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Abstract-Convertible authenticated encryption 
(CAE) schemes are important cryptographic 
techniques which are applicable to many 
confidential business applications such as the 
contract signing and the credit card transactions. 
In case of a later dispute over repudiation, CAE 
schemes provide an arbitration mechanism for the 
public verification. Yet, previous proposed CAE 
schemes are primarily based on the discrete 
logarithm problem or the factorization problem 
and can not allow the designated recipient to prove 
himself as the real recipient. In this paper, we 
propose a bilinear pairings based efficient CAE 
scheme with provable recipient. The proposed 
scheme not only enables the designated recipient 
to prove that he is the real recipient if needed, but 
also has a nice signature conversion mechanism 
which can be solely done by the designated 
recipient without any extra computation or 
communication cost. 
 
Keywords: authenticated encryption, conversion, 

bilinear pairings, public key 
encryption. 

 
 
1. Introduction 

With the rapid development of electronic 
commerce (eCommerce), the security of on-line 
transactions has received the great attention. 
Generally speaking, cryptographic techniques can 
be adopted to protect the communication content 
over the Internet. In 1967, Diffie and Hellman [6] 
proposed the first public key cryptosystem based 
on the discrete logarithm problem (DLP) [6, 18]. 
In the system, each user owns a self-chosen private 
key and then further computes the corresponding 
public key. The former is kept secret and stored by 

the user himself while the latter is made public and 
maintained in the public key directory which is 
accessible to anyone else. It is computationally 
infeasible to derive any user’s private key from his 
public one. 

With these two keys, one can perform the 
public key encryption and the digital signature 
scheme [7, 16]. The public key encryption satisfies 
the requirement of confidentiality [10] while the 
digital signature scheme satisfies those of integrity 
[18], authenticity [18] and non-repudiation [18]. 
One can see that some business activities such as 
the contract signing and the credit card 
transactions require that all the above properties 
simultaneously be fulfilled. Although one can use 
the so-called two-step approach [19], i.e., 
sign-then-encrypt, to achieve the purpose, this 
approach is inefficient for that the total cost is 
equal to the sum of both. 

To obtain a better performance, in 1994, 
Horster et al. [9] proposed an authenticated 
encryption (AE) scheme combining the functions 
of public key encryption and the digital signature 
scheme. In an AE scheme, the signer can generate 
an authenticated ciphertext such that only the 
designated recipient is capable of decrypting the 
ciphertext and verifying the signature. As 
compared with the two-step approach, an AE 
scheme greatly reduces the computational 
complexities. Yet, AE schemes have a potential 
drawback in dealing with a later repudiation 
dispute, since only the designated recipient can 
verify the signer’s signature instead of anyone else. 
Consequently, it is even difficult for an arbitrator 
to judge who is lying. To overcome the problem, in 
1999, Araki et al. [1] proposed a convertible 
limited verifier signature scheme which allows the 
designated recipient to convert the ciphertext into 
an ordinary signature. However, the conversion 



 

process requires the signer’s corporation and will 
increase the additional computation cost. If the 
signer is unwilling to cooperate with, the 
conversion process is unworkable. 

In 2002, Wu and Hsu [20] proposed a 
convertible authenticated encryption (CAE) 
scheme in which the signature conversion can be 
solely done by the designated recipient and takes 
no extra computation or communication cost. 
Since then, lots of researchers [5, 12, 15, 21-23] 
have devoted themselves to the enhancement of 
CAE schemes. Nevertheless, these schemes are 
primarily based on the DLP or the factorization 
problem [16].  

Recently, a so-called bilinear pairings 
cryptosystem from elliptic curves [11, 13, 14] has 
been found various applications [2-4, 8, 17, 24] in 
cryptography. In this paper, we address a solution 
to confidential transactions of pairings-based 
systems and propose an efficient CAE scheme 
based on bilinear pairings. Preserving the merits 
of traditional CAE schemes based on DLP, the 
proposed one further equips the designated 
recipient with the ability to prove that he is the 
real recipient if needed. A significant advantage 
of our scheme is that the signature conversion 
process takes no additional computation efforts 
or communication overheads, because the 
converted signature will be derived during the 
signature verification phase. Moreover, it is not 
necessary for the designated recipient to reveal 
his private key for the public arbitration. We 
also demonstrate that the proposed CAE scheme 
is correct and fulfills the requirements of 
confidentiality, unforgeability, non-repudiation 
and semantic security. 

The rest of this paper is organized as follows. 
Section 2 states some preliminaries. We present the 
proposed scheme in Section 3. The security 
analyses and the efficiency evaluation are 
discussed in Sections 4. Finally, a conclusion with 
respect to the proposed scheme is given in Section 
5. 
 
2. Preliminaries 

In this section, we first define involved parties 
of a CAE scheme and then review some security 
definitions with respect to the proposed scheme.  
 
2.1 Involved Parties 

A CAE scheme has two involved parties: a 
signer and a designated recipient (or verifier). Each 
is a polynomial-time-bounded probabilistic Turing 
machine (PPTM). The signer will generate an 
authenticated ciphertext and deliver it to the 

designated recipient. Yet, a dishonest signer might 
repudiate his generated signatures. Finally, the 
designated recipient decrypts the ciphertext and 
verifies the signer’s signature. 
 
2.2 Security Notions 

Let (G1, +) and (G2, ×) denote groups of the 
same prime order q. Assume that e: G1 × G1 → 
G2 is a bilinear map satisfying the following 
properties: 
 
(i) Bilinearity: 

e(P1 + P2, Q) = e(P1, Q)e(P2, Q); 
e(P, Q1 + Q2) = e(P, Q1)e(P, Q2); 
e(aP, bQ) = e(P, Q)ab for P, Q∈G1 and      
a, b∈ *

qZ . 
(ii) Non-degeneracy: 

If P is a generator of G1, then e(P, P) is a 
generator of G2. 
(iii) Computability: 

Given P, Q∈G1, the value of e(P, Q) can be 
efficiently computed by a polynomial-time 
algorithm. 
 
Definition 1 (Bilinear Diffie-Hellman problem) 

Given an BDH instance (P, A, B, C)∈G1 
where A = aP, B = bP and C = cP for some     
(a, b, c)∈ *

qZ , compute e(P, P)abc∈G2. 
 
Definition 2 (Bilinear Diffie-Hellman 
assumption) 

For every probabilistic polynomial-time 
algorithm A, every positive polynomial Q(⋅) and all 
sufficiently large k, the algorithm A can solve the 

BDH problem with an advantage at most 
)(

1
kQ

, 

i.e., Pr[A(P, aP, bP, cP) = e(P, P)abc,           

(a, b, c) ← *
qZ , (P, aP, bP, cP) ← G1] ≤ 

)(
1
kQ

. 

The probability is taken over the uniformly and 
independently P∈G1 and (a, b, c)∈ *

qZ  and over 

the random choices of A. 
 
Definition 3 (Elliptic curve discrete logarithm 
problem; ECDLP) 

Let P be a generator of prime order q of G1. 
The elliptic curve discrete logarithm problem is, 
given an instance (P, Y) for some Y∈G1, to derive 
x∈ *

qZ  such that Y = xP. 



 

Definition 4 (Elliptic curve discrete logarithm 
assumption) 

For every probabilistic polynomial-time 
algorithm A, every positive polynomial Q(⋅) and all 
sufficiently large k, the algorithm A can solve the 

ECDLP with an advantage at most 
)(

1
kQ

, i.e.,  

Pr[A(P, xP) = x, x ← *
qZ , P ← G1] ≤ 

)(
1
kQ

. 

The probability is taken over the uniformly and 
independently P∈G1 and x∈ *

qZ  and over the 

random choices of A. 
 
3. The Proposed Scheme 

The proposed CAE scheme can be divided 
into four phases: the signature generation, the 
signature verification, the signature conversion and 
the recipient proof phases. Initially, the system 
determines the following public information: 
 
q: a large prime; 
G1, G2: two groups of the same order q; 
P: a generator of order q over G1; 
e: a bilinear pairing, e: G1 → G2; 
h1: a one-way hash function,  

 h1: {0, 1}* × G1 → *
qZ ; 

h2: a one-way hash function,  
 h1: G1 → *

qZ ; 

Each user Ui chooses his private key xi∈ *
qZ  

and computes the corresponding public key as   
Yi = xiP. Details of each phase are described 
below: 
 
The signature generation phase: Let Ua be the 
signer and Ub the designated recipient. For signing 
the message m, Ua chooses an integer r ∈ *

qZ  and 
computes  

R = rP,   (1) 
S = (rxa

−1 + h1(m, R))P,   (2) 
K = rYb,   (3) 
t = h2(R)−1m mod q,   (4) 

and then deliveries the authenticated ciphertext  
(S, K, t) to Ub.  
 
The signature verification phase: Upon receiving 
the ciphertext (S, K, t), Ub first computes 

R = xb
−1K.   (5) 

He then recovers the message m as 

m = th2(R),   (6) 
and checks the redundancy embedded in m. Ub can 
further verify the signature by checking  

e(S, Ya) = e(R + h1(m, R)Ya, P). (7) 
 
The signature conversion phase: In case of a 
latter dispute over repudiation, Ub can just release 
the message m along with its converted signature 
(S, R). Then any third party can perform Eq. (7) to 
realize the signer’s dishonesty. It can be seen that 
the parameter R is derived during the signature 
verification process. Consequently, the signature 
conversion takes no additional computation efforts 
or communication overheads. Besides, it is not 
necessary for the designated recipient to reveal his 
private key. 
 
The recipient proof phase: For convincing 
someone, say, Uc, that Ub is the real recipient, he 
can perform the following interactive steps with 
Uc: 
Step 1 Ub sends the ciphertext (S, K, t), the 

converted signature (S, R) and the 
original message m to Uc. 

Step 2 Uc first checks the converted signature’s 
validity with Eq. (7). If it holds, Uc 
proceeds to the next step; otherwise, the 
protocol is terminated. 

Step 3 Uc randomly chooses an integer d to 
compute E = dK and then transmits E to 
Ub. 

Step 4 Upon receiving E, Ub computes      
W = xb

−1E and returns it to Uc. 
Step 5 Uc computes W' = dR and checks 

whether W = W'. If it holds, Uc is 
convinced that Ub is the real recipient. 

 
4. Security Analyses and Efficiency 

In this section, we first analyze the security of 
our proposed scheme and then evaluate its 
efficiency. 
 
4.1 Security Analyses 

We demonstrate that the proposed CAE 
scheme is correct and achieves the security 
requirements of confidentiality, unforgeability and 
non-repudiation. 
 
Correctness. A CAE scheme is correct if the 
signer can generate a valid authenticated ciphertext 
and only the designated recipient is capable of 
decrypting the ciphertext and verifying the 



 

recovered signature when all involved parties 
follow the steps of the scheme. We prove the 
correctness of our proposed scheme as Theorems 1 
and 2. 
 
Theorem 1. The designated recipient Ub can 
correctly recover the message m with embedded 
redundancy by Eq. (6). 
Proof: From the right-hand side of Eq. (6), we 
have 

th2(R) 
 = th2(xb

−1K) (by Eq. (5)) 
 = th2(xb

−1rYb) (by Eq. (3)) 
 = th2(xb

−1r xbP) 
 = th2(rP) 
 = th2(R) (by Eq. (1)) 
 = m (by Eq. (4)) 
which leads to the left-hand side of Eq. (6). 

 Q.E.D. 
 
Theorem 2. The designated recipient Ub can 
correctly verify the signature with Eq. (7). 
Proof: From the right-hand side of Eq. (7), we 
have 

e(R + h1(m, R)Ya, P) 
 = e(rP + h1(m, R)Ya, P)  (by Eq. (1)) 
 = e(rP + h1(m, R)xaP, P) 
 = e((r + h1(m, R)xa)P, P) 
 = e(xa(rxa

−1 + h1(m, R))P, P) 
 = e((rxa

−1 + h1(m, R))P, xaP) 
 = e(S, Ya) (by Eq. (2)) 
which leads to the left-hand side of Eq. (7). 
  Q.E.D. 
 
Confidentiality 

(i). The confidentiality of the user Ui’s private 
key: To successfully derive the user Ui’s 
private key xi from its corresponding public 
key, an attacker must has the ability to 
solve the ECDLP which is computationally 
infeasible. If the attacker attempts to 
compute the signer’s private key from Eq. 
(2), he has to know the secret integer r first. 
Even though he has the knowledge of r, he 
still faces the intractability of ECDLP. 
Hence, the confidentiality of the user Ui’s 
private key xi is assured under the 
protection of ECDLP. 

(ii). The confidentiality of the original 
message: To recover the message m, any 
attacker has to obtain the parameter R first. 
However, computing R with Eq. (5) 

requires the designated recipient’s private 
key xb which is computationally infeasible 
to obtain according the above analyses. We 
further consider the requirement of 
semantic security. A CAE scheme is said to 
satisfy the requirement of semantic security 
if the generated authenticated ciphertext is 
computationally indistinguishable with 
respect to even two candidate messages. It 
can be seen that to guess a correct 
candidate message for a given ciphertext 
from Eq. (7), any attacker still requires an 
additional parameter R to complete the 
process. Yet, we have known that the 
parameter R can only be derived by the 
designated recipient. Therefore, any 
attacker has the advantage of guessing the 
correct one with no more than 1/2, i.e., the 
generated authenticated ciphertext is 
computationally indistinguishable. We 
conclude that the proposed CAE scheme 
satisfies the requirement of semantic 
security and thus the confidentiality of the 
message is achieved.  

 
Unforgeability 

(i) The unforgeability of the authenticated 
ciphertext: To forge a valid authenticated 
ciphertext (S', K', t') on an arbitrarily 
chosen message m', an attacker may first 
randomly choose r' to compute R', K' and t' 
with Eqs. (1), (3) and (4), respectively. 
Then he attempts to derive S' fulfilling   
Eq. (7). However, he will face the 
intractability of BDHP and fail to make it. 
In addition, based on the difficulty of 
ECDLP, he cannot obtain the signer’s 
private key to forge a valid authenticated 
ciphertext either.  

(ii) The unforgeability of the converted 
signature: To forge a valid converted 
signature (S', R') on an arbitrarily chosen 
message m', an attacker may first randomly 
choose S' and then compute R' satisfying 
Eq. (7). Unfortunately, he cannot make it 
unless he has the ability to compute the 
BDHP and invert the one-way hash 
function. On the contrary, if he randomly 
chooses R' to derive S' passing the test of 
Eq. (7), the intractable situation remains the 
same. Hence, the proposed CAE scheme is 
secure against existential forgery attack on 
arbitrarily chosen messages. 

 
Non-repudiation 

The proposed CAE scheme allows the signer 



 

Ua to generate an authenticated ciphertext (S, K, t) 
which can only be decrypted and verified by the 
designated recipient Ub. When the case of a later 
repudiation occurs, Ub can just reveal the 
converted signature (S, R) and the original message 
m for the public arbitration. According to the 
analyses of the confidentiality of the user Ui’s 
private key and the unforgeability of the converted 
signature, any attacker cannot forge a valid 
signature without knowing the signer’s private key 
xa. Therefore, the signer Ua cannot deny his 
generated signatures. 

From the above discussions, it can be seen 
that the proposed CAE scheme is secure against 
known active attacks even under the semantic 
security based on the hardness of ECDLP and 
BDHP. 
 
4.2 Efficiency 

Since the proposed scheme is totally different 
from previous CAE ones based on the DLP or the 
factorization problem, we only evaluate the 
efficiency of our scheme in terms of the 
computational complexities. For facilitating the 
following evaluation, we first define some 
necessary notations below. 
 

TEA: the time for performing a modular 
addition computation over an elliptic 
curve; 

TEM: the time for performing a modular 
multiplication computation over an 
elliptic curve; 

TI: the time for performing a modular 
inverse computation; 

TM: the time for performing a modular 
multiplication computation; 

TH: the time for performing a one-way 
hash function; 

TB: the time for performing a bilinear 
paring computation; 

 
Note that the time for performing the modular 
addition operation is ignored because they are 
negligible as compared to computing time of 
performing others. The detailed evaluation is 
demonstrated as Table 1. 
 
5. Conclusions 

In this paper, we have proposed a bilinear 
pairings based efficient CAE scheme with 
provable recipient. In our proposed scheme, the 
signature conversion can be solely performed by 

the designated recipient without extra computation 
efforts or communication overheads, because the 
converted signature will be derived during the 
signature verification phase. It is not necessary for 
the designated recipient to reveal his private key 
for the public arbitration in case of a later dispute 
over repudiation. Also, the proposed scheme 
provides the designated recipient with the ability to 
prove himself as the real recipient if needed. 
Moreover, we have demonstrated that the proposed 
CAE scheme fulfills the requirements of 
confidentiality, unforgeability, non-repudiation 
and semantic security. 
 

Table 1. Performance evaluation of the 
proposed CAE scheme. 
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