
A New Approach for Improving Ported Java JIT Compilers for
Embedded Systems

Shuai-Wei Huang, Yu-Sheng Chen, Jean Jyh-Jiun Shann, Wei-Chung Hsu, Wuu Yang
Dept. of Computer Science,

National Chiao Tung University,
Hsinchu City 300, Taiwan

{swhuang, yusheng, jjshann, hsu, wuuyang}@cs.nctu.edu.tw

Abstract-When a Java JIT compiler is ported to
a new hardware platform, it usually cannot take
full advantage of the special features of the new
platform unless it undergoes thorough and massive
optimizing. We propose a new approach to
improve the code generator in a ported Java JIT
compiler. A static code analyzer is used to
automatically discover frequently-occurring
patterns in the generated code that are suitable for
peephole optimizations. Then the patterns are
incorporated in the JIT compiler by modifying
instruction selection rules and code emitters. The
approach of automatically discovering patterns is
feasible because (1) there does exist patterns in the
code generated by most compilers and (2) a
peephole optimizer requires only quite simple
patterns, which can be discovered easily. Our
target platform is the Andes architecture, which
features several novel hardware facilities. The
result of our experiment shows the approach is
quite promising.

Keywords: JIT compiler, peephole optimization,
pattern matching, embedded systems, peephole
optimizer.

1. Introduction

Many existing compilers for embedded systems
generate low-quality code since the compilers,
which are usually ported from different platforms,
cannot take full advantage of the special features
of the new platforms [8]. There is a need for
further optimizations for the code generated by the
compiler.

In this paper, we describe a new approach for
optimizing ported compilers. We ported the
CDCHI Java virtual machine [1][2][3][4] (which
includes a Java JIT compiler) to the Andes
platform [5][6]. For improving the code generator
in a Java JIT compiler, we propose a new method.

We implemented a local code analyzer and a
pattern-based peephole optimizer that can
automatically analyze the code generated by the
ported JIT compiler for the Andes platform and
help identify patterns of instruction that can be
reduced to more efficient ones. The patterns are
then implemented as JCS (Java Code Select, a
code generator generator) rules or are incorporated
into the code emitter in the ported Java JIT
compiler.

Because of the similarity of Andes and MIPS
ISA, we start porting with the MIPS version of
CVM. After finish porting work, we observed that
the quality of the code generated by the ported JIT
compiler can be improved. It did not make use of
the special features provided by Andes ISA. On
the other hand, since the Andes platform is still in
the development stage, Andes people are eager for
our feedback concerning the Andes ISA. These
reasons motivate us to develop a tool to analyze
code generated by the ported JIT compiler and
identify patterns in the generated code that can be
optimized.

The rest of this paper is organized as follows.
In Section 2, we briefly introduce the CDCHI
virtual machine and the Andes architecture and
review related work for peephole optimization. We
describe, in Section 3, the optimization framework,
the implementation details of the local code
analyzer, and the pattern-based peephole optimizer.
In Section 4, we discuss the effective patterns in
the generated code and the results for the reduction
of code sizes. Finally, we conclude the work in
Section 5.

2. Related work
2.1 CVM Overview

The Connected Device Configuration HotSpot
Implementation virtual machine (CDCHI VM,
a.k.a. CVM) is designed for resource-constrained
devices, such as consumer products and embedded

The work reported in this paper is partially supported by Andes Technology Corporation, and National Science Council(NSC),
Taiwan, Republic of China, under grants NSC 95-2221-E-009-020 and NSC 97-2218-E-009 -029.

devices, including smart phones, personal digital
assistants (PDA) and global positioning systems
(GPS)[2].

A Java program is compiled to bytecode by a
Java compiler. Bytecode is then executed by the
CVM. When the bytecode of a method is executed
more often than a pre-set threshold, the JIT
compiler in the CVM will translate the bytecode
into native code for the underlying hardware
platform, which, in our case, is the Andes binary
code.

Figure 1. The JIT compiler in CVM

The JIT compiler consists of two parts (see

Figure 1). The front end translates bytecode into
intermediate representations (IR) and handles other
issues, such as code verification and security
checks, and numerous optimizations on the IR.
Then, the back end parses IR and generates native
code.

The parser for the IR is generated from many
instruction selection rules by the JCS tool. Most
JCS rules have semantic actions, and this is where
the code generator takes place [3]. The code
generator manages the registers in the Andes
processor, the constant pool, and the run-time
stack. Then, the code generator will call the code
emitter to emit instructions. The code emitter is the
last stage of the JIT compiler and generates
instructions for the underlying processor.

2.2 Andes Architecture

The Andes ISA is designed in the RISC style
and is equipped with 32 registers [5]. It provides
various types of load/store instructions. The “.bi”
form of a load or store instruction means “before
increment”, in which the base register will be
updated after the memory operation. Instructions
of the “before increment” type seldom occur in the
code generated by the ported JIT because the
original JIT (which was designed for MIPS) never
generates such instructions since the MIPS
processors do not provide instructions of this type.

Another seldom used instruction type is the
conditional branch instructions. The ported JIT

compiler generates only the “equal” or “not equal”
forms of the conditional branch instructions. Since
Andes ISA supports more types of conditional
branch instructions than MIPS, there should be
good opportunity to improve the quality of the
generated code.

Many processors support special-purpose
instructions, which are equivalent to a sequence of
more primitive instructions. Special-purpose
instructions are often smaller and/or faster than the
more generic ones. In the Andes platform, the
ported JIT compiler never emits the “load/store
multiple word” instructions, “branch with link”
instructions and “conditional move” instructions.
Instead, the JIT compiler usually emits two or
more instructions to achieve the effects of these
special-purpose instructions. This means that we
can find many such patterns in the code generated
by the ported JIT compiler and transform them
into the special-purpose instructions.

2.3 Peephole optimization

Peephole optimization has been studied since
1965 [9]. The success of a peephole optimizer
depends on the time and space for recognizing
redundant sequences of instructions. Davison and
Fraser [10][11][12] introduced a
machine-independent and retargetable peephole
optimizer, which replaces adjacent instructions
with an equivalent single instruction.

Peephole optimization introduced by Kessler
[13] was, instead of hand-written, automatically
generated from an architectural description and
allowed optimizations across basic blocks. Using
patterns matching for code optimization is still one
of the most popular approaches [8][14]. Spinellis
used string-pattern matching to find out patterns. A
pattern is a regular expression. Recently, Kumar
defined numerous finite automata to recognize
patterns [8]. The finite automaton is good for
recognizing patterns that are not adjacent. Kumar
also provided a replacement algorithm for
resolving optimization conflicts. In our research,
we find patterns and resolve optimization conflicts
in a recursive way.

3. Code Analyzer and Peephole
Optimizer

We propose two techniques to help find
redundant instructions and identify patterns that
can be optimized. Based on optimizations on local
code or adjacent instructions, we divide
optimizations into two parts. First, the local code
analyzer aims at discovering patterns and
evaluating the benefits of the patterns in a

peephole optimizer. It implements several
common compiler optimizations within basic
blocks. In addition, the local code analyzer will
determine sequences of contiguous instructions as
base patterns. The pattern-based peephole
optimizer repeatedly finds occurrences of patterns
in the benchmarks. It reports the proportion and
the number of occurrences of various patterns in
the benchmarks. Useful patterns are selected based
on the occurrence frequencies. We will modify the
JCS rules and revise the emitter functions so as to
generate efficient code sequences for useful
patterns. The overall optimizer framework is
shown in Figure 2.

Figure 2. Overview of the proposed
optimizing framework for CVM

3.1 Local Code Analyzer

Before discussing the local code analyzer, we
define two terms first. If the value of a register will
be updated after executing an instruction, we
called the register a “producer register”. On the
other hand, if the value of a register is used but not
updated, we called the register a “consumer
register”.

The optimization techniques which are
implemented in the local code analyzer are
classified into three categories: eliminating
redundant instructions (which will reduce the code
size), replacing with more efficient instructions
(which will reduce the execution time), and
supporting optimizations (which may increase the
opportunities to eliminating redundant code).

Dead code elimination is a common compiler
optimization. It is used to reduce code size by
removing instructions that do not affect the
programs [7]. For example, the instructions that
define values in a producer register can be safely
removed, if it is redefined before any using..

Redundant load/store elimination attempts to
identify useless load/store instructions. We record
the target register, base register, and the offset
value in an instruction. If another instruction
carries the same target register, base register, and
offset value, it could be considered redundant.

Load copy optimization is implemented and
applied in conjunction with redundant load/store

elimination. This optimization will rewrite a load
instruction as a move instruction if the value of a
memory location has been loaded into another
register.

Constant propagation, copy propagation and
common sub-expression replacement can reduce
the usage of consumer registers and improve the
opportunities of redundant code elimination. If the
instructions are adjacent, the propagation could
also reduce data dependency.

These optimizations can help us to
automatically find out reducible and optimizable
sequences of successive instructions. Collected
sequences (or patterns) are then feed into the
pattern-based peephole optimizer to do further
processing.

3.2 Pattern-base Peephole Optimizer

The pattern-based peephole optimizer, which is
off-line, can be divided into four parts (see Figure
3): basic patterns, pattern-matcher generator,
pattern matcher, and peephole optimizer. The
basic patterns are collected from the local code
analyzer. A sequence of instructions may match
several patterns. The peephole optimizer will try
all possible combinations of pattern matchings and
yield the one with the highest gains. The peephole
optimizer will also create a new pattern so that the
(on-line) code generator will use the pattern
directly without trying all combinations of pattern
matchings for similar instruction sequences when
the patterns are incorporated into the JCS rules.
The pattern matcher is generated automatically
from the patterns by the pattern-matcher generator.
Each pattern has a corresponding function in the
pattern matcher, which will be called by the
peephole optimizer.

Figure 3. Framework of the pattern-based

peephole optimizer

The pattern matcher has three tasks: matching,
replacing, and calculating gains. Once a matching
is found, the original instructions are replaced with
more efficient ones. Then, we can calculate the

gains of replacement.
The input of the pattern-matcher generator is

the descriptions of the instruction patterns. Each
instruction of a pattern consists of an opcode and
descriptors of operands. We support three types of
descriptors: register, immediate, and address
descriptors. A descriptor has its own ID. The
“immediate” descriptor can be used to express not
only any constant (e.g., c0, c1) but also the actual
values (e.g., 0, 1).

In our implementation, all patterns are a
sequence of contiguous instructions. When
matching program code against patterns, the
opcodes of the instructions must be identical and
in the same order. Furthermore, the corresponding
descriptors must also be matched. For instance,
consider the fourth pattern in Table 3,

movi r0, 0
beqz r0, a0

This pattern will match
movi r5, 0
beqz r5, 0x1234

But it will not matching
movi r5, 0
beqz r6, 0x1234

There is a cost function in the pattern matcher.
The optimizer calculates the gains of a pattern
replacement based on the definitions of reduction
gain and replacement gain. When multiple
matchings are possible, the one with the highest
gains is selected by the peephole optimizer.

After a matching is found, new instructions will
replace original instructions. The optimizer will
attempt to match the new instructions against the
patterns. Repeated pattern matching essentially
performs an exhaustive search for the highest
gains.

4. Benchmarks and Results

For benchmarking, we selected fifteen
programs from CLDC evaluation kit, Embedded
Caffeine Mark [17] and Grinder Bench [16] (see
Table 1). We ran all programs on Linux 2.6 on an
Andes development board AG101. The clock rate

of the on-board processor is 400 MHz.
The local code analyzer gathers statistics of the

number of eliminated instructions and examines
the patterns found in the benchmarks. Then these
patterns are incorporated into our ported JIT
compiler. Performance improvement is then
measured.

Table 1. Benchmark programs
Benchmark Programs

CLDC evaluation kit Richards, DeltaBlue,

ImageProc, Queen

Embedded Caffeine

Mark

Sieve, Loop, Logic,

String, Method, Float

Grinder Bench Chess, Crypto,

kXML, Parallel, PNG

4.1 Redundant Code Elimination

Since the order of optimizations may affect the
number of eliminated instructions, we tried various
combinations of five optimizations (dead code
elimination, redundant load/store, copy
propagation, constant propagation, and common
sub-expression). Figure 4 shows the highest
reduction ratios (with the order: Redundant
load/store elimination, dead code elimination, copy
propagation, and dead code elimination) for the
benchmarks. The average reduction ratio (in terms
of code size) is 0.98 %. The chess program has the
highest reduction ratio: in total, 1.6% of
instructions are eliminated.

4.2 Patterns

From our experiment, we discovered that some
patterns occur very frequently in the emitted code.
The frequent patterns can be replaced with more
efficient instructions. The code generator in the
JIT can be improved by incorporating these
patterns into JCS rules, modifying the emitter
accordingly and implementing delayed emission.

LCA Reduce Instructions (%)

0

0.5

1

1.5

2

str
in

g
sie

ve

m
eth

od lo
op

lo
gic flo

at

qu
ee

n

ric
ha

rd
s

de
lta

bl
ue

im
ag

ep
ro

c
ch

es
s

cr
yp

to
kx

m
l

pn
g

pa
ra

lle
l

Tot
al

Figure 4. Total reductions by LCA

The most frequent pattern is “pre-decrement
offset followed by a load instruction”. This pattern
occurs when a called method is returned and loads
the return value from the stack frame. The JIT
compiler emits an instruction for manual
pre-decrement and a load instruction followed. The
pair of instructions can be rewritten as a “lmw”
instruction with load after decrement and suffix.

Another common pattern is the conditional
branch instructions. In this pattern, the “slt/slts”
instructions can be replaced with the “slti/sltsi”
instructions. This pattern is emitted for the
“BCOND_INT” IR node in code generator. For
the example in Table 2, we can observe that the $ta
register is assigned a constant 6 (the “movi”
instruction) and is compared to the $s6 register
(the “slt” instruction). For this case, we can use the
“slti” instruction (set-if-less-than-an-immediate).
Of course the “bnez” instruction should be
replaced with the “beqz” instruction. The
instruction count is reduced by 1.

Table 2 Patterns of conditional branch

Original pattern
movi $ta, 6
slt $ta, $ta, $s6
bnez $ta, 0xf77aba74

Replacement pattern

slti $ta, $s6, 7
beqz $ta, 0xf77aba74

The third pattern is a special case of “setting a

register with the address of a CVMObjectICell”. A
CVMObjectICell structure of CVM holds a pointer
to an object [3]. In this pattern, the instructions
first load the address of an object and then load the
contents from that address. The address of the
object will be loaded into a register through the
“sethi” and “ori” instructions. Then, the loaded
register serves as the base register in the following
“lwi” instruction. Since the “ori” instruction is
intended to set the lower half of the register, it can
be combined with “lwi” instruction since the
lengths of the immediate fields of “ori” and “lwi”

are equal. For example, the following three
instructions:
 sethi r5, 12345
 ori r5, r5, 678
 lwi r6, [r5+0]
can be replaced with the following two
instructions:
 sethi r5, 12345
 lwi r6. [r5+678]

Table 3 shows some of the patterns in Andes
native code generated by JIT compiler that are
collected by the local code analyzer and the
peephole optimizer. Note the number of eliminated
instructions for each pattern.

Table 3. Patterns found from Andes assembly
code and their respective gain

Original
Patterns

Replacement
Patterns

Reduction
in the
number of
instructions

addi r0, r0, -4
lwi r1, [r0+0]

lmw.adm r1,
[r0], r1
DELETE

1

lwi r1, [r0+0]
addi r0, r0, c0

lwi.bi r1, [r0], c0
DELETE

1

movi r0, c0
slt r1, r0, r2
bnez r1, a0

DELETE
slti r1, r2, c0 + 1
beqz r1, a0

1

movi r0, 0
beqz r0, a0

j a0
DELETE

1

movi r0, 0
bnez r0, a0

DELETE
DELETE

2

lwi r0, r1, c0
lwi r0, r2, c1

DELETE
lwi r0, r2, c1

1

swi r0, r1, c0
lwi r0, r1, c0

swi r0, r1, c0
DELETE

1

addi r0, r0, 0 DELETE 1

4.3 Rewriting JCS Rules and the Emitter

Most patterns can be incorporated into the JIT
compiler by rewriting the JCS rules. Then the JCS
tool is used to generate the new code generator.
Generally, we also need rewrite the emitter so that
it can cooperate with the new code generator.

Pattern Reduce Instructions (%)

0
1
2
3
4
5

R
ic
ha

rd
s

D
el
ta
Bl

ue

Im
ag

eP
ro
c

Q
ue

en

Si
ev

e

Lo
op

Lo
gi
c

St
rin

g

M
et
ho

d
Fl
oa

t

Ch
es
s

C
ry
pt
o

kX
M

L

Pa
rra

lle
l

PN
G

To
ta
l

Figure 5. Total reduction by rewriting JCS rules and emitters

Another way to improve the JIT compiler is the
delayed emission, which is easy to implement and
can work for all patterns, but it comes with a
higher penalty. Most of the time, the more frequent
patterns are generated within semantic actions or
the emitter function.

In the revised JIT compiler, we add three of the
most frequent patterns (load-multiple-word,
conditional branch, common sub-expression). On
average, 2.91% of the instructions can be
eliminated (see Figure 5). The performance
improvement (in terms of execution time) of all
programs is 0.89% (see Figure 6) after rewriting
the JCS rules and the emitter.

5. Conclusion and Future Work

Rewriting JCS rules and the emitters could
improve our system performance if the optimized
method is hot enough. The added overhead in the
emitter and the frequency of the patterns are the
key points for improving performance. If a method
does not run for a long time, the overhead will
lower the performance.

In the process of identifying patterns, we
observe that some instructions are difficult to use.
Providing new instructions or revising the original
ones may help reduce code size and improve
performance. For example, the “conditional branch
and link” instruction is never emitted by the JIT
compiler since the type of instruction only
supports the greater-or-equal and less-then
condition. But for all programs, we see that the
“bnez” and “beqz” instructions are emited the most
often and are frequently followed with a “jal”
instruction. If we can support “beqzal” and
“bnezal” instructions, we can reduce the code size
even more (estimated at 2.52% reduction in code
size). We will gather statistics of the frequencies of
instruction pairs to evaluate the benefits of the new
instructions in the future.

References
[1] Sun Microsystems. Java ME CDC,

http://java.sun.com/javame/technology/cdc, 2008

[2] Sun Microsystems. Java ME,
http://java.sun.com/javame , 2008

[3] Sun Microsystems. CDC HotSpot Implementation
Dynamic Compiler Architecture Guide, 2005.

[4] Sun Microsystems. CDC Porting Guide, 2005.
[5] Andes Technology. Andes Instruction Set

Architecture Specification, 2007.
[6] Andes Technology. Andes Programming Guide,

June, 2007.
[7] S. Muchnick, Advanced Compiler Design and

Implementation. Morgan Kaufmann Publishers
Inc, August 1997.

[8] Rajeev Kumar, Amit Gupta, BS Pankaj, Mrinmoy
Ghosh, and PP Chakrabarti, “Post-compilation
optimization for multiple gains with pattern
matching,” ACM SIGPLAN Notices vol. 40, no.
12, pp.14 - 23, December, 2005.

[9] W. M. McKeeman. “Peephole optimization,”
Comm. ACM vol. 8, no. 7, pp.443-444, July,
1965.

[10] J. W. Davidson and C. W. Fraser. “Automatic
generation of peephole optimizations,” In
Proceedings of Best of PLDI, pp.104-111, 1984.

[11] J. W. Davidson and C. W. Fraser. “Eliminating
redundant object code,” In Ninth Annual ACM
Symposium on Principles of Programming
Languages, pp.128-132, 1982.

[12] J. W. Davidson and C. W. Fraser. “Code selection
through object code optimization,” ACM Trans.
Programming Languages and Systems, vol.6,
no.4, pp.505 - 526, October, 1984.

[13] P. B. Kessler. “Discovering machine-specific
code improvements,” In Proc. Symp. Compiler
Construction. ACM SIGPLAN Notices, vol.21,
no.7, pp.249 - 254, July, 1986.

[14] Diomidis Spinellis. “Declarative peephole
optimization using string pattern matching,” ACM
SIGPLAN Notices, vol.34, no.2, pp.47–51,
February, 1999.

[15] Sorav, Bansal, and Alex Aiken. “Automatic
Generation of Peephole Superoptimizers,” In
Proceedings of the Conference on Architectural
Support for Programming Languages and
Operating Systems, October, 2006

[16] EEMBC. GrinderBench,
http://www.grinderbench.com

[17] Pendragon Software Corporation, Embedded
CaffeineMark 3.0 benchmark,
http://www.webfayre.com, 1997

Performance Improvement (%)

-2

-1

0

1

2

3

4

Ri
ch
ar
ds

D
el
taB

lu
e

Im
ag
eP

ro
c

Q
ue
en

Si
ev

e

Lo
op

Lo
gi
c

St
rin

g

M
et
ho

d
Fl
oa

t

Ch
es
s

Cr
yp

to

kX
M
L

Pa
rra

lle
l

PN
G

To
tal

Figure 6. Performance improvement after rewriting JCS rules and emitters

