

peephole optimizer 
 

The pattern matcher has three tasks: matching, 
replacing, and calculating gains. Once a matching 
is found, the original instructions are replaced with 
more efficient ones. Then, we can calculate the 



gains of replacement. 
The input of the pattern-matcher generator is 

the descriptions of the instruction patterns. Each 
instruction of a pattern consists of an opcode and 
descriptors of operands. We support three types of 
descriptors: register, immediate, and address 
descriptors. A descriptor has its own ID. The 
“immediate” descriptor can be used to express not 
only any constant (e.g., c0, c1) but also the actual 
values (e.g., 0, 1).  

In our implementation, all patterns are a 
sequence of contiguous instructions. When 
matching program code against patterns, the 
opcodes of the instructions must be identical and 
in the same order. Furthermore, the corresponding 
descriptors must also be matched. For instance, 
consider the fourth pattern in Table 3, 

movi r0, 0 
beqz r0, a0 

This pattern will match  
movi r5, 0 
beqz r5, 0x1234 

But it will not matching 
movi r5, 0 
beqz r6, 0x1234 

There is a cost function in the pattern matcher. 
The optimizer calculates the gains of a pattern 
replacement based on the definitions of reduction 
gain and replacement gain. When multiple 
matchings are possible, the one with the highest 
gains is selected by the peephole optimizer. 

After a matching is found, new instructions will 
replace original instructions. The optimizer will 
attempt to match the new instructions against the 
patterns. Repeated pattern matching essentially 
performs an exhaustive search for the highest 
gains. 
 
4. Benchmarks and Results 

For benchmarking, we selected fifteen 
programs from CLDC evaluation kit, Embedded 
Caffeine Mark [17] and Grinder Bench [16] (see 
Table 1). We ran all programs on Linux 2.6 on an 
Andes development board AG101. The clock rate 

of the on-board processor is 400 MHz. 
The local code analyzer gathers statistics of the 

number of eliminated instructions and examines 
the patterns found in the benchmarks. Then these 
patterns are incorporated into our ported JIT 
compiler. Performance improvement is then 
measured. 
 

Table 1. Benchmark programs 
Benchmark Programs 

CLDC evaluation kit Richards, DeltaBlue, 

ImageProc, Queen 

Embedded Caffeine 

Mark 

Sieve, Loop, Logic, 

String, Method, Float 

Grinder Bench Chess, Crypto, 

kXML, Parallel, PNG 

 
4.1 Redundant Code Elimination 

Since the order of optimizations may affect the 
number of eliminated instructions, we tried various 
combinations of five optimizations (dead code 
elimination, redundant load/store, copy 
propagation, constant propagation, and common 
sub-expression). Figure 4 shows the highest 
reduction ratios (with the order: Redundant 
load/store elimination, dead code elimination, copy 
propagation, and dead code elimination) for the 
benchmarks. The average reduction ratio (in terms 
of code size) is 0.98 %. The chess program has the 
highest reduction ratio: in total, 1.6% of 
instructions are eliminated. 
 
4.2 Patterns 

From our experiment, we discovered that some 
patterns occur very frequently in the emitted code. 
The frequent patterns can be replaced with more 
efficient instructions. The code generator in the 
JIT can be improved by incorporating these 
patterns into JCS rules, modifying the emitter 
accordingly and implementing delayed emission. 
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Figure 4. Total reductions by LCA 



The most frequent pattern is “pre-decrement 
offset followed by a load instruction”. This pattern 
occurs when a called method is returned and loads 
the return value from the stack frame. The JIT 
compiler emits an instruction for manual 
pre-decrement and a load instruction followed. The 
pair of instructions can be rewritten as a “lmw” 
instruction with load after decrement and suffix. 

Another common pattern is the conditional 
branch instructions. In this pattern, the “slt/slts” 
instructions can be replaced with the “slti/sltsi” 
instructions. This pattern is emitted for the 
“BCOND_INT” IR node in code generator. For 
the example in Table 2, we can observe that the $ta 
register is assigned a constant 6 (the “movi” 
instruction) and is compared to the $s6 register 
(the “slt” instruction). For this case, we can use the 
“slti” instruction (set-if-less-than-an-immediate). 
Of course the “bnez” instruction should be 
replaced with the “beqz” instruction. The 
instruction count is reduced by 1. 

 
Table 2 Patterns of conditional branch 

Original pattern 
movi  $ta,  6 
slt  $ta,  $ta,  $s6 
bnez  $ta,  0xf77aba74 

Replacement pattern 
 
slti  $ta,  $s6,  7 
beqz  $ta,  0xf77aba74 

 
The third pattern is a special case of “setting a 

register with the address of a CVMObjectICell”. A 
CVMObjectICell structure of CVM holds a pointer 
to an object [3]. In this pattern, the instructions 
first load the address of an object and then load the 
contents from that address. The address of the 
object will be loaded into a register through the 
“sethi” and “ori” instructions. Then, the loaded 
register serves as the base register in the following 
“lwi” instruction. Since the “ori” instruction is 
intended to set the lower half of the register, it can 
be combined with “lwi” instruction since the  
lengths of the immediate fields of “ori” and “lwi” 

are equal. For example, the following three 
instructions: 
   sethi  r5, 12345 
   ori   r5, r5, 678 
   lwi  r6, [r5+0] 
can be replaced with the following two 
instructions: 
   sethi  r5, 12345 
   lwi   r6. [r5+678] 

Table 3 shows some of the patterns in Andes 
native code generated by JIT compiler that are 
collected by the local code analyzer and the 
peephole optimizer. Note the number of eliminated 
instructions for each pattern. 
 

Table 3. Patterns found from Andes assembly 
code and their respective gain 

Original 
Patterns 

Replacement 
Patterns 

Reduction  
in the 
number of 
instructions 

addi r0, r0, -4 
lwi r1, [r0+0] 

lmw.adm r1, 
[r0], r1 
DELETE 

1 

lwi r1, [r0+0] 
addi r0, r0, c0 

lwi.bi r1, [r0], c0 
DELETE 

1 

movi r0, c0 
slt r1, r0, r2 
bnez r1, a0 

DELETE 
slti r1, r2, c0 + 1 
beqz r1, a0 

1 

movi r0, 0 
beqz r0, a0 

j a0 
DELETE 

1 

movi r0, 0 
bnez r0, a0 

DELETE 
DELETE 

2 

lwi r0, r1, c0 
lwi r0, r2, c1 

DELETE 
lwi r0, r2, c1 

1 

swi r0, r1, c0 
lwi r0, r1, c0 

swi r0, r1, c0 
DELETE 

1 

addi r0, r0, 0 DELETE 1 

 
4.3 Rewriting JCS Rules and the Emitter 

Most patterns can be incorporated into the JIT 
compiler by rewriting the JCS rules. Then the JCS 
tool is used to generate the new code generator. 
Generally, we also need rewrite the emitter so that 
it can cooperate with the new code generator. 

Pattern Reduce Instructions (%)
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Figure 5. Total reduction by rewriting JCS rules and emitters 



Another way to improve the JIT compiler is the 
delayed emission, which is easy to implement and 
can work for all patterns, but it comes with a 
higher penalty. Most of the time, the more frequent 
patterns are generated within semantic actions or 
the emitter function.  

In the revised JIT compiler, we add three of the 
most frequent patterns (load-multiple-word, 
conditional branch, common sub-expression). On 
average, 2.91% of the instructions can be 
eliminated (see Figure 5). The performance 
improvement (in terms of execution time) of all 
programs is 0.89% (see Figure 6) after rewriting 
the JCS rules and the emitter. 
 
5. Conclusion and Future Work  

Rewriting JCS rules and the emitters could 
improve our system performance if the optimized 
method is hot enough. The added overhead in the 
emitter and the frequency of the patterns are the 
key points for improving performance. If a method 
does not run for a long time, the overhead will 
lower the performance.  

In the process of identifying patterns, we 
observe that some instructions are difficult to use. 
Providing new instructions or revising the original 
ones may help reduce code size and improve 
performance. For example, the “conditional branch 
and link” instruction is never emitted by the JIT 
compiler since the type of instruction only 
supports the greater-or-equal and less-then 
condition. But for all programs, we see that the 
“bnez” and “beqz” instructions are emited the most 
often and are frequently followed with a “jal” 
instruction. If we can support “beqzal” and 
“bnezal” instructions, we can reduce the code size 
even more (estimated at 2.52% reduction in code 
size). We will gather statistics of the frequencies of 
instruction pairs to evaluate the benefits of the new 
instructions in the future. 
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Figure 6. Performance improvement after rewriting JCS rules and emitters 

    


