
Practical anonymous proxy signature schemes without trusted alias 
issuers 

Hwang, Shin-Jia and Hsu, Pi-Hung* 
Department of Computer Science and Information Engineering, 

TamKang University, Tamsui, Taipei Hsien, 251, Taiwan, R.O.C. 
E-mail: sjhwang@mail.tku.edu.tw 

*E-mail: 795410132@s95.tku.edu.tw 
 
 
Abstract-Anonymous proxy signature schemes 
are used to protect proxy signers’ privacy.  
Among the proposed anonymous proxy signature 
schemes, Shum and Wei’s scheme is more 
practical than the other proposed scheme.  
However, their scheme does not satisfy strong 
unforgeability, and their scheme needs the help 
of trusted alias issuers to protect the proxy 
signer’s anonymity.  To overcome this 
disadvantage, Hwang and Hsu’s scheme is 
proposed.  But Hwang and Hsu’s scheme still 
needs the help of trusted alias issuers.  To 
remove the trusted alias issuers, a new practical 
anonymous proxy signature scheme is first one 
with the help of concurrent signature schemes to 
deal with the signatures exchange between the 
original signer and proxy signer.  In the new 
scheme, the unused anonymous names of proxy 
signers keep secret to protect proxy signers’ 
privacy.  Once the anonymous names are used, 
the original signers have the evidences to 
identify anonymous proxy singers at the same 
time.  Therefore, the right of original signers is 
also protected. 

 
Keywords: Anonymity, proxy protection, proxy 
signatures, concurrent signatures 
 
1.Introduction 

Mambo et al. [10, 11] first proposed the 
concept of proxy signature schemes in 1996.  In 
a proxy signature scheme, an original signer 
(denoted by UO) is able to authorize a proxy 
signer (denoted by UP) to generate proxy 
signatures on behalf of the original signer UO.  
Mambo et al. [10, 11] proposed three 
authorization types: Full delegation, partial 
delegation, and delegation by warrant.  Based 
on these three types of authorization, many 
proxy signature schemes are proposed [3- 8]. 

Some of these proposed proxy signature 
schemes provide proxy protection.  The proxy 
signer protection is obtained by using proxy 
signers’ public key to help the verification of 
proxy signatures.  Due to proxy signers’ public 

keys are used, the identity of a proxy signer 
should be known.  But this damages the proxy 
signers’ privacy.  To protect privacy, it is better 
that proxy signers are anonymous in proxy 
signature schemes.  To deal with anonymous 
issues, there are two kinds of proxy schemes are 
proposed.  One is Mehta and Harn’s one-time 
proxy signature scheme [12], and the other are 
Shum and Wei’s strong proxy signature scheme 
[13] and Hwang and Hsu’s scheme [2]. 

Mehta and Harn’s [12] scheme is proposed 
based on online/offline signature schemes in the 
delegation by warrants.  Their scheme has 
anonymity property for proxy signers because 
proxy signatures are validated only by a using 
UO’s public key.  Then only the original signer 
UO and proxy signer UP know the actual signer 
of proxy signatures.  When any dispute caused 
by proxy signatures happens, it is necessary to 
find out the actual signer of proxy signatures.  
In Mehta and Harn’s scheme, both UO and UP 
have the evidence to identify the actual proxy 
signers with the help of a trust authority UT.  
The proxy signatures in [12] are perfectly secure.  
However, for each delegation by warrant, each 
proxy signer can generate only one proxy 
signature.  So their scheme is impractical in the 
real word. 

On the other hand, Shum and Wei’s scheme 
[13] is practical with the help of trusted alias 
issuers.  The trusted alias issuer issues 
certificates for the anonymous name and 
anonymous public key for each proxy signer.  
Then the certificated anonymous public key is 
used to generate anonymous proxy private and 
public key with the original signer’s 
authorization.  Then proxy signatures are 
generated by the anonymous proxy private key, 
so any third party cannot know the proxy 
signer’s identity.  However, Lee et al. [9] 
showed that Shum and Wei’s [13] scheme 
doesn’t satisfy the strong unforgeability property.  
To overcome this problem, Hwang and Hsu [2] 
proposed a practical proxy scheme with the help 
of trusted alias issuers.  However, the 



maintaining load of trusted alias issuers is heavy.  
To remove the trusted alias issuers makes 
anonymous proxy signature schemes being more 
practical.  Therefore, an anonymous proxy 
signature scheme without trusted alias issuers is 
proposed. 

An anonymous scheme has to satisfy 
security properties given below.  Some of these 
properties have been previously listed by 
Mambo et al. [10, 11] and Shum and Wei [13] 
for their schemes, respectively. 

1. Unforgeability: Only the proxy signer 
with proxy authorization can generate 
valid proxy signatures.  Proxy 
signatures cannot be forged by any 
unauthorized user, except the original 
signer. 

2. Verifiability: Anyone can validate 
whether or not proxy signatures are 
generated by the authorized proxy 
signers are correct. 

3. Proxy signer’s deviation: The proxy 
signer cannot forge the original signer’s 
signatures or obtain original signers’ 
private keys. 

4. Distinguishability: Anyone is able to 
distinguish proxy signatures, original 
signers’ signatures, and proxy signers’ 
signatures in polynomial time. 

5. Identifiability: Original signer can to 
identify the generator of proxy 
signatures. 

6. Proxy protection: Due to the 
anonymity, an original signer can 
authorize himself/herself as the proxy 
signer to generate valid proxy 
signatures.  But an original signer 
cannot falsely incriminate anyone as the 
proxy singer. 

7. Undeniability: For a valid proxy 
signature, the proxy signer cannot deny 
the generation of proxy signatures.  
Moreover, the original signer cannot 
deny the proxy certificates generated by 
him/her. 

8. Anonymity: Besides the proxy signer 
or original signer, any third party 
cannot directly find the proxy signer’s 
identity out, even through proxy 
signatures or proxy certificates. 

9. Original signer’s deviation: Original 
signer cannot forge the proxy signer’s 
signatures.  Original signer cannot 
discover the private key from the proxy 
signer’s signatures. 

To propose a practical anonymous proxy 
signature scheme, a new scheme is proposed 
without the trusted authority that is necessary in 
[13].  To deal with the signature exchange 
between original signers and proxy signers, our 

scheme utilizes the asymmetric concurrent 
signature schemes [6].  The following section 
gives the review of Nguyen’s asymmetric 
concurrent signature schemes [6] that is used in 
our scheme.  Our scheme is proposed in 
Section 3.  Then the security analysis of our 
scheme is given in Section 4.  The last section 
is our conclusions. 

 
 

2. Review of Asymmetric Concurrent 
Signature Schemes 

The asymmetric concurrent signature 
scheme proposed by Nguyen [5] is reviewed 
here.  The scheme is consisted of five 
algorithms and one protocol.  The five 
algorithms are described in the following 
subsection and then the protocol is given in 
Section 2.2. 
 
2.1 Asymmetric concurrent signature 
algorithms 

The six algorithms in Nguyen’s scheme are 
SETUP, ISIGN, SSIGN, IVERIFY, SVERIFY, 
and CVERIFY.  They are described one by 
one below.  To describe the six algorithms, the 
notations yi and yj denotes two distinct public 
keys with yi≠ yj. 

 
SETUP 

The input of this algorithm is a security 
parameter l.  On the input l, SETUP algorithm 
outputs the following parameters:  

(1) Two large public prime numbers p and 
q such that q|(p-1) and q is 
exponential in l, 

(2) A public element g∈Zp
* of order q, 

(3) A public cryptographic hash function 
H:{0, 1}* Zq

*, 
(4) Three public functions KGEN(x)= gx 

mod p, KGENj(k) = yj
k mod p for all j, 

and KTRAN(s, x)= sx mod p, 
(5) Three public spaces M= {0,1}*, K= 

Zq
*, and F is the subgroup of Zq

* 
generated by g, and 

(6) The certified private-public key pair 
(xi, yi) for the user Ui, where xi ∈ Zq

* 
and yi = gxi mod p. 

 
ISIGN 
Algorithm ISIGN takes the input (yi, xi, mi), and 
then outputs the promise of the Schnorr 
signature σi= (si, ci) and keystone k, where xi is 
the private key matching with yi (i.e. yi = gxi mod 
p) and mi∈M is the message to be signed.  
ISIGN algorithm is consisted of the following 
steps. 

(1). Select a random number r∈Zq.  
(2). Compute ci = H(gr mod p, mi). 



(3). Compute k = r + cixi mod q. 
(4). Compute si = KGEN(k)= gk mod p = 

gr+cixi mod p. 
(5). Output a promise of Schnorr signature 

σi= (si, ci) and the keystone k. 
 
SSIGN 
Algorithm SSIGN takes the input (yj, xj, mj, si), 
and then outputs the promise of Schnorr-like 
signature ωj= (sj, k1, cj) and keystone k1, where 
xj is the private key matching with yj (i.e. yj = gxj 

mod p), si is the promise of Schnorr signature’s 
parameter and mj∈M is the message to be signed.  
SSIGN algorithm is consisted of the following 
steps. 

(1). Select a random number r'∈Z*
q.  

(2). Compute sj = KTRAN(si, xj) = si
xj 

mod p. 
(3). Compute cj = H(gr'sj, mj). 
(4). Compute k1 = (r' - cj)xj

-1 mod q. 
(5). Output the promise of Schnorr-like 

signature ωj = (sj, k1, cj), where k1 is 
the keystone. 

 
IVERIFY 

IVERFY algorithm takes the input (σi, mi, 
yi), and returns accept if ci≡ H(siyi

-ci mod p, mi); 
otherwise IVERFY returns reject. 

 
SVERIFY 

SVERFY algorithm takes the input (ωj, mj, 
yj), and returns accept if cj≡ H(gcjyj

k1sj mod p, 
mj); otherwise SVERFY returns reject. 
 
CVERIFY 

This algorithm is used to verify the 
promise of signature.  The algorithm can 
describe in two cases:  

(1) On input the promise of Schnorr 
signature σi= (si, ci), mi, and keystone 
k, the algorithm output accept if 
KGEN(k) = si and IVERIFY(σi, mi, 
yi)=accept.  

(2) On input the promise of Schnorr-like 
signature ωj= (sj, k1, cj), mj, and 
keystone k and the algorithm output 
accept if KGENj(k)= sj and 
SVERIFY(ωj, mj, yj)= accept. 

 
2.2 Concurrent signature protocol 

The protocol of Nguyen’s scheme is stated 
below.  Assume that Alice is the initial signer 
and Bob is the matching signer.  Alice and Bob 
perform the following protocol to generate and 
exchange their concurrent signatures. 
Step 1: Alice generates the promise of Schnorr 

signature σA on the message mA∈M by 
the following steps. 

(1) Perform ISIGN(yA, xA, mA) to 

obtain the promise of Schnorr 
signature σA= (sA, cA)= ISIGN(yA, 
xA, mA) and the keystone k. 

(2) Send (σA, mA) to Bob. 
Step 2: Bob performs the following steps to 

first validate Alice’s promise of 
Schnorr signature σA and then 
generates Bob’s promise of 
Schnorr-like signature ωB if σA is valid. 

(1) Validate Alice’s promise of 
Schnorr signature σA and the 
message mA by performing 
IVERIFY(σA, mA, yA).  If 
IVERIFY(σA, mA, yA)≠accept, 
then abort. 

(2) Perform SSIGN(yB, xB, mB, sA) 
to generate Bob’s promise of 
Schnorr-like signature ωB = (sB, 
k1, cB)= SSIGN(yB, xB, mB, sA), 
where sA is the second 
component in σA. 

(3) Send (ωB, mB) to Alice. 
Step 3: After receiving (ωB, mB), Alice runs 

SVERIFY(ωB, mB, yB) to verify the 
validity of ωB.  If SVERIFY(ωB, mB, 
yB)= accept, Alice uses the keystone 
k to verify the keystone fix sB.  If 
this keystone fix is valid, Alice 
forwards the keystone k to Bob. 

 
3. Our new scheme 

The underlying algorithms used to design 
our scheme are first described.  Then our new 
scheme is described. 
 
3.1 Underlying algorithms in our scheme 

In this subsection, some underlying 
algorithms are defined.  Our new scheme 
adopts concurrent signature schemes to give 
original signer’s authorization to proxy signer, 
the algorithms, ISIGN, SSIGN, IVERIFY, 
SVERIFY, and CVERIFY, in asymmetric 
concurrent signature scheme are used.  
Moreover, in order to generate signatures, our 
scheme needs discrete-logarithm-based signature 
schemes.  The underlying discrete logarithm 
based signature schemes have two basic 
algorithms.  One is the SIGN algorithm to 
generate signatures using someone’s private key, 
and another is the VERIFY algorithm to 
validate signatures by using someone’s public 
key.  These two basic algorithms are defined 
below. 
SIGN 

The SIGN algorithm takes the input (xi, m) 
and outputs signatures Ci, where xi is a private 
key and m is a message. 
 
VERIFY 



The VERIFY algorithm takes the input (yi, 
m, Ci) to validate the signature Ci, where yi is the 
public key and m is the message.  The 
VERIFY outputs accept if Ci= SIGN(xi, m); 
otherwise it outputs reject, where xi is the 
matching private key of the public key yi. 
 
3.2 Our scheme 

Our scheme consists of three phases: Setup 
phase, proxy authorization phase, and proxy 
signature generation and verification phase.  
Those phases are described in the following. 
Setup phase 

In this phase, the SETUP algorithm is used 
to initialize the following parameters.  The 
SETUP algorithm takes a security parameter l, 
and outputs two large primes p and q such that 
q|(p-1) and q is exponential in l, a public element 
g∈Zp

* of order q, a public cryptographic hash 
function H:{0,1}*→Zq

*, three public functions 
KGEN(k)=gk mod p, KGENj(k) = yj

k mod p, and 
KTRAN(s, xj)= sxj mod p, three public spaces 
M= {0, 1}*, K= {0, 1}*, and F= Zq

*, and the 
certified private-public key pair (xi, yi) for the 
user Ui, where xi∈ Zq

* and yi = gxi mod p.  Let 
the user Ui’s identity be denoted by IDi. 

There are three entities involved in our 
schemes: An original signer UO, a proxy signer 
UP, and a verifier UV. 
 
Proxy authorization phase 

Suppose that an original signer UO wants 
some user Up to be its anonymous proxy agent.  
The proxy signer Up first randomly chooses an 
anonymous name IDA and a randomly 
constructed public key yA.  UO authorizes Up to 
generate proxy signature by exchanging their 
asymmetric concurrent signatures.  The detail 
of proxy authorization is described in the 
following steps. 
Step 1: UP first generates the anonymous name 

IDA and IDA’s private-public key pair 
(xA, yA), and then generates the 
promise of Schnorr signature σP= (sA, 
cA) and a keystone k.  
(1) Choose an anonymous name 

IDA∈{0,1}*. 
(2) Choose a random number xA∈Zq

* 
as a private key, and compute yA 
= gxA mod p as a public key. 

(3) Generate the promise of Schnorr 
signature σP= (sA, cA) and 
keystone k by running ISIGN(yP, 
xP, mP||IDA||yA), where mp 
denotes the proxy agreement 
containing some specification for 
proxy detail, the UP, and UO. 

(4) Send the promise of Schnorr 
signature σP= (sA, cA) and 

mP||IDA||yA to UO securely. 
Step 2: After receiving UP’s promise of 

Schonorr signature σP, UO verifies the 
promise σP.  If the promise is correct, 
UO generates the promise of 
Schonorr-like signature on the proxy 
warrant mW to authorize UP. 

(1) Perform IVERIFY(σP, 
mP||IDA||yA, yP) to check 
whether or not the promise of 
Schonorr signature is generated 
by UP.  If IVERIFY(σP, 
mP||IDA||yA, yP) return reject, 
then abort. 

(2) Generate the promise of 
Schnorr-like signature ωO= (sO, 
k1, cO) by running SSIGN(yO, 
xO, mW||IDA||yA, sP), where mW 
is the proxy warrant specifying 
important proxy information. 

(3) Send the ωO and mW to UP. 
Step 3: UP validates the promise of 

Schnorr-like signature ωO= (sO, k1, cO), 
and defines the authorized proxy 
private and public keys. 

(1) Check whether or not 
SVERIFY(ωO, mW||IDA||yA, 
yO)= accept. 

(2) If SVERIFY(ωO, mW||IDA||yA, 
yO)= accept, UP sets the proxy 
private key as xA and the 
proxy public key as yA. 

Finally, the proxy signer obtains the original 
signer’s signature (k, ωO) on the warrant 
mW||IDA||yA. 
Proxy signature generation and verification 
phase 

The proxy signer UP generates the 
anonymous proxy signature SA on a message m 
by using the proxy private key xA.  Then a 
verifier uses the proxy public key yA to validate 
the proxy signature SA.  The generation and 
verification of proxy signatures are described in 
the following steps. 
Step 1: UP computes the proxy signature SA= 

SIGN(xA, m). 
Step 2: UP sends {(SA , m), (k, ωO, 
mW||IDA||yA)} to a verifier UV. 
Step 3: UV verifies the original signer UO’s 

authorization and the proxy signature 
SA as below: 

(1) Check whether or not 
CVERIFY(k, ωO , mW||IDA||yA) = 
accept. 

(2) Check whether or not 
VERIFY(yA, m, SA) = accept. 

If both VERIFY(yO, mW||IDA||yA, CO) 
and VERIFY(yA, m, SA) return 
accept, the proxy signature SA is 



valid. 
 
Anonymity disclosure phase 

When disputes happen, the verifier asks 
the original signer to disclose the identity of the 
anonymous proxy signer.  Suppose that the 
given {(SA , m), (k, ωO, mW||IDA||yA)} has been 
validated to be correct.  Then the original 
signer obtains the proxy signer’s concurrent 
signature (k, σP= (sA, cA)) on mP||IDA||yA.  With 
the help of (k, σP= (sA, cA)) on mP||IDA||yA, the 
original signer can show the verifier the proxy 
signer’s information mP||IDP||yA and the proxy 
signer’s concurrent signature (k, σP= (sA, cA)).  
The verifier uses the CVERIFY algorithm to 
check the proxy signer’s concurrent signature (k, 
σP= (sA, cA)) on mP||IDP||yA.  If the proxy 
signer’s concurrent signature (k, σP= (sA, cA)) is 
valid, the proxy signer’s anonymity is revoked. 
  
4. Security analysis 

The security analysis on our scheme is given 
below.  The basic security assumption of our 
scheme is that the underlying discrete logarithm 
based signature scheme and the underlying 
concurrent signature scheme are secure. 
Unforgeability 

The proxy signature SA= SIGN(xA, m) in our 
scheme are generated by the underlying discrete 
logarithm based signature scheme.  Therefore, 
the unforgeability of proxy signatures is 
guaranteed by the unforgeability of underlying 
discrete logarithm based signature scheme.  In 
order to forge proxy signatures, the only chance 
for attacks is to find the proxy private key xA.  
However, to find the proxy private key xA 
directly from yA is protected by the discrete 
logarithm hard problem (DLP for short).  So 
attacks cannot forge proxy signatures. 
 
Verifiability 

The proxy signatures in our scheme are 
verifiable by any verifier.  In our scheme, any 
verifier can validate the promise of Schnorr-like 
signature ωO on mW||IDA||yA  and keystone k 
first.  Then the verifier can use the certificated 
proxy public key yA to verify any proxy 
signature SA on the message m by VERIFY(yA, 
m, SA). 
 
Proxy signer’s deviation 

In our scheme, the original signer’s private 
key xO is never disclosed in the communication.  
In our scheme, the original signer’s private key 
xO is only used to generate the promise of 
Schnorr-like signature ωO on mW||IDA||yA and 
keystone k.  Due to the underlying Schnorr-like 
signature scheme is secure, the original signer’s 
private key xO is never released from the 

promise of Schnorr-like signature ωO.  Because 
both the original signer’s private key xO and the 
underlying discrete-logarithm-based signature 
scheme are secure, there is no chance for the 
proxy signer to forge the original signer’s 
signatures.  In other words, there is no proxy 
signer’s deviation in our scheme. 
 
Distinguishability 

Proxy signatures, proxy signers’ signatures, 
and the original signers’ signatures are 
distinguishable in our scheme.  The reason is 
that those signatures are validated by using 
different public keys.  The proxy signature SA = 
SIGN (xA, m) is verified by using the IDA’s 
public key yA.  On the other hand, the original 
signers’ signature SO= SIGN(xO, m) is validated 
by the original signer’s public key yO while the 
proxy signers’ signature SP= SIGN(xP, m) is 
validated by the proxy signer’s public key yP.  
These three public keys yA, yO, and yP are 
different. 
 
Identifiability 

The original signer can determine and prove 
the identity of the proxy signer according to the 
proxy signatures.  Because the promise of 
Schnorr-like signature ωO is generated on 
mW||IDA||yA and keystone k, the proxy signature 
SA being successfully validated by VERIFY(yA, 
m, SA) is generated by the owner of the proxy 
private key xA.  To find the owner of xA, the 
original signer needs the anonymous name IDA’s 
promise of signature σP= (sA, cA), keystone k, 
and the message mp||IDA||yA to bind yA and the 
proxy signer UP together.  Since KGEN(k) = sP 
and IVERIFY(σP, mp||IDA||yA, yP)=accept, the 
concurrent signature (k, σP) is generated by UP.  
Therefore the original signer can prove that the 
owner of xA is the user UP by using the 
concurrent signature (k, σP). 
 
Proxy protection 

The concurrent signature (k, σP) on the 
message mP||IDA||yA is not only used to prove the 
proxy signer’s identity but also to protect proxy 
signers.  Due to unforgeability of (k, σP), only 
the proxy signer UP can generate (k, σP) on 
his/her anonymous name IDA and a proxy public 
key yA.  So the original signer cannot forge the 
proxy signer’s concurrent signature (k, σP) even 
though the original signer can generate the 
concurrent signature ωO on mW||ID'A||y'A alone.   
The proxy signatures validated by y'A cannot be 
falsely incremented to the proxy signer UP.  
Therefore, our scheme has proxy protection 
property. 

 
Undeniability 



In our scheme, the proxy signer UP cannot 
deny the generation of proxy signatures that 
were really generated by UP.  The original 
signer cannot deny the proxy authorization.  
When any dispute happens, the original signer 
can use (k, σP) to prove that only the proxy 
signer UP know the proxy private key xA.  Due 
to the unforgeability of the underling signature 
scheme, the proxy signer can’t deny the 
generation of proxy signatures validated by yA.  
Due to the unforgeability of the concurrent 
signature ωO on the warrant mW||IDA||yA, the 
original cannot deny the proxy authorization. 
 
Anonymity 

In our proposed protocol, the proxy signer 
UP has an anonymous proxy authorization on the 
anonymous name IDA and a randomly-chosen 
private and public keys xA and yA.   Due to the 
randomness of xA and yA, no one can find out 
who is the proxy signer.  Therefore, our scheme 
provides anonymity for proxy signers. 

 
Original Signer’s deviation 

Only the concurrent signatures ωO= (sO, k1, 
cO) is generated by using proxy signer’s private 
key.  Due to the secure underlying concurrent 
signature schemes, the proxy signer’s private 
key is secure in our scheme.  In our scheme, 
there is no original signer’s deviation to forge 
proxy signer’s signature or to disclosure proxy 
signer’s private key. 

 
5. Conclusions 

A new practical anonymous proxy signature 
scheme is proposed.  Except satisfying security 
properties of an anonymous proxy signature 
scheme, our scheme has some advantages.  
First of all, our scheme is the first one to utilize 
concurrent signature schemes to deal with the 
anonymous certificate and evidence between 
original signers and proxy signers.  Moreover, 
the anonymous name is known only by the 
proxy signer until the anonymous name is 
actually used in proxy authorization. Our scheme 
does not need trusted alias issuers to provide 
anonymity for proxy signers while Shum and 
Wei’s scheme needs.  Our scheme provides a 
practical solution of anonymous protection for 
proxy signers since each proxy delegation can be 
used to generate proxy signatures many times.  
On the other hand, in Mehta and Harn’s scheme, 
each anonymous proxy public key is used to 
generate only one proxy signature. 
 
References 
[1] Chen, L., Kudla, C., and Paterson, K. G., 

“Concurrent signatures,” Eurocrypt ’04, 
LNCS 3027, New York: Spriger-Verlag, pp. 
287-305, 2004. 

[2] Hwang, Shin-Jia and Hsu, Pi-Hung, ”A 
practical anonymous proxy signature 
scheme with trusted alias issuing 
authority,” to appear in The 3rd Joint 
Workshop on Information Security, July 
10-11, 2008, Hanyang University, Seoul, 
Korea. 

[3] Hwang, Shin-Jia and Shi, Chi-Hwai, “A 
proxy signature scheme without using 
one-way hash functions,” 2000 
International computer symposium, 
Chiayi, Taiwan, R.O.C., Dec. 6-8, pp. 
60-64, 2000. 

[4] Hwang, Shin-Jia and Shi, Chi-Hwai, “The 
specifiable proxy signature,” National 
computer symposium 1999, Vol. 1334, 
Taiwan, pp. 190-197, December 1999. 

[5] Kim, S., Park, S., and Won, D., “Proxy 
signatures, revisited,” ICICS ’97, LNCS 
1334, New York: Springer, Berlin, pp. 
223-232, 1997. 

[6] Khanh Nguyen, “Asymmetric concurrent 
signatures,” Information and 
Communications Security Conference, 
ICICS 2005, Lecture Notes in Computer 
Science 3783, pp.181-193, 
Springer-Verlag, 2005. 

[7] Li, Li-Hua, Tzeng, Shiang-Feng, and 
Hwang, Min-Shiang, “Generalization of 
proxy signature-based on discrete 
logarithms,” Computers & Security, Vol. 
22, No. 3, pp. 245-255, 2003. 

[8]  Lee, Narn-Yih, Hwang, Tzonelih, and 
Wang, Chin Hung, “On Zhang’s 
nonrepudiable proxy signature schemes,” 
Third Australasian Conference, ACISP ’98, 
pp. 415-422, 1998. 

[9] Lee, Narn-Yih and Lee, Ming-Feng, “The 
security of a strong proxy signature scheme 
with proxy signer privacy protection,” 
Applied Mathematics and Computation, 
Vol. 161, pp. 807-812, 2005. 

[10] MAMBO, Masahiro, USUDA Keisuke, 
and OKAMOTO, Eiji, “Proxy signatures: 
Delegation of the power to sign message,” 
IEICE. Trans. Fundamentals, E79-A, 9, pp. 
1338-1354, 1996. 

[11] MAMBO, Masahiro, USUDA, Keisuke, 
and OKAMOTO, Eiji, “Proxy signatures 
for delegation signing operation,“ Proc. 
3nd ACM Conference on Computer and 
Communication Security, pp. 48-57, 1996. 

[12] Mehta, M. and Harn L. “Efficient one-time 
proxy signatures,” IEE Proc.-Commun., 
Vol. 152, No. 2, April 2005 

[13] Shum, K. and Wei, Victor K., “A strong 
proxy signature scheme with proxy signer 
privacy protection,” Proceedings of the 
IEEE International Workshops on Enabling 
Technologies: Infrastructure for 



Collaborative Enterprises (WETICE’02), 
pp. 55-56, 2002. 

[14] Wang, Guilin, Bao, Feng, and Zhou, 
Jianying, “The Fairness of Perfect 
Concurrent Signatures,” ICICS 06, LNCS 
4307, New York: Spriger- Verlag, pp. 
435-451, 2006. 

 


