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Abstract- In this paper, we present instruction 

scheduling and register relabeling algorithms for 

ARM processor to reduce switching activity 

between instructions. Given the original assembly 

code and machine code produced by compiler, the 

proposed algorithm first builds the corresponding 

DAG (Directed Acyclic Graph) and DDG (Data 

Dependence Graph) of the assembly code. Then 

we reorder the sequence of instructions in DAG by 

our proposed list scheduling algorithm 

(move_ahead) and re-allocate registers into 

variables of DDG by tabu search to decrease the 

switching activity. Experimental results show that 

our proposed algorithms can achieve 5 % to 25% 

decrement in switching activity without sacrificing 

any program performance.  

 

Keywords: Instruction scheduling, register 

relabeling, tabu search, switching activity. 
 

 

1. Introduction  
In the past years the development of VLSI 

implementation emphasizes on performance and 

miniaturization. Recently with the significant 

growth in cost of packaging, cooling, digital noise 

immunity, and device reliability, the demands of 

multimedia and digital signal processing (DSP) 

applications have concentrated attention on the 

low power design under tardy progress of power 

support devices. Therefore, it is crucial to develop 

a low power system with constraints of 

performance and area. 

It can be undertaken at many abstract levels of 

the design process for minimizing power and 

energy consumptions. However, the low energy 

implementation achieved by software could have 

less overhead costs than by hardware. Compiler is 

one of software based techniques for program code 

optimization. For architecture with the various 

characteristics, compiler will be flexible to execute 

optimization techniques to bring these features into 

full play. This is why we want to explore low 

energy technique in compiler. 

Instruction scheduling and register allocation 

are common static optimal techniques in the code 

generator phase of compiler to achieve high 

performance and reduce spill cost and power 

consumption. Instruction scheduling reorders the 

sequence of instructions to arrive the target of low 

power. The work in [1, 2] evaluates several 

instruction scheduling algorithms while 

considering the energy dissipation with 

performance constraints. In [3] Sinevriotis et al. 

present a list-scheduling algorithm for minimizing 

the total inter-instruction effect cost. Another 

approach in [4] adopts two ways, Gary code 

addressing and Cold scheduling, for decreasing 

switching activity. Moreover, horizontal 

scheduling and vertical scheduling algorithms 

were proposed in [5] for optimizing transition 

activities in instruction bus of VLIW architectures. 

Vertical scheduling recombines these 

microinstructions of original instructions into new 

instructions with performance constraint. However, 

this approach doesn’t reschedule the first 

instruction and likes Top_Down approach in [1][2] 

when it is used for ARM processors. On the other 

hand, the work of traditional register allocation is 

assigning variables of IR (Intermediate 

Representation) generated in most modem 

compiler into the limit number of registers in the 

specific architecture. There are many researches 

[6]−[8] using graph coloring approach to solve 

spilling problem. HEA (hybrid evolutionary 

algorithm) approach [9] efficiently solves this 

problem by combining specialized heuristic with 

EA.  

In this paper, we propose an efficient list-based 

scheduling algorithm and apply the tabu search [10] 

to solve the low-power instruction scheduling and 

register relabeling problems, respectively. Given 

the assembly code and machine code generated by 

compiler, the proposed approach will construct 

DAG and then perform move_ahead scheduling in 



DAG to reduce the switching activity between 

instructions. Since the different instruction orders 

will make different DDG, thus DDG will be 

generated based on the sequence of instructions 

after instruction scheduling. Finally, we utilize 

tabu search to re-label (rename) the registers in 

DDG to further decrease the switching activity 

between instructions. Experimental results show 

that our proposed approaches can efficiently and 

quickly reduce the switching activity without 

sacrificing any program performance. 

The remainder of this paper is organized as 

follows. Section 2 gives the problem description 

and definition. Section 3 introduces the proposed 

instruction scheduling method in detail. We will 

discuss the proposed register relabeling method in 

Section 4. Section 5 shows the experimental 

results. Finally, a concluding remark is given in 

Section 6. 

 

2. Problem Description and Definition 
Instruction scheduling and register relabeling 

are the main methods adopted in this paper to 

reduce switching activity. Before constructing 

DAG for scheduling and DDG for relabeling, we 

must distinguish the source and destination 

registers of all instructions beforehand. The DAG 

and DDG are explained as follows. 

 

 
Table 1. The assembly code and machine 

code of DIFF example 
No Assembly code Machine code 

1 ldr r5 , [sp, #24] 18509de5 

2 cmp r5 , r0 000055e1 

3 mov r7 , r0 0070a0e1 

4 mov r8 , r1 0180a0e1 
5 mov r6 , r2 0260a0e1 

6 mov r4 , r3 0340a0e1 
7 ldr lr , [sp, #28] 1ce09de5 

8 ldr ip , [sp, #32] 20c09de5 

9 bge L6 140000aa 
10 mul r2 , lr, r8 9e0802e0 

11 mul r1 , r5, r2 950201e0 
12 mul r0 , ip, r6 9c0600e0 

13 mul r2 , r4, r1 940102e0 

14 mul r1 , r4, r0 940001e0 

15 add r3 , r5, r4 043085e0 

16 rsb r2 , r2, lr 0e2062e0 
17 mla ip , r4, lr, ip 94ce2ce0 

18 mov r5 , r3 0350a0e1 

19 cmp r3 , r7 070053e1 

20 rsb lr , r1, r2 02e061e0 

21 blt L11 080000ba 
22 mov r0 , ip 0c00a0e1 

 

2.1. Directed Acyclic Graph (DAG) 
Each node of DAG denotes one instruction. 

There is an edge from node I to node J in DAG if 

instruction I writes a new value to its destination 

register R and instruction J reads or writes the 

same register R. In this case, we call node J is a 

successor of node I and node I is one predecessor 

of node J. In addition, the live range of a 

destination register R is the interval between the 

instruction I that writes a new value to it and the 

last successor of instruction I. For instance, 

Figure1 is the DAG of DIFF example shown in 

Table 1. There are three basic blocks BB0, BB1, 

and BB2 in the DAG. Node 10 is a predecessor of 

node 11 and node 11 is a successor of node 10. 
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Figure 1. The DAG of DIFF example 

 

2.2. Data Dependence Graph (DDG) 
Each node of DDG is a destination register of 

the instruction in DAG. These nodes must be 

merged by data flow analysis cross basic blocks 

and deleted by the limits of specific architecture to 

simplify the DDG. Then, the live ranges of these 

remnant nodes in DDG must be found. An edge 

between two nodes is added if their live ranges are 

overlapping each others. 

Not all destination registers could be a node in 

DDG. For example, some special purpose registers 

and initial reserved registers that ARM processor 

will pre-fetch in the beginning of function 

procedure call will limit the number of available 

registers. Figure 2 shows the DDG of DIFF 

example.  
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Figure 2. The DDG of DIFF 

 



3. Instruction Scheduling- move_ahead 
To generate assembly code quickly, list 

scheduling is often adopted to schedule instruction 

in compiler. The most important key point of 

developing a list scheduling is how to efficiently 

select the next instruction to schedule and break tie 

in ready list so that local optimization can be 

avoided. 

Top_Down [1, 2] is a common and simple list 

scheduling method. It decides the next instruction 

to schedule by greedy method. However, we 

discover that if we can move the current selected 

instruction which should be scheduled at position 

K into previous position L which had already 

scheduled one instruction, and then move the 

instructions which have be scheduled at position L 

~ K−1 to their next position, the efficiency of 

Top_Down scheduling can be improved. We call 

the new list scheduling method as move_ahead.  

 

move_ahead() 

{ 

 Initialize ready list, done list, solution, SW, count, 

basic block index n=0; 

 While ready list is not empty { 

For each instruction I in ready list of BBn { 

Calculate Object(I, previous position, count) 

with all possible positions until position 

avoid the dependence constraints;  

Select instruction K and location L with 

smallest switching activity;  

} 

Add K into done list and update solution, ready 

list and SW. If all instructions in basic 

block BBn have been scheduled; n++; 

} 

 Move instruction I into previous position if this 

movement will make better solution in the 

backward direction. This step is called rebound. 

} 

Object(I, pp, count) 

{ 

SW += α(done[pp-1], I) + α(I, done[pp]) − 

α(done[pp-1], done[pp]) − α(done[count-1], I); 

return SW; 

} 

Figure 3. The algorithm of move_ahead 

 

Besides, after all instructions have been 

scheduled by move_ahead method, we will check 

and move instruction into previous position again 

in the backward direction if this movement will 

reduce switching activity. This step is called 

rebound. When a tie occurs, tie breaker will 

consider the much later instructions will be 

scheduled in the future until this tie has been 

broken. Scheduling the first instruction of each 

basic block is regarded as a tie happened. The 

main steps of move_ahead are listed as follows, 

where α(X, Y) denotes the switching activity 

between instruction X and Y. Moreover, count is 

the original scheduled location, and SW denotes 

the switching activity. 

Here we illustrate move_ahead with DIFF 

example shown in Table 1. Table 2 is the result of 

performing move_ahead step by step. The column 

“I” in Table 2 mean the selected instruction to 

schedule in current step. The column “L” is 

location moved by move_ahead. Instruction 17 

would be moved to order 11 instead of order 19. 

Then we move instruction 10 to order 10 by 

rebound step. The final scheduled order is {8, 7, 1, 

2, 4, 6, 5, 3, 9, 10, 12, 17, 11, 13, 14, 15, 18, 19, 16, 

20, 21, 22}.  

 

Table 2. A trace of performing move_ahead 
step by step before rebound step 

order I L ready list 

- - - 1,3,4,5,6,7,8 

1 8 - 1,3,4,5,6,7 

2 7 - 1,3,4,5,6 

3 1 - 2,3,4,5,6 

4 2 - 3,4,5,6 

5 4 - 3,5,6 

6 6 - 3,5 

7 5 - 3 

8 3 - 9 

9 9 - 10,12,15 

10 12 - 10,15,17 

11 10 - 11,15,17 

12 11 - 13,15,17 

13 13 - 14,15,16,17 

14 14 - 15,16,17 

15 15 - 16,17,18,19 

16 18 - 16,17,19 

17 19 - 16,17 
18 16 - 17 

19 17 11 20 
20 20 - 21 

21 21 - 22 

22 22 - - 

 

4. Register Relabeling - Tabu Search 
Tabu search [9] is one heuristic search method 

to escape the local optimal solution. Tabu search 

has been used to solve many problems efficiently, 

e.g. integer programming problem, scheduling, 

routing, traveling salesman [11-13]. In this paper, 

we apply tabu search to solve the register 

relabeling problem. For the DIFF example, it can 

further reduce switching activity from 18.99% to 



25.69%. 

Given a DDG as shown in Figure 2, the flow 

chart of tabu search to solve the register relabeling 

problem is shown in Figure 4. The essence of tabu 

search is using memory structure (e.g. tabu list and 

intensification etc.) to avoid generating solutions 

that we had searched recently. The main steps are 

described in detail as follows. 

•••• Initial solution 
Each node of DDG, which represents a 

destination register filed of one instruction in 

DAG, must be assigned one register, and a 

feasible register allocation for each node of 

DDG is a solution of register relabeling. The 

initial solution is the register allocation for each 

node of DDG generated by compiler.  

•••• Move 

All the steps inside the circle of Figure 4 are 

called one move. The move is repeated until the 

stop rule is satisfied. 

•••• Neighbor  
Neighbor is known as a solution in tabu search. 

All neighbors are generated according to the 

optimal solution with the least switch activity 

(SA) in last move by changing the allocated 

register for each node of DDG.  

•••• Tabu list 
Tabu list is a short memory structure that 

records these nodes used for generating the 

optimal solutions of past moves. The number of 

nodes recorded in tabu list is called tabu length. 

If the node is found in tabu list while generating 

new neighbors, we will not generate neighbors 

according to it. That is, the solutions in tabu list 

are locked. Therefore tabu list will help us to 

escape from the local optimization. 

•••• Aspiration criterion 
Sometimes it is possible that these locked 

solutions will generate much better solution than 

the current best solution in all past moves. 

Aspiration criterion will sometimes allow the 

locked solution to generate new neighbors. 

•••• Intensification 
Intensification will keep all local optimal 

solutions of the past moves and make sure never 

repeat the same solution in the later moves. 

•••• Stop rule 
If the number of moves in tabu search reaches an 

appointed number, then we stop the tabu search. 
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Figure 4. The flow chart of tabu search 

 
We illustrate tabu search in Figure 5 with DIFF 

example of Figure 2. In Figure 5, “I” is the initial 

solution. MK is the optimal solution of the Kth 

move. The optimal solution of move 0 is changing 

R2 to R9 in node5. We color node 5 gray. That 

means we lock node 5 in tabu list. When the 

number of nodes in tabu list is over tabu length 4, 

we unlock node 5 with white color in move 4. We 

repeat above steps until the stop rule is satisfied. 

“F” denotes the final solution generated by tabu 

search. 
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Figure 5. The evolutional generations of 

performing tabu search with tabu length=4 
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Figure 6. The saving of switching activity for different approaches 

 

5. Experimental Results 
In this section we will demonstrate the 

efficiency of our proposed approaches. 

Experiments are performed on the experimental 

environment using AMD Opteron™ 248 CPU, 

1.96GB Memory, Gentoo with kernel 

2.6.14-gentoo-r5 as OS. -O2 and -O3 in the 

following figures represent the different optimal 

level for generating ARM assembly and machine 

codes of real benchmark by compiler. 

First we implemented five different approaches 

for comparing with the proposed move_ahead 

approach. These approaches include Cold 

scheduling [4], G.S.2002 [3], look_ahead [1], 

look_move, and brute_force. look_move is the 

combination of look_ahead and move_ahead. 

brute_force will generate all possible schedules 

and pick the best one until over 24 hours. Figure 8 

shows the cost time of executing ten thousand 

times for different approaches in this paper. Except 

for brute_force, all other approaches can obtain the 

solutions within 0.01 seconds for all benchmarks 

in Figure 8. 

The results in Figure 6 show that move_ahead is 

much better than other list scheduling approaches 

especially for complex cases. Figure 7 shows the 

further saving on switching activity by using 

register relabeling after instruction schedule. The 

result demonstrates that tabu search is very 

efficient in register relabeling for reducing 

switching activity. It only spends no more than 0.5 

second to obtain the result for the benchmark with 

200 instructions. “The best in 24 hours” in Figure 

7 means the result is obtained by finding all 

possible allocations until arriving 24 hours and 

picking the best one as the solution. 

 

6. Conclusion 
An efficient approach explores instructions 

scheduling by our novel move_ahead and register 

relabeling by famous tabu search method has been 

proposed in this paper. The most different view 

compared to other papers is we propose a specific 

list schedule can change schedule order that 

already done while scheduling next one. In the 

experimental results move_ahead is much better 

than other list schedule, and even nearly closes the 

optimal solution. It also shows that an excellent 

performance and high quality solution can be 

obtained by tabu search for register relabeling. 

Consequently we prove our proposed approach can 

efficiently reduce switching activity in ARM.  
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Figure 7. The saving of switching activity 
after executing tabu search 
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Figure 8. The cost time of executing 10000 times for different approaches 
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