
Instruction Scheduling and Register Relabeling Algorithms for

Reducing Switching Activity between Instructions

Kun-Yi Wu and Shiann-Rong Kuang

Department of Computer Science Engineering, National Sun Yat-sen University

Kaohsiung, Taiwan, ROC

Email: d963040012@student.nsysu.edu.tw and srkuang@cse.nsysu.edu.tw

Abstract- In this paper, we present instruction

scheduling and register relabeling algorithms for

ARM processor to reduce switching activity

between instructions. Given the original assembly

code and machine code produced by compiler, the

proposed algorithm first builds the corresponding

DAG (Directed Acyclic Graph) and DDG (Data

Dependence Graph) of the assembly code. Then

we reorder the sequence of instructions in DAG by

our proposed list scheduling algorithm

(move_ahead) and re-allocate registers into

variables of DDG by tabu search to decrease the

switching activity. Experimental results show that

our proposed algorithms can achieve 5 % to 25%

decrement in switching activity without sacrificing

any program performance.

Keywords: Instruction scheduling, register

relabeling, tabu search, switching activity.

1. Introduction
In the past years the development of VLSI

implementation emphasizes on performance and

miniaturization. Recently with the significant

growth in cost of packaging, cooling, digital noise

immunity, and device reliability, the demands of

multimedia and digital signal processing (DSP)

applications have concentrated attention on the

low power design under tardy progress of power

support devices. Therefore, it is crucial to develop

a low power system with constraints of

performance and area.

It can be undertaken at many abstract levels of

the design process for minimizing power and

energy consumptions. However, the low energy

implementation achieved by software could have

less overhead costs than by hardware. Compiler is

one of software based techniques for program code

optimization. For architecture with the various

characteristics, compiler will be flexible to execute

optimization techniques to bring these features into

full play. This is why we want to explore low

energy technique in compiler.

Instruction scheduling and register allocation

are common static optimal techniques in the code

generator phase of compiler to achieve high

performance and reduce spill cost and power

consumption. Instruction scheduling reorders the

sequence of instructions to arrive the target of low

power. The work in [1, 2] evaluates several

instruction scheduling algorithms while

considering the energy dissipation with

performance constraints. In [3] Sinevriotis et al.

present a list-scheduling algorithm for minimizing

the total inter-instruction effect cost. Another

approach in [4] adopts two ways, Gary code

addressing and Cold scheduling, for decreasing

switching activity. Moreover, horizontal

scheduling and vertical scheduling algorithms

were proposed in [5] for optimizing transition

activities in instruction bus of VLIW architectures.

Vertical scheduling recombines these

microinstructions of original instructions into new

instructions with performance constraint. However,

this approach doesn’t reschedule the first

instruction and likes Top_Down approach in [1][2]

when it is used for ARM processors. On the other

hand, the work of traditional register allocation is

assigning variables of IR (Intermediate

Representation) generated in most modem

compiler into the limit number of registers in the

specific architecture. There are many researches

[6]−[8] using graph coloring approach to solve

spilling problem. HEA (hybrid evolutionary

algorithm) approach [9] efficiently solves this

problem by combining specialized heuristic with

EA.

In this paper, we propose an efficient list-based

scheduling algorithm and apply the tabu search [10]

to solve the low-power instruction scheduling and

register relabeling problems, respectively. Given

the assembly code and machine code generated by

compiler, the proposed approach will construct

DAG and then perform move_ahead scheduling in

DAG to reduce the switching activity between

instructions. Since the different instruction orders

will make different DDG, thus DDG will be

generated based on the sequence of instructions

after instruction scheduling. Finally, we utilize

tabu search to re-label (rename) the registers in

DDG to further decrease the switching activity

between instructions. Experimental results show

that our proposed approaches can efficiently and

quickly reduce the switching activity without

sacrificing any program performance.

The remainder of this paper is organized as

follows. Section 2 gives the problem description

and definition. Section 3 introduces the proposed

instruction scheduling method in detail. We will

discuss the proposed register relabeling method in

Section 4. Section 5 shows the experimental

results. Finally, a concluding remark is given in

Section 6.

2. Problem Description and Definition
Instruction scheduling and register relabeling

are the main methods adopted in this paper to

reduce switching activity. Before constructing

DAG for scheduling and DDG for relabeling, we

must distinguish the source and destination

registers of all instructions beforehand. The DAG

and DDG are explained as follows.

Table 1. The assembly code and machine

code of DIFF example
No Assembly code Machine code

1 ldr r5 , [sp, #24] 18509de5

2 cmp r5 , r0 000055e1

3 mov r7 , r0 0070a0e1

4 mov r8 , r1 0180a0e1
5 mov r6 , r2 0260a0e1

6 mov r4 , r3 0340a0e1
7 ldr lr , [sp, #28] 1ce09de5

8 ldr ip , [sp, #32] 20c09de5

9 bge L6 140000aa
10 mul r2 , lr, r8 9e0802e0

11 mul r1 , r5, r2 950201e0
12 mul r0 , ip, r6 9c0600e0

13 mul r2 , r4, r1 940102e0

14 mul r1 , r4, r0 940001e0

15 add r3 , r5, r4 043085e0

16 rsb r2 , r2, lr 0e2062e0
17 mla ip , r4, lr, ip 94ce2ce0

18 mov r5 , r3 0350a0e1

19 cmp r3 , r7 070053e1

20 rsb lr , r1, r2 02e061e0

21 blt L11 080000ba
22 mov r0 , ip 0c00a0e1

2.1. Directed Acyclic Graph (DAG)
Each node of DAG denotes one instruction.

There is an edge from node I to node J in DAG if

instruction I writes a new value to its destination

register R and instruction J reads or writes the

same register R. In this case, we call node J is a

successor of node I and node I is one predecessor

of node J. In addition, the live range of a

destination register R is the interval between the

instruction I that writes a new value to it and the

last successor of instruction I. For instance,

Figure1 is the DAG of DIFF example shown in

Table 1. There are three basic blocks BB0, BB1,

and BB2 in the DAG. Node 10 is a predecessor of

node 11 and node 11 is a successor of node 10.

3 4 5

9

6 7

8

10 12 15

16

11

13

14 17

20

21

18 19

22

BB 0 BB 1

BB 2

1

2

3 4 5

9

6 73 4 5

9

6 7

8

10 12 15

16

11

13

14 17

20

21

18 19

10 12 15

16

11

13

14 17

20

21

18 19

22

BB 0 BB 1

BB 2

1

2

Figure 1. The DAG of DIFF example

2.2. Data Dependence Graph (DDG)
Each node of DDG is a destination register of

the instruction in DAG. These nodes must be

merged by data flow analysis cross basic blocks

and deleted by the limits of specific architecture to

simplify the DDG. Then, the live ranges of these

remnant nodes in DDG must be found. An edge

between two nodes is added if their live ranges are

overlapping each others.

Not all destination registers could be a node in

DDG. For example, some special purpose registers

and initial reserved registers that ARM processor

will pre-fetch in the beginning of function

procedure call will limit the number of available

registers. Figure 2 shows the DDG of DIFF

example.

0
1

2

4

3

5
6

7

8

9
0

1

2

4

3

5
6

7

8

9

Figure 2. The DDG of DIFF

3. Instruction Scheduling- move_ahead
To generate assembly code quickly, list

scheduling is often adopted to schedule instruction

in compiler. The most important key point of

developing a list scheduling is how to efficiently

select the next instruction to schedule and break tie

in ready list so that local optimization can be

avoided.

Top_Down [1, 2] is a common and simple list

scheduling method. It decides the next instruction

to schedule by greedy method. However, we

discover that if we can move the current selected

instruction which should be scheduled at position

K into previous position L which had already

scheduled one instruction, and then move the

instructions which have be scheduled at position L

~ K−1 to their next position, the efficiency of

Top_Down scheduling can be improved. We call

the new list scheduling method as move_ahead.

move_ahead()

{

 Initialize ready list, done list, solution, SW, count,

basic block index n=0;

 While ready list is not empty {

For each instruction I in ready list of BBn {

Calculate Object(I, previous position, count)

with all possible positions until position

avoid the dependence constraints;

Select instruction K and location L with

smallest switching activity;

}

Add K into done list and update solution, ready

list and SW. If all instructions in basic

block BBn have been scheduled; n++;

}

 Move instruction I into previous position if this

movement will make better solution in the

backward direction. This step is called rebound.

}

Object(I, pp, count)

{

SW += α(done[pp-1], I) + α(I, done[pp]) −

α(done[pp-1], done[pp]) − α(done[count-1], I);

return SW;

}

Figure 3. The algorithm of move_ahead

Besides, after all instructions have been

scheduled by move_ahead method, we will check

and move instruction into previous position again

in the backward direction if this movement will

reduce switching activity. This step is called

rebound. When a tie occurs, tie breaker will

consider the much later instructions will be

scheduled in the future until this tie has been

broken. Scheduling the first instruction of each

basic block is regarded as a tie happened. The

main steps of move_ahead are listed as follows,

where α(X, Y) denotes the switching activity

between instruction X and Y. Moreover, count is

the original scheduled location, and SW denotes

the switching activity.

Here we illustrate move_ahead with DIFF

example shown in Table 1. Table 2 is the result of

performing move_ahead step by step. The column

“I” in Table 2 mean the selected instruction to

schedule in current step. The column “L” is

location moved by move_ahead. Instruction 17

would be moved to order 11 instead of order 19.

Then we move instruction 10 to order 10 by

rebound step. The final scheduled order is {8, 7, 1,

2, 4, 6, 5, 3, 9, 10, 12, 17, 11, 13, 14, 15, 18, 19, 16,

20, 21, 22}.

Table 2. A trace of performing move_ahead
step by step before rebound step

order I L ready list

- - - 1,3,4,5,6,7,8

1 8 - 1,3,4,5,6,7

2 7 - 1,3,4,5,6

3 1 - 2,3,4,5,6

4 2 - 3,4,5,6

5 4 - 3,5,6

6 6 - 3,5

7 5 - 3

8 3 - 9

9 9 - 10,12,15

10 12 - 10,15,17

11 10 - 11,15,17

12 11 - 13,15,17

13 13 - 14,15,16,17

14 14 - 15,16,17

15 15 - 16,17,18,19

16 18 - 16,17,19

17 19 - 16,17
18 16 - 17

19 17 11 20
20 20 - 21

21 21 - 22

22 22 - -

4. Register Relabeling - Tabu Search
Tabu search [9] is one heuristic search method

to escape the local optimal solution. Tabu search

has been used to solve many problems efficiently,

e.g. integer programming problem, scheduling,

routing, traveling salesman [11-13]. In this paper,

we apply tabu search to solve the register

relabeling problem. For the DIFF example, it can

further reduce switching activity from 18.99% to

25.69%.

Given a DDG as shown in Figure 2, the flow

chart of tabu search to solve the register relabeling

problem is shown in Figure 4. The essence of tabu

search is using memory structure (e.g. tabu list and

intensification etc.) to avoid generating solutions

that we had searched recently. The main steps are

described in detail as follows.

•••• Initial solution
Each node of DDG, which represents a

destination register filed of one instruction in

DAG, must be assigned one register, and a

feasible register allocation for each node of

DDG is a solution of register relabeling. The

initial solution is the register allocation for each

node of DDG generated by compiler.

•••• Move

All the steps inside the circle of Figure 4 are

called one move. The move is repeated until the

stop rule is satisfied.

•••• Neighbor
Neighbor is known as a solution in tabu search.

All neighbors are generated according to the

optimal solution with the least switch activity

(SA) in last move by changing the allocated

register for each node of DDG.

•••• Tabu list
Tabu list is a short memory structure that

records these nodes used for generating the

optimal solutions of past moves. The number of

nodes recorded in tabu list is called tabu length.

If the node is found in tabu list while generating

new neighbors, we will not generate neighbors

according to it. That is, the solutions in tabu list

are locked. Therefore tabu list will help us to

escape from the local optimization.

•••• Aspiration criterion
Sometimes it is possible that these locked

solutions will generate much better solution than

the current best solution in all past moves.

Aspiration criterion will sometimes allow the

locked solution to generate new neighbors.

•••• Intensification
Intensification will keep all local optimal

solutions of the past moves and make sure never

repeat the same solution in the later moves.

•••• Stop rule
If the number of moves in tabu search reaches an

appointed number, then we stop the tabu search.

Initial solution

Optimal solution
of last move

Tabu list

Stop rule

All neighbors

Intensification

Calculate SA of
each neighbor

Update local
optimal solution

Aspiration rule

End

Lock

Unlock

No

Yes

Initial solution

Optimal solution
of last move

Tabu list

Stop rule

All neighbors

Intensification

Calculate SA of
each neighbor

Update local
optimal solution

Aspiration rule

End

Lock

Unlock

No

Yes

Figure 4. The flow chart of tabu search

We illustrate tabu search in Figure 5 with DIFF

example of Figure 2. In Figure 5, “I” is the initial

solution. MK is the optimal solution of the Kth

move. The optimal solution of move 0 is changing

R2 to R9 in node5. We color node 5 gray. That

means we lock node 5 in tabu list. When the

number of nodes in tabu list is over tabu length 4,

we unlock node 5 with white color in move 4. We

repeat above steps until the stop rule is satisfied.

“F” denotes the final solution generated by tabu

search.

R5 R7 R8 R6 R4 R2 R1 R0 R3 R0

R4 R3 R6 R7 R5 R9 R8 R0 R1 R0

I

M0

M1

M2

F

R5 R7 R8 R6 R4 R9 R1 R0 R3 R0

R5 R7 R8 R6 R4 R9 R1 R0 R2 R0

R5 R10 R8 R6 R4 R9 R1 R0 R2 R0

R5 R10 R7 R6 R4 R9 R1 R0 R2 R0

R8 R10 R7 R6 R4 R9 R1 R0 R2 R0

M3

M4

R5 R7 R8 R6 R4 R2 R1 R0 R3 R0R5 R7 R8 R6 R4R5 R7 R8 R6 R4 R2 R1 R0 R3 R0R2 R1 R0 R3 R0

R4 R3 R6 R7 R5 R9 R8 R0 R1 R0R4 R3 R6 R7 R5R4 R3 R6 R7 R5 R9 R8 R0 R1 R0R9 R8 R0 R1 R0

I

M0

M1

M2

F

R5 R7 R8 R6 R4 R9 R1 R0 R3 R0R5 R7 R8 R6 R4R5 R7 R8 R6 R4 R9 R1 R0 R3 R0R9 R1 R0 R3 R0

R5 R7 R8 R6 R4 R9 R1 R0 R2 R0R5 R7 R8 R6 R4R5 R7 R8 R6 R4 R9 R1 R0 R2 R0R9 R1 R0 R2 R0

R5 R10 R8 R6 R4 R9 R1 R0 R2 R0R5 R10 R8 R6 R4R5 R10 R8 R6 R4 R9 R1 R0 R2 R0R9 R1 R0 R2 R0

R5 R10 R7 R6 R4 R9 R1 R0 R2 R0R5 R10 R7 R6 R4R5 R10 R7 R6 R4 R9 R1 R0 R2 R0R9 R1 R0 R2 R0

R8 R10 R7 R6 R4 R9 R1 R0 R2 R0R8 R10 R7 R6 R4R8 R10 R7 R6 R4 R9 R1 R0 R2 R0R9 R1 R0 R2 R0

M3

M4

Figure 5. The evolutional generations of

performing tabu search with tabu length=4

0

5

10

15

20

25

mac inarray fir -O3 fir -O2 gcd fowdf -O3 fowdf -O2 diff -O3 diff -O2 fft -O3 fft -O2 qsort -O3 qsort -O2 bsort
% Cold

G.S. 2002

look_ahead

look_move

brute_force

move_ahead

Figure 6. The saving of switching activity for different approaches

5. Experimental Results
In this section we will demonstrate the

efficiency of our proposed approaches.

Experiments are performed on the experimental

environment using AMD Opteron™ 248 CPU,

1.96GB Memory, Gentoo with kernel

2.6.14-gentoo-r5 as OS. -O2 and -O3 in the

following figures represent the different optimal

level for generating ARM assembly and machine

codes of real benchmark by compiler.

First we implemented five different approaches

for comparing with the proposed move_ahead

approach. These approaches include Cold

scheduling [4], G.S.2002 [3], look_ahead [1],

look_move, and brute_force. look_move is the

combination of look_ahead and move_ahead.

brute_force will generate all possible schedules

and pick the best one until over 24 hours. Figure 8

shows the cost time of executing ten thousand

times for different approaches in this paper. Except

for brute_force, all other approaches can obtain the

solutions within 0.01 seconds for all benchmarks

in Figure 8.

The results in Figure 6 show that move_ahead is

much better than other list scheduling approaches

especially for complex cases. Figure 7 shows the

further saving on switching activity by using

register relabeling after instruction schedule. The

result demonstrates that tabu search is very

efficient in register relabeling for reducing

switching activity. It only spends no more than 0.5

second to obtain the result for the benchmark with

200 instructions. “The best in 24 hours” in Figure

7 means the result is obtained by finding all

possible allocations until arriving 24 hours and

picking the best one as the solution.

6. Conclusion
An efficient approach explores instructions

scheduling by our novel move_ahead and register

relabeling by famous tabu search method has been

proposed in this paper. The most different view

compared to other papers is we propose a specific

list schedule can change schedule order that

already done while scheduling next one. In the

experimental results move_ahead is much better

than other list schedule, and even nearly closes the

optimal solution. It also shows that an excellent

performance and high quality solution can be

obtained by tabu search for register relabeling.

Consequently we prove our proposed approach can

efficiently reduce switching activity in ARM.

7. Acknowledgment
This work was supported in part by the National

Science Council, Taiwan, under Grant NSC

96-2220-E-110-007.

051015202530
m

ac
 in

 a
rr
ay

fir
 -O

3

fir
 -O

2
gcd

fo
w
df -

O
3

fo
w

df -
O
2

diff
 -O

3

diff
 -O

2

ff
t -

O
3

ff
t -

O
2

qso
rt

-O
3

qso
rt

-O
2

bso
rt

% before tabu after tabu best in 24 hours

Figure 7. The saving of switching activity
after executing tabu search

0

0.5

1

1.5

2

2.5

3

3.5

m
ac

 in
 a

rr
ay

fir
 -O

3

fir
 -O

2
gc

d

fo
w
df -

O
3

fo
w
df -

O
2

di
ff

-O
3

di
ff

-O
2

fft
 -O

3

fft
 -O

2

qs
or

t -
O
3

qs
or

t -
O

2

bs
or

t

second

Cold

G.S.2002

look_ahead

look_move

move_ahead

Figure 8. The cost time of executing 10000 times for different approaches

References
[1] A. Parikh, M. Kandemir, N. Vijaykrishnan, and M.J.

Irwin, “Instruction Scheduling based on Energy and

Performance Constraints,” IEEE Computers Society

Annual Workshop on VLSI, pp. 37-42, April 2000.

[2] A. Parikh, M. Kandemir, N. Vijaykrishnan, and M.J.

Irwin, “VLIW scheduling for energy and

performance,” IEEE Computer Society Workshop on

VLSI, pp. 111-117, April 2001.

[3] G. Sinevriotis and T. Stouraitis, “A novel

list-scheduling algorithm for the low-energy

program execution,” IEEE International Symposium

on Circuits and Systems, Vol. 4, pp. IV-97 - IV-100,

May 2002.

[4] C.-L. Su, C.-Y, Tsui, and A.M. Despain, “Low

power architecture design and compilation

techniques for high-performance processors,” IEEE

COMPCON, pp. 489-498, March 1994.

[5] C.-G Lee, J.-K Lee, and T.-T Hwang, “Compiler

Optimization on VLIW Instruction Scheduling for

Low Power,” ACM Transactions on Design

Automation of Electronic Systems (TODAES), Vol.

8, No. 2, pp. 252-268, 2003.

[6] G. Chaitin, “Register allocation and spilling via

graph coloring,” ACM SIGPLAN Symposium on

Compiler Construction, pp. 98-105, 1982.

[7] P. Briggs, K.D. Cooper, K. Kennedy, and L. Torczon,

“Coloring heuristics for register allocation,” ACM

SIGPLAN Conference on Programming Language

Design and Implementation, pp. 275-284, June 1989

[8] F.M.Q. Pereira and J. Palsberg, “Register allocation

via coloring of chordal graphs,” Asian Symposium

on Programming Languages and Systems, pp.

315-329, November 2005.

[9] H.P. Topcuoglu, B. Demiroz, and M. Kandemir,

“Solving the Register Allocation Problem for

Embedded Systems Using a Hybrid Evolutionary

Algorithm,” IEEE Transactions on Evolutionary

Computation, Vol. 11, No. 5, pp. 620-634, 2007.

[10] F. Glover and M. Laguna, Tabu Search, Kluwer

Academic Publishers, 1997.

[11] S. Porto and C. Ribeiro, “A Tabu search Approach

to Task Scheduling on Heterogeneous Processors

under Precedence Constraints,” International

Journal of High Speed Computing, Vol. 7, No. 1, pp.

45-71, 1995.

[12] M.K. Dhodhi and I. Ahmad, “Task tree scheduling

onto linear arrays using tabu search,” IEE

Proceedings - Computers and Digital Techniques,

Vol. 144, No. 5 , pp. 317-323, 1997.

[13] C. Dzongang, P. Galinier, and S. Pierre, “A tabu

search heuristic for the routing and wavelength

assignment problem in optical networks,” IEEE

Communications Letters, Vol. 9, No. 5, pp. 426-428,

2005.

