
Analysis of High-Performance Sorting Algorithms on AIX for Mainframe Operation
Offload

C. Eric Wu, Gokul Kandiraju, Pratap Pattnaik
IBM Research Division

cwu@us.ibm.com

Abstract: Sorting is one of the most critical applications
on mainframe machines. In this paper we analyze
sorting algorithms on AIX and describe our approach of
offloading sorting operations from mainframe systems.
A library was developed on AIX to read records from
mainframe DASD disks. With this library we are able to
analyze the performance of quick sort and radix sort
implementations on AIX using mainframe datasets. Our
results show that sorting operations can be improved
significantly, while the library enables mainframe
operation offload to UNIX systems.

Introduction
Sorting is a topic which has been studied and researched
extensively [1]. Given a number of records and one or more
fields as the key, the task is to arrange the records into
ascending or descending order. Floyd pioneered the notion of
analyzing the number of transfers between primary and
secondary storage in 1972 for matrix transposition [2]. A
recent direction in the design of cache-efficient and disk-
efficient algorithms and data structures is the notion of cache
obliviousness, introduced by Frigo et. al. in 1999 [3, 4].
Cache-oblivious algorithms perform well on a multilevel
memory hierarchy without knowing parameter details of the
hierarchy. Vinther concludes that the quicksort algorithm [5]
is also a cache-oblivious sorting algorithm [6]. As modern
computers with larger memory capacities and more advanced
prefetch features become available every year, there is no need
to limit ourselves with external sorting approaches for
yesterday’s workloads.

It has been widely accepted that quicksort is one of the fastest
comparison based sorting algorithms on typical datasets. The
time complexity for quicksort is O(N Log N) on average,
where N is the number of records. We would like to see how
various implementations may diverge from this well-known
fact and how we can keep the constant as small as possible.
The only additional requirement is to make the sorting results
“stable”. The stability of a sorting algorithm is the ability to
preserve the order of records with identical keys, regardless of
sorting for ascending or descending order. An un-stable
sorting algorithm will not preserve the original order of the
records, while a stable sorting algorithm does.

The quicksort algorithm starts by picking a pivot that is used
to compare with all other records in the input. Records are
partitioned into two groups: those with smaller keys and

others with larger keys. The algorithm goes on iteratively for
the two groups until the sorting is done. In order to make
quicksort stable, an additional key is required for the compare
operation. We implemented the quicksort algorithm in two
different ways, i.e. sorting pointers (SP) and sorting data (SD).
Because the size of the key is typically much less than the size
of the record, the idea is to use a pointer array in which each
element is a pointer pointing to its corresponding record in the
SP implementation. The SP quicksort approach swaps
pointers instead of records, thus potentially saves time
compared with swapping records in the SD quicksort approach.
In the 64-bit environment the pointer size is 8 bytes.

For the SP quicksort we use the pointer value as the second
key for stability, since input records are typically lined up in
virtual memory space in ascending order. For the SD
quicksort we added a record number at the end of each record
as the second key for stability, thus effectively making each
record a little bigger. Input records are randomly generated
and the key is a 10-byte ASCII number string, also randomly
generated at the beginning of each record.

Both the SP and SD quicksort implementations were executed
in an IBM POWER5 system with 1.9-GHz processors and 8-
Gbyte main memory. The memory hierarchy in the system
includes a two-way 64-KByte L1 instruction cache, a four-
way 32-KByte L1 data cache, a shared 10-way 1920-KByte
L2 cache, and a 12-way 36-MByte private off-chip victim L3
cache. Figure 1 show the user time in micro-seconds divided
by N Log N, which would be flat if user time was truly
proportional to N Log N. We ran both the SP and SD
quicksort implementation for record sizes ranging from 20
bytes to up to 640 bytes. These are the original record sizes,
i.e. they do not include the added second key for stability in
the case of SD quicksort.

 It can be seen in Figure 1 that the SP quicksort has an edge
over the SD quicksort when the number of records is relatively
small. However, a cross-over point occurs somewhere <
3162277 when the record size is, say 80 bytes. That is, the SD
implementation actually runs faster than the SP
implementation for N >= 3162277 and record size = 80 bytes.
The same can be seen for records with smaller sizes, as the
cross-over points for record size = 20 and record size = 40
occur when the numbers of records are both between
10000000 and 3162277. We increased the record size to 160
bytes and found that the cross-over point also occurs at
somewhere < 3162277.

User Time (usecs) / N Log N

0.1

1

10
10

0

31
6

10
00

31
62

10
00

0

31
62

2

10
00

00

31
62

27

10
00

00
0

31
62

27
7

1E
+0

7

No of Records

U
se

r T
im

e
(u

se
cs

) /
 N

 L
og

 N

SP 80-byte records

SP 40-byte records

SP 20-byte records

SD 80-byte records

SD 40-byte records

SD 20-byte records

Figure 1. User time divided by N Log N

At this point we assume that the cross-over points are mainly
caused by delays in the memory hierarchy for the SP sorting
approach. Performance analysis with cycle-per-instruction
(CPI) stacks will be used to show where the cycles are spent in
both implementations.

One area we are interested in is to get data sets from System z
volumes and work on them in other systems, such as the IBM
POWER5 system. A data set is a collection of logically
related data and can be a source program, a library of macros,
or a file of data records used by a processing program. In this
study we developed library routines to read the most
commonly used sequential data sets from Direct Access
Storage Device (DASD) volumes. The recording surface of a
volume is divided into multiple concentric cylinders, each of
which contains many tracks. The number of tracks and their
capacity vary with the device. Information is recorded on all
DASD volumes in a standard format called Count-Key-Data
(CKD) format [7].

The Volume Table of Contents (VTOC) on a DASD is used to
manage the storage and placement of data sets [8]. A VTOC
is a data set that describes the contents of the direct access
volume on which it resides. It is composed of 140-byte Data
Set Control Blocks (DSCBs) that correspond either to a data
set or to contiguous, unassigned tracks on the volume. A data
set is defined by one or more DSCBs in the VTOC of each
volume on which it resides. Contiguous tracks called extents
are specified in the DSCBs to indicate where the records are
stored in the volume.

The amount of space required for a data set is specified when
a data set is allocated. Records stored in the tracks could be
fixed-length or variable-length, and could have a blocked or
unblocked format. Logical records in a data set can be
bundled together as a block to save space, creating the so-
called blocked format. The logical record length and block
size of a data set are specified in its corresponding DSCB as

data set parameters. A variable-length record is preceded by a
record length field in the track indicating the length of the
record. While we developed library routines to access fixed-
length or variable-length, blocked or unblocked sequential
data sets from DASD volumes, we use blocked fixed-length
data sets randomly generated from System z as input for the
rest of the report.

Quicksort Implementation
A number of fixed-length (record size 80 bytes), blocked
format data sets were created on DASD volumes with number
of records ranging from 100 to 10000000. Figure 2(a) shows
user time in micro seconds divided by N log N, where N is the
number of records. Records were created randomly from
System z and stored at DASD volume before getting sorted by
the POWER5 system. As seen in Figure 1, there is a cross-
over point in Figure 2(a) when the number of records is
between 1000000 and 3162277. Using high performance
counters available in the POWER5 architecture we obtained
the number of cycles per instruction (CPI) in Figure 2(b). CPI
for the SD quicksort implementation is relatively flat, ranging
from 1.21 when the number of records is small to 1.13 when
the number of records is 10000000. On the other hand, CPI
for the SP quicksort implementation rises quickly as the
number of records increases.

The quicksort algorithm is shown in pseudo-C code for its
simplicity in List 1. The initial lower and upper values are the
lowest and the highest indexes in the array. The array is
partitioned into sub-partitions repeatedly based on a chosen
pivot. Pivots could be chosen randomly, however, a good
choice should partition the records evenly into two sub-
partitions. Multiple (say 3 or 5) indexes could be generated
and the one in the middle could be used as the pivot.

void quicksort(array, lower, upper) {
 if (upper > lower) {
 select a pivot;
 swap(array, pivot, upper);
 m = lower;
 for (i = lower; i < upper – 1; i++) {

if (array[i] <= array[upper])
swap(array, m++, i);

 }
 if (array[upper] <= array[m])
 swap(array, m, upper);
 else
 m = upper;
 quicksort(array, lower, m–1);
 quicksort(array, m+1, upper);
 }
}
List 1. Pseudo-C code for quicksort. The SD and SP
implementations use the record array and the pointer array
respectively.

Although the quick sort algorithm is well known for its
outstanding average performance, its worst complexity could
be O(n2) if the choices of pivots leaned to either side. We use
random pivots in both the SD and SP implementations, so the
poor performance of the SP implementation when N increases

in Figure 2 must come from somewhere else. The SD
implementation uses an array of records, and the SP
implementation uses a pointer array with pointers pointing to
individual records in the record array. Thus, each comparison
in the SD implementation with the pivot involves sequential
access to the records in the record array, while each
comparison in the SP implementation causes the indirect
access of a record, which, in turn, may cause delay in the
memory hierarchy. We will examine where the cycles were
spent later in this section.

User Time (usecs) / N Log N

0.01

0.1

1

10

100

100 316 1000 3162 10000 31622 100000 316227 1000000 3162277 10000000

No of 80-byte Records

U
se

r
Ti

m
e

(u
se

cs
) /

 N
 L

og
 N

Quick Sort (data)

Quick Sort (pointer)

Figure 2(a). User time divided by N Log N, 80-byte DASD

data sets

Cycles Per Instruction

0

0.5

1

1.5

2

2.5

3

3.5

10
0

31
6

10
00

31
62

10
00

0
31

62
2

10
00

00

31
62

27

10
00

00
0

31
62

27
7

1E
+0

7

No of 80-byte records

C
P

I

Quick Sort (pointer)
Quick Sort (data)

Figure 2(b). Cycles per instruction, fixed-length (80-byte)

DASD data sets

Radix Sort
To provide comparison and increase our choices of sorting
techniques we implemented the radix sort, also known as the
distribution sort [9]. Radix sort is a sorting algorithm that
sorts numbers by processing individual digits. Because
numbers can represent strings of characters and specially
formatted floating point numbers, radix sort is not limited to
integers.

A least significant digit (LSD) radix sort has time complexity
in O(N·K), where N is the number of records and K is the
average key length. It serves as an alternative to other high-
performance comparison-based sorting algorithms that require
O(N Log N) execution time. In radix sort each record is
placed into one level of buckets corresponding to the value of
the rightmost k bits of each key, where k < K. Each bucket
preserves the original order of the records, thus making it a
stable sorting algorithm. We implemented a non-recursive
radix sort with double-linked lists for buckets, and re-arranged
the records in place after iteration. The process repeats itself
with the next neighboring k bits until there are no more bits to
process.

void radixsort(array, k) {
 for each k bits in key {
 for (i = 0; i < array.size(); i++) {
 determine bucket number b using the k bits;
 buckets[b].add(array[i]);
 }
 i = 0;
 for (b = 0; b < 2k; b++) {
 for (j = 0; j < buckets[b].size(); j++)
 swap(array, i++, buckets[b][j]);
 buckets[b].clear();
 }
 }
}
List 2. Radix sort algorithm.

A simplified radix sort algorithm is shown in List 2, where the
partial key masked by the k bits in each record determines the
bucket number for each record. We use a record pointer array
and doubled-linked lists to implement buckets. At the end of
each scan we re-arrange the pointer array in place, based on
the order of records in the buckets. Similar to the SP
quicksort implementation keys are indirectly accessed through
pointers in the radix sort implementation, thus it may cause
delay in the memory hierarchy.

Radix Sort User Time (usecs) / N Log N

0.01

0.1

1

10

100

100 316 1000 3162 10000 31622 100000 316227 1000000 3162277 10000000

No of 80-byte Records

U
se

r
Ti

m
e

(u
se

cs
) /

 N
 L

og
 N

K=8

K=16

K=20

K=24

Figure 3. User time (micro seconds) with various k’s in radix

sort divided by N Log N
Figure 3 shows the user time in micro seconds divided by N
Log N in radix sort for the values of k, where 2k is the number
of buckets used in the algorithm. Note that the key is a 10-

byte EBCDIC number string. It can be seen that using a large
k does not always help, as the number of buckets increases
and many buckets could be empty. For example, there are 16
million buckets in the case of k = 24, however, we have only
1000 possible partial keys for a 3-byte EBCDIC number string.
The number of empty buckets is determined by the key values,
which could vary dramatically from one data set to another.
In general, to reduce the number of empty buckets one could
choose the largest k so that 2k = N, which may also decrease
the user time.

CPI Stack: Where the Cycles Were Spent
Profiling is a common approach to collect timing and resource
utilization for a workload. The POWER5 processor provides
on-chip performance monitor units (PMUs) to record
performance events through six performance monitor counters
(PMCs). As a result, with an appropriate set of performance
monitor application programming interfaces (PMAPIs)
designed to provide access to those PMCs, we can profile
many performance-sensitive events related to the core or the
memory subsystem.

We use a CPI breakdown model similar to the one used in [10,
11] that breaks the CPI into a base component when the
processor is completing work (group completed), and a stall
component when the processor is not completing instructions
(total cycles – group completed). The stall component is
divided into cycles when the pipeline was empty (GCT empty)
and cycles when the pipeline was not empty but completion is
stalled (stall – GCT empty). The GCT empty cycles can be
further partitioned into I-cache miss penalty, branch
redirection penalty, and GCT others such as store stall and
flush penalty. Completion stall cycles could be caused by a
fixed-point unit (FXU), a floating-point unit (FPU), a load-
store unit (LSU), or other units such as the branch unit (BRU)
or conditional register unit (CRU). The LSU stall cycles
could be further divided into cycles due to D-cache miss
penalty, LSU reject caused by address translation, and LSU
stalls due to other reasons [10, 11].

Figure 4(a) shows the CPIs for the three implementations
sorting 10 million 80-byte records, with the CPI for the radix
sort highest among the three. On the other hand, the number
of completed instructions varies drastically. While the radix
sort executed roughly 2.65 billion instructions, the SP and SD
quicksort implementations completed more than 30 and 65
billion instructions, respectively. Note that the same quicksort
algorithm is used for both the SP and SD implementations.
The main difference is that the SD implementation uses the
record array and swaps records, while the SP implementation
uses the indirect pointer array and swaps pointers. Figure 4(b)
shows where the cycles were spent or stalled by various units.

It can be seen from Figure 4(b) that the radix sort is the fastest,
although its completion stall cycles made up more than 94%
of the time. The stall cycles are mainly caused by LSU due to
D-cache miss or LSU reject such as ERAT miss. The SP

quicksort implementation suffers from more than 85%
completion stall cycles, in which the majority was caused by
LSU due to D-cache miss or LSU reject. Compared with the
radix sort and the SP quicksort, the SD quicksort
implementation has a much smaller stall by LSU D-cache
miss (4.47%) and stall by LSU reject (3.3%). As the result,
although the SD quicksort has to swap 88-byte records
compared with swapping 8-byte pointers in the SP
implementation, it still runs faster than the SP quicksort in this
case.

 CPI Stack

0 2 4 6 8 10 12 14 16

QSort (data)

 QSort (pointer)

 Radix Sort (K=20)

CPI

Group Completed Cycles
Stall by Icache miss
Stall by Branch Prediction
Stall by GCT others
Stall by FXU
Stall by FPU
Stall by Dcahce miss
Stall by reject
Stall by LSU others
Stall by Other Units

Figure 4(a). Cycles per instruction (CPI) stack

Cycles Spent

0 50,000,000,000 100,000,000,000

QSort (data)

 QSort (pointer)

 Radix Sort (K=20)

Number of cycles

Group Completed Cycles
Stall by Icache miss
Stall by Branch Prediction
Stall by GCT others
Stall by FXU
Stall by FPU
Stall by Dcahce miss
Stall by reject
Stall by LSU others
Stall by Other Units

Figure 4(b). Cycles spent in SP/SD quicksort and radix sort

SP Pointer Array with Primary Keys
One simple way to improve the performance of the SP
quicksort implementation is to include the primary key in the
pointer array. Comparisons between keys can then be done
sequentially inside the pointer array without any indirect
access, unless secondary keys, if any, are needed for
comparison.

In Figure 5 we use the data set with 10 million 80-byte records
again to compare the three implementations. With the primary
keys included in the pointer array, the first two

implementations, one with median-3 pivots and the other with
random pivots, have slightly more than 4% stall cycles due to
D-cache miss or LSU reject. Note that more than 70% of the
cycles were stalled due to the same D-cache miss or LSU
reject for the original SP implementation without the primary
key. Thus, the SP implementations with primary key in the
pointer array indeed eliminate stalls in the LSU and improve
performance.

Cycles Spent

0 50,000,000,000 100,000,000,000

SP

SP with PKey

SP median-3 pivot with
PKey

Number of cycles

Group Completed Cycles
Stall by Icache miss
Stall by Branch Prediction
Stall by GCT others
Stall by FXU
Stall by FPU
Stall by Dcahce miss
Stall by reject
Stall by LSU others
Stall by Other Units

Figure 5. Cycles spent in (i) SP with PKey and median-3
pivots, (ii) SP with PKey, and (iii) original SP quicksort

implementation without the primary key

User Time (usecs) / N Log N

0.01

0.1

1

10

100

100 316 1000 3162 10000 31622 100000 316227 1000000 3162277 10000000

No of 80-byte Records

Us
er

 T
im

e
(u

se
cs

) /
 N

 L
og

 N

SD (data)

SP with PKey

RS with PKey (k <= 20)

System z Wall Time

Figure 6(a). User time (micro seconds) divided by N Log N.

The SP quicksort with primary key performs consistently
better than the SD quicksort

Figure 6(a) shows the user time in micro seconds divided by N
Log N, for the SD, SP with primary key, and radix sort
implementations. The system z wall time in micro seconds
divided by N Log N is also shown as a reference. The system
z wall time is obtained by running a JCL script calling the
SORT program for a given input data set. In general, the
savings in sorting time is consistently 50% or more. It can be
seen that the SP quicksort with the primary key included in the

pointer array performs better than the SD quicksort, and both
implementations show a flat CPI in Figure 6(b).

CPI

0

1

2

3

4

5

6

7

8

9

10

100 316 10
00

31
62

10
00

0
31

62
2

10
00

00

31
62

27

10
00

00
0

31
62

27
7

1E
+0

7

No of 80-byte records

C
P

I

SP with PKey
SD
Radix Sort (k <= 20)

Figure 6(b). Cycles per instruction

The copy-primary-key approach works well for the SP
quicksort implementation, as its stall cycles reduced and CPI
improved significantly. As can be seen in the previous section,
the user time is literally cut in half, demonstrating that the
choice of implementation is critical. Since quicksort performs
better with balanced sub-partitions, using median-3 pivots
help reduce the number of comparisons at the expense of extra
random number generation and selecting the pivot. Using
more random numbers to select pivots would have
diminishing benefits. In addition, using insertion sort when
the number of records in a sub-partition is less than certain
threshold may also help reduce the user time.

Radix Sort with Primary Keys
The pointer array for the radix sort uses three pointers for each
record: one pointer pointing to the record, one up-link and one
down-link pointer are used to build the doubled-link lists for
the buckets. Adding the primary key is one way to reduce the
number of indirect accesses of the records.

Figure 7(a) shows the CPI for radix sort, radix sort with
primary key, and SP quicksort with median-3 pivots and
primary key implementations using the data set with 10
million 80-byte records. It can be seen that with the primary
key included in the pointer array the radix sort CPI drops
substantially, from 13.8 to less than 8. The number of
completed instructions increases from 2.65 billion to 4.4
billion while the total number of cycles drops slightly. The SP
quicksort with median-3 pivots and primary key executed
more than 27 billion instructions. Note that the CPI value in
Figure 6(b) is calculated for the sorting only, which tends to
be a little higher than that if the whole program is used.

For radix sort each structure in the pointer array includes an
up-link and a down-link for building doubled-linked lists, as
well as the record pointer and the primary key. Including the

primary key in the pointer array helps reduce the CPI,
although the CPI still goes up as the number of records
increases, as shown in Figure 6(b). As we pointed out earlier
that the key is a 10-byte EBCDIC number string, resulting in
many empty buckets for the radix sort. The in-place
placement at the end of each k-bit scan does not help either,
since doubled-linked lists are made up of indirect pointers, and
record pointers along with the primary keys are swapped
through the use of these pointers. Our result does show slight
advantage in user time for the radix sort with the primary key
in the pointer array, as shown in Figure 7(b). As the user time
drops below 20 seconds, the saving is close to 70% compared
with the system z wall time. On the other hand, more
experiments may be needed, with larger data sets and different
keys.

 CPI Stack

0 2 4 6 8 10 12 14 16

SP median-3 with PKey

Radix Sort with PKey

Radix Sort

CPI

Group Completed Cycles
Stall by Icache miss
Stall by Branch Prediction
Stall by GCT others
Stall by FXU
Stall by FPU
Stall by Dcahce miss
Stall by reject
Stall by LSU others
Stall by Other Units

Figure 7(a). Cycles per instruction for (i) radix sort, (ii) radix
sort with PKey, and (iii) SP with median-3 pivots and PKey

Cycles Spent

0 25,000,000,000 50,000,000,000

SP with PKey median-3

Radix Sort with PKey

Radix Sort

Number of cycles

Group Completed Cycles
Stall by Icache miss
Stall by Branch Prediction
Stall by GCT others
Stall by FXU
Stall by FPU
Stall by Dcahce miss
Stall by reject
Stall by LSU others
Stall by Other Units

Figure 7(b). Cycles spent in (i) radix sort, (ii) radix sort with

primary key, and (iii) SP quicksort with primary key

Summaries
While we use blocked fixed-length datasets from System z as
inputs in this paper, we have also developed library routines to

access variable-length, blocked or unblocked sequential data
sets from DASD volumes. Since variable-length records are
preceded with record lengths, a pointer to a variable-length
record point to the actual starting point of the record content
instead of the record-length field. Thus, the same sorting
routines work for all four format combinations of a sequential
dataset, i.e. fixed-length or variable-length, blocked or non-
blocked.

While the radix sort may be faster than the quicksort, the
quicksort algorithm is more flexible with a comparison-based
approach that can easily accommodate additional keys. Thus,
the SP quicksort with the primary key implementation would
be a good choice if the key length is relatively large or when
there are multiple keys to compare. Our sorting
implementation allows multiple keys stored with each record
pointer in the pointer array, thus providing a flexible approach
for multiple-key sorting operations. Although the result could
be highly data dependent, we believe that our implementations
provide a good starting point for sorting in AIX systems.

The library routines we developed to access datasets from
DASD disks could be used for other applications as well. The
potential with such a library is huge. Given such a library
users of a UNIX system with links to mainframe disks could
have the capability to access mainframe datasets and perform
operations on behalf of the mainframe. Thus, the library could
be used to offload operations from expensive mainframes to
cheaper UNIX systems, saving precious mainframe cycles
while possibly speeding up the operations.

References
1. D. E. Knuth, “The Art of Computer Programming, Vol. 3,

Sorting and Searching”, Addison-Wesley, 1973.
2. R. W. Floyd, “Permuting information in idealized two-level

storage,” Complexity of Computer Calculations, 1972.
3. M. Frigo, C. E. Leiserson, H. Prokop, S. Ramachandran,

“Cache-Oblivious Algorithms,” ACM Proceedings of the 40th
Annual Symposium on Foundations of Computer Science, 1999.

4. E. D. Demaine, “Cache-Oblivious Algorithms and Data
Structures,” Lecture Notes in Computer Science, MIT
Laboratory for Computer Science, 2002.

5. C. A. R. Hoare, “Quicksort,” Comp. J. Vol. 5, pp. 10 – 15, 1962.
6. K. Vinther, “Engineering Cache-Oblivious Sorting Algorithms,”

Master’s Thesis, University of Aarhus, Denmark, 2003.
7. IBM Manual, “DFSMS: Using Data Sets,” SC26-7410-06, Sixth

Edition, September 2005.
8. IBM Manual, “DFSMSdfp Advanced Services” SC26-7400-04,

Fifth Edition, March 2005.
9. D. E. Knuth, “The Art of Computer Programming, Vol. 3,

Sorting and Searching”, Section 5.2.5, Sorting by Distribution,
pp. 170 – 178. Addison-Wesley, 1973.

10. A. Mericas, “POWER5 Performance Monitor Programmer’s
Guide,” IBM Confidential document, version 1.0, July 2004.

11. Duc Vianney, Alex Mericas, Bill Maron, Thomas Chen, Steve
Kunkel, and Bret Olszewski, “CPI Analysis on POWER5, Part 2:
Introducing the CPI Breakdown Model,” IBM Developerworks,
http://www-128.ibm.com/developerworks/power/library/pa-
cpipower2, April 2006.

