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Abstract-The 8051 is one of the most widely used 
microcontrollers today especially on many simple 
embedded systems. Traditionally, digital systems 
are implemented with synchronous circuits. 
Because of synchronous circuit nature, a global 
distributed clock signal is needed. However, the 
global distributed clock may cause some problems, 
such as harder and harder clock distribution, 
worse-case performance, sensitive to variations in 
voltage and temperature, more power consumption, 
and higher EMI. These problems can be easily 
overcome by asynchronous circuits. It is widely 
known that the 8051 processor is the most popular 
8-bit microcontroller; however, because of its 
CISC nature, the instruction decoder is not very 
easy to implement, especially for asynchronous 
circuits. In this paper, we propose a new 
instruction fetcher and decoder model for an 
asynchronous pipelined 8051 microcontroller. The 
proposed design is modeled with a CSP-based 
asynchronous HDL called Balsa HDL and 
synthesized into Xilinx netlist with the Balsa 
synthesis tool. In addition, the performance will be 
estimated with several different design 
configurations.  
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1. Introduction  

Microcontrollers today are widely used in lots 
of different applications, such as embedded 
systems. Most of these applications require 
microcontrollers that can operate in low power and 
different operation environments. Asynchronous 
circuits may be one of the best answers to these 
problems [1]. However, without the global clock 
signal, the asynchronous circuits become very hard 
to design. In addition, because lack of tools can be 
used for designing and testing, it causes the 

asynchronous circuits even harder to design. 
That’s why almost all circuits are still 
implemented in synchronous circuits today [1].  

Because of the applications, most embedded 
systems and simple handheld devices do not really 
need very powerful processor cores. Most of them 
needs processor core with some other special 
requirements such as adaptation to operating 
variations, low power consumption, and low EMI. 
These goals can be easily achieved by 
asynchronous circuits.  

8051, AVR, and MicroChip PIC family 
microcontrollers are all popular 8-bit 
microcontrollers for embedded systems. Among 
these 8-bit microcontrollers, the 8051 
microcontroller is the most popular of all. In fact, 
the 8051 series microcontrollers are still widely 
used in lots of different applications. There are 
several asynchronous 8051 compatible 
microprocessor implemented [2,3,4]. Because of 
its CISC nature, it’s not very easy to implement it 
with pipeline architecture directly. Furthermore, 
the instruction decoder is the hardest part to 
implement. Moreover, different from most of those 
8051 implementations our research focuses on 
developing an open synthesizable asynchronous 
8051 implementation [5].  In this paper, we 
propose an instruction decoder implemented with 
Balsa HDL for such asynchronous pipelined 8051 
compatible microcontroller. 
 
2. Related Works  

Asynchronous circuits have been studied for 
over 50 years. However, because of some 
historical issues and implementation difficulties, 
most systems today are still implemented with 
synchronous circuits.  

Instead of the global clock signal, different 
handshaking protocols are used to make sure the 
operation correctness of asynchronous circuits. 
These protocols can be divided into control 



signaling and data signaling. There are two types 
of control signaling. One is the two-phase 
handshaking protocol, and the other is four-phase 
handshaking protocol. There are also two major 
types of data signaling. One is the bundled-data or 
called single-rail data encoding, and the other is 
dual-rail data encoding. A complete handshaking 
protocol is a combination of the control and data 
signaling [6].  

Based on these handshaking protocols, some 
different asynchronous pipeline models are 
proposed. David Muller proposed his famous 
Muller C-element and Muller pipeline in 1959 
[7,8]. The Ivan E. Sutherland even proposed his 
famous Turing Award “Micropipeline” Lecture in 
1959 [9]. Except the pipeline model as the control 
circuitry, some asynchronous processors are 
proposed. Amulet series processors may be the 
most important of all [10,11,12]. In fact, they are 
the earliest asynchronous ARM compatible 
processors. In fact, the original Amulet design is 
just based on the “micropipeline” model. Takashi 
Nanya et al. proposed their quasi-delay-insensitive 
(QDI) 8-bit microprocessor model called “TITAC” 
which uses Martin’s Q-element as the control 
circuitry [13]. In addition, the TITAC2 was 
proposed to show a new delay model called 
scalable-delay-insensitive (SDI) [14]. Martin et al. 
in Caltech have already shown three generations of 
different asynchronous processors modeled with 
CHP [15]. In fact, there are also several 
asynchronous 8051 compatible implementations. 
The most famous of all is the asynchronous 8051 
microcontroller developed by the Philips Research 
Laboratories [2]. This asynchronous 8051 was 
modeled with Tangram [16] and has already 
become a commercial product. Lee et al. proposed 
a novel asynchronous pipelined 8051 [3] and 
Martin et al. proposed a QDI asynchronous 8051 
called the Lutonium [4]. In fact, because of new 
applications of microcontrollers, more and more 
research focuses on implementing microcontrollers 
with asynchronous circuits. However, designing 
the instruction decoder for an asynchronous 
pipelined processor with CISC ISA becomes the 
critical issue. Stevens et al. proposed an 
asynchronous instruction length decoder for CISC 
processors [17]. The design can be used in 
400MHz high performance commercial CISC 
processors. Because 8051 is only a simple 8-bit 
microcontroller, we propose a simple but useful 
instruction decoder design model for asynchronous 
pipelined 8051 microcontroller. 
 
3. Balsa Framework  

Because lack of EDA tools can be used directly, 
it makes asynchronous circuit design much harder. 
To design synthesizable asynchronous circuits 
becomes even harder. However, Balsa is a 
framework for providing an asynchronous HDL 
and synthesizing of asynchronous circuits and 
systems [18,19,20]. It’s an open source solution 
provided by the University of Manchester. The 
Balsa back-end can generate gate-level netlist that 
can be used by several target CAD systems. The 
Balsa back-end now can support three back-end 
protocols for target technology supported: 
bundled-data scheme using a 
4-phase-broad/reduced-broad signaling protocol, a 
delay-insensitive dual-rail encoding and a 
delay-insensitive 1-of-4 encoding. With the Balsa 
framework, designing asynchronous circuits 
becomes easier.  
 
4. The Proposed Instruction Decoder  

The proposed instruction decoder was designed 
for an asynchronous pipelined 8051 with five 
pipeline stages as shown in figure 1 [5]. The five 
stages are IF (Instruction Fetch), ID (Instruction 
Decode), OF (Operand Fetch), EXE (Execute), and 
WB (Write Back) stages. In this paper, we focus 
on how to efficiently fetch variable length 8051 
CISC instructions from instruction ROM and 
decode the instructions for an asynchronous 
pipelined 8051 microcontroller. In this section, the 
detailed design of IF and ID stages will be 
described. 

 
Figure 1. Architecture of Asynchronous 

Pipelined 8051 Microcontroller 
 
4.1. The design of IF stage 

Figure 2 shows the design of IF stage. It 
consists of mem_interface, two 32-byte buffers, 
and fetcher_ctrl. The mem_interface arbitrates 
request from the two buffers. The buffers are 
controlled by the fetcher_ctl in order to transfer a 
needed byte to fetcher_ctl or prefetch data from 
the instruction ROM. The fetcher_ctrl receives the 
program counter value and checks if it is hit in one 
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Figure 2. Block diagram of IF stage
of the two buffers. If it is a hit, fetcher_ctrl sends a 
request of read to the hit buffer; however if it is a 
miss, the fetcher_ctrl sends a request of prefetch to 
all buffers. Thus the mem_interface can begin to 
fetch data from the instruction ROM. It should be 
noticed that if the last byte of the target buffer is 
read, fetcher_ctrl will also send a prefetch request. 
 
4.1.1. The mem_interface. The mem_interface 
arbitrates the instruction ROM access requests 
from the two buffers and returns the target byte 
depending on the target address.  
 
4.1.2. The two buffers. Each buffer can receive 
Read/Write control signal and target address from 
the fetcher_ctrl. If the control signal is READ, the 
buffer returns target byte to the fetcher_ctrl; 
otherwise, if the control signal is WRITE, it 
fetches 32 bytes starting from the target address.  
 
4.1.3. The fetcher control. The fetcher control 
(fetcher_ctrl) is responsible for controlling the 
operations of the two buffers. Once the fetcher_ctrl 
gets the target address, it checks if the target byte 
exists in one of the two buffers. If the target byte 
can be found in one of the two buffers, the target 
address and READ request can be sent to the hit 
buffer. Thus the target byte can be passed to the ID 
stage. Then it checks if this byte is the last byte of 
that buffer. If it were true, fetcher_ctrl generates 
the WRITE control signal to that buffer. On the 
contrary, if the target byte cannot be found in both 
of the two buffers, the fetcher_ctrl generates flush 
control signal to flush both of the two buffers. 
Therefore the two buffers can be refilled.  
 
4.2. The design of ID stage 

Figure 3 shows the design of ID stage. Because 
the 8051 instruction set is very complex and hard 
to decode directly, we divided the ID stages into 
two sub-stages, the ID1 and ID2. In ID1 stage, it 
fetches the first byte of an instruction, decodes the 
instruction, determines the length of the remainder 
bytes, abstracts the opcode, and finally generates 
control signals. Thus the remainder bytes can be 
fetched in the ID2 stage. In addition, if the current 

instruction is a branch instruction, the ID2 stage is 
responsible for calculating the target address and 
handling this branch. Finally, ID2 stage provides 
complete control signals to OF stage. 

 
Figure 3. Block diagram of ID stage 

 

 
Figure 4. Addressing modes of 8051 

instructions 
 

4.2.1. The 8051 instruction set. There are total 
255 instructions with variable length from one to 
three bytes of 8051 [21]. Depending on the 
addressing modes, they can be divided into eight 
types. The eight addressing modes are depicted in 
figure 4. In fact, an 8051 instruction can be 
determined from its first byte, and all the extra 
bytes are operands. 



 
4.2.2. The ID1 stage. In order to decrease the size 
of the multiplexer in ID1 stage, the incoming byte 
is used to determine if it is a regular or irregular 
instruction. Then the control signals of opcode, 
operation control, read control, and write control 
that are needed in ID2 stage can be generated. 
Figure 5 depicts the operation of ID1 stage. In 
addition, the share procedure of Balsa is used; thus, 
only one component will be constructed whenever 
this procedure is called. 

 
Figure 5. Flow control of ID1 stage 

 
4.2.3. The ID2 stage. In ID2 stage, the remainder 
bytes of the current instruction will be fetched 
according to the control signal from ID1 stage. To 
avoid the race condition between ID1 and ID2 
stages, the “handshake enclosure” description of 
Balsa is used. Therefore the remainder bytes can 
be correctly fetched before the next instruction can 
be begun to fetch in ID1 stage. Once all the 
remainder bytes are fetched, they will be 
transformed into corresponding operands and 
combined with the control signals from ID1 stage 
to OF stage. If the current instruction is a branch 
instruction, the target address will be calculated. In 
addition, if it’s a taken branch, the PC value will 
also be changed in ID2 stage. Figure 6 shows the 
flow control of ID2 stage. 
 
5. Implementation  

The design is modeled with Balsa language and 
then compiled into a collection of “handshake 
components” with the balsa-c compiler. All these 
handshake components can be mapped into 
gate-level implementations. Hence, the 
balsa-netlist tool can be used to transfer them into 
Verilog netlist for Xilinx or other target synthesis 
tools automatically. We implemented the design 
with Xilinx Spartan-IIE 300 ft256 FPGA. To 
reduce the area cost, the four-phase bundled-data 

protocol was adopted. Figure 7 shows the Balsa 
FPGA design flow. Finally, the cross-verification 
with our design was done with an 8051 simulator.  
 

 
Figure 6. Flow control of ID2 stage 
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Figure 7. The Balsa FPGA design flow 

 
6. Simulation result 

There are two major different design 
configurations that may impact on the performance. 
In order to select the best configurations, 
simulations were used to compare the performance. 
Because the instruction memory size of 8051 is 
only 64KB or less, most applications of 8051 are 
very small and simple. Don’t forget that 8051 is 
just a simple 8-bit microcontroller. In our 
simulation, we selected the GCD and Fibnacci 
code as our benchmark program. Though the 
simulation results may vary from application to 



application, it may not have great impact on these 
design configuration selections. 

The first design issue is the number of 32-byte 
buffers in IF stage. That may impact the 
instruction issue rate very seriously. Table 1 shows 
consuming time in Balsa time unit with number of 
buffers from 0 to 3. It can be found that the best 
performance can be delivered if the number of 
32-byte buffers is 2. In comparison with the design 
of 0 or 1 buffers, the performance of design of 2 
buffers would be better. That’s very easy to 
understand. If the number of buffers is 2, it can not 
only save the instruction memory access time but 
hide some accesses when the instructions are 
executed. However, if the number of buffers is 
continuously increased, the performance will begin 
to decrease. That’s because the arbitration in 
mem_interface will become more complex. 
 

Table 1. The execution time needed with 
different number of buffers 

Numbers of 
buffers 

Execution time 
(in Balsa units) 

Normalized 
result 

0 155,062,000 20.55 

1 11,896,100 1.58 

2 7,544,200 1.00 

3 10,012,600 1.33 

  
The second issue is the buffer size. Though the 

32-byte size is selected, we still hope to find the 
most suitable one. However, the most suitable size 
may really depend upon the applications. That’s 
because with larger buffer size more instructions in 
the same basic block can be hold in the buffer. 
Table 2 shows the execution time of buffer with 
different buffer sizes. Maybe because of our 
application behavior, the performances of different 
buffer sizes have no great differences. For a 
reasonable selection, 32-byte size is still adopted 
in our design. 
 

Table 2. The execution time 
needed with different size of buffers 
Buffer Size 

(byte) 
Execution time 
(in Balsa units) 

Normalized 
result 

8 7,801,000 1.03 

16 7,629,800 1.01 

32 7,544,200 1.00 

64 7,501,400 0.99 

 

Now, it’s time to estimate the overall 
performance improvements of asynchronous 
pipelined 8051 design. In order to compare the 
performance, we compare the performance of two 
asynchronous 8051 models. The two asynchronous 
8051 microcontroller core developed by us are all 
modeled with Balsa HDL. Table 3 shows the area 
costs and performance of the two designs in Balsa 
area and time units respectively. The table shows 
that the pipelined design can deliver about 3.3 
times performance with 2.35 times area costs. The 
design was finally implemented with Xilinx FPGA. 
Table 4 shows the area cost and minimum path 
delay on Xilinx FPGA. 
 

Table 3. Execution and Area Cost of 
Asynchronous Non-pipelined and 

Pipelined 8051 
    Execution 

Time  
Normalized 
time 

Non-pipelined 24,891,300 3.30 
Pipelined 7,544,200 1 
    Cost Normalized 

Cost 
Non-pipelined 210,513.50 1 
Pipelined 494,752.25 2.35 

Note: The time and area are all represented in Balsa units. 
 

Table 4. Cost and minimum path delay on 
FPGA 

 Slice 
Gate 
count 

Minimum  
path delay(ns) 

IF 1007 13987 757 

ID 5353 61973 721 

MEM_INTERFACE 1098 13217 125 

 
7. Conclusion and discussion 

In this paper, we propose an open and 
synthesizable asynchronous instruction fetcher and 
decoder implemented with Balsa HDL for an 
asynchronous pipelined 8051 microcontroller. In 
fact, the model we proposed has been already 
implemented inside an asynchronous pipelined 
8051 microcontroller core and realized with Xilinx 
FPGA. 

Because of the CISC nature, instruction fetch 
and decode is very hard to implement especially 
for an asynchronous pipelined processor. Though 
it’s very hard, we propose a very simple model for 
an asynchronous 8051 core. Moreover, it doesn’t 
really need to implement very complex instruction 
fetcher and decoder for such simple 8-bit 
microcontroller. Though to simplify the design we 
divided IF and ID into several sub-stages, all the 



sub-stages can work correctly with its own speed. 
Once any sub-stage has finished its operation, the 
adjacent sub-stage can begin its operation directly. 
That’s because it’s implemented with 
asynchronous circuits. The synchronization is done 
via handshaking protocol. Thus the advantage of 
average-case performance can be achieved. Finally, 
via the simulations, we show why we implemented 
two 32-byte buffers in the instruction fetcher. We 
also show that it’s worth to implement 
asynchronous 8051 with pipelined model. It should 
be pointed out that because this design was 
modeled with Balsa HDL, it can be re-synthesized 
with other handshaking protocols. Thus this design 
has very high flexibility. 
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